5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN

Koko: px
Aloita esitys sivulta:

Download "5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN"

Transkriptio

1 5 KURSSI: Pyöimie ja gaitaati (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN s s KULMASUUREET; kietkulma ϕ =, kietymä = kietkulma muuts ϕ = 360 = π ad (MAOL s 34 (34)) PYÖRIMISLIIKE φ s kulmapeus = ϕ ad ω, yksikkö:[ ϕ ] = s kieste lkm kiestaajuus eli pyöimispeus; = kuluut aika =, yksikkö [ = ],, T s mi [ /s, pm, RPM ] φ = φ + ωt, ω = π MUUTTUVA PYÖRIMINEN: ω aki ϕ ϕ ϕ keskimäääie kulmapeus: ω k = = t t hetkellie kulmapeus: ω = ϕ = t,φ)kuaajalle piiety tageti fysikaalie kulmakei Tasaisesti kiihtyä pyöimie: kulmakiihtyyys α = aki ω kulmakiihtyyys; = ω ad α, yksikkö:[ α ] = ω = αt, ω = ω + αt s ω Yleie pyöimie: α aki t ω ω ω keskimäääie kulmakiihtyyys α k = = t t hetkellie kulmakiihtyyys α = ω = (t,ω)kuaajalle piiety tageti fysikaalie kulmakei KIERTYMÄ TASAISESTI KIIHTYVÄSSÄ (α = aki) PYÖRIMISLIIKKEESSÄ ω + ω + kietymä ϕ = ω k t, keskikulmapeus ω k= (t s = t k, k = ) tisi: kietymä ϕ = ω t + α t (t s = t + a t ) ω = alkukulmapeus, ω = lppukulmapeus, ω k = keskikulmapeus ata = kietkulma aja fuktia: ϕ( t ) = ϕ + ω t + α t (α = kulmakiihtyyys, t = aika) φ = kappalee kietkulma alkuhetkellä RATASUUREET kehäpistee atasiitymä = kaae pituus s = φ kulma ja atasuueide äliset yhteydet; kehäpistee atapeus eli kehäpeus = ω π π = ω = π = π = atapeus: = T T (T = kietaika (s))

2 T = kietaika eli yhtee kieksee kuluut aika (s) eteemisliikkee ja pyöimisliikkee aalgiaa (ks MAOL s 6 ()) RATAKIIHTYVYYS ELI TANGENTTIKIIHYVYYS a t = α NORMAALIKIIHTYVYYS ELI KESKEISKIIHTYVYYS (SUUNNANMUUTOSKIIHTYVYYS) a = ω keskeisima F= ma (esim laga aassa pyöiä kappale; F = lagajäitysima, pitää kpl:ee adalla) (hetkellie) kkaiskiihtyyys; a = a + a t kiihtyyyde itseisa: a = a t + a, θ = suutakulma, ta θ = Hum! Kulmapeus ja kulmakiihtyyys saadaa myös deiaattia: dϕ dω ω= α= dt dt = a a F F= m F a a t JÄYKÄN KAPPALEEN PYÖRIMISLIIKE VOIMAN MOMENTTI = ima kietaikutus (ima x ima asi); M = F d M = Nm ima asi = ima aikutussua khtisua etäisyys kietakselista yleisesti: mmetti ektisuue, jka määitellää istitula: M = F, M = F (MAOL s 8 ( 3)) Vieeise kuissa hiukkasee A aikuttaa ima F, jka saa aikaa hiukkase A kietymise kietakseli O ympäi Paikkaekti hiukkase A etäisyys kietakselista Kulma θ paikkaekti ja ima F aikutussua älie kulma ja b ima F asi eli ima F aikutussua khtisua etäisyys kietakselista O Vima F äätöaikutusta kuaaa suue eli ima F mmetti pistee O suhtee M = Fb = Fsiθ = F Tässä ima F asi b = siθ Mmettiae b sijaa idaa laskea myös ima F khtisuaa pjekti kietakselia OA = astaa, jlli F = Fsiθ ja M = F Pyöimise jatkauude laki: apaa kappale pyöii kiiteä akseli ympäi tasaisesti tai lessa STATIIKKA Tasapaiehdt: ) F = 0 (imaeht eli eteemiseht kpl ei etee ) ) M = 0 (mmettieht eli pyöimiseht kpl ei pyöi )

3 PYÖRIMISEN LIIKEYHTÄLÖ F letus: massapiste m ympyäliikkeessä mmetti M = F ataa hiukkaselle a t kiihtyyyde a = a t = α ja hiukkasee O aikuttaa ima F = ma m ima F mmetille M = F saadaa äi lauseke M = ma = mα = m α M = Jα missä J = m ( =massapistee hitausmmetti) PYÖRIMISEN LIIKEYHTÄLÖ (Pyöimise peuslaki): M i = Jα ( t F i = ma ) M = mmetti (Nm), J = hitausmmetti (kgm ), α = kulmakiihtyyys (ad/s ) hitausmmetti J pyöimisliikkee hitaude mitta (M M µ = Jα) (t massa m eteemisliikkee hitaude mitta) pyöimisliikkee ja eteemisliikkee astaauuksia: J m, M F, α a, ω, ϕ s Hitausmmetti J määitellää yleisesti massapisteide hitausmmettie sumaa b d J = m i i, jka käytäössä takittaa itegaalia = dm= = J ρ dv massapistee hitausmmetti etäisyydellä lea akseli suhtee : J= m kappaleide hitausmmetteja; MAOL s 89 (34)!! PYÖRIMISEN LIIKEENERGIA eli taatieegia: E t= Jω E t = pyöimiseegia (J), J = hitausmmetti (kgm ), ω = kulmapeus (ad/s) (t eteemisliikkee liikeeegia eli taslaatieegia: E = m ) Steiei säätö : J = J + m (ks ppikija s 45) mmeti tekemä työ W = M ϕ (t W = F s ) pyöimisliikkee eegiapeiaate: mmeti tekemä työ = pyöimiseegia muuts: W = E t (t W = E k ) pyöimisteh P = M ω (t P = F ) LIIKEMÄRÄMOMENTTI L = pyöimistä kuaaa suue (= kpl:ee pyöimie akselisa ympäi + kietliike adalla) massapistee liikemääämmetti tasa astaa khtisua ekti, jka suuuus määitellää lausekkeea L = m missä = kietakselia astaa khtisua O peude kmpetti ja m = hiukkase massa ω PYÖRIMISMÄÄRÄ eli sisäie liikemääämmetti L kuaa kappalee pyöimistä akselisa ympäi suuuus iippuu kulmapeudesta ω (kiestaajuudesta ) ja hitausmmetista J (hitausmmetti J iippuu pulestaa massasta m ja se paikasta pyöimisakselii ähde; J ~ m ) t a c

4 yleisesti: liikemääämmetti ektisuue, jka määitellää istitula: L = p = m = m Hiukkase massa m, peus, liikemäää p= m L ω ja = hiukkase paikkaekti eli etäisyys kiiteästä pisteestä O, jka suhtee liikemääämmettia L määitetää (ks ieeie kua ) Itseisaa saadaa: L = m siθ, missä θ : ja : älie kulma eli θ = θ(,) Js θ = 90 eli (ks kua ), ii L = m Kska = ω, ii L = m ω = Jω Kua Ristitul esitetty taulukssa: MAOL s 4 (38) Hum! Ristitul ylikussia, jta ei le älttämätö sata! Kappalee PYÖRIMISMÄÄRÄ eli sisäie liikemääämmetti kgm L= Jω yksikkö: [ L] = s kgm (t eteemisliikkee liikemäää: p= m, [ p= ] ) s Vastaauudet: L p, J m, ω Kua pyöimismäää säilymislaki: apaa systeemi pyöimismäää säilyy: L = Jω = aki eli Jω = J ω (t p = m= aki eli m = m ) Esim taitluistelija piuetit, uimahyppääjä ltit: J muuttuu ω muuttuu, kska L = Jω = aki Hitausmmetti J suaa eallie massaa ja se etäisyyde eliöö pyöimisakselista; J ~ m Esim Taitluistelija pieetää hitausmmettiaa J (massapisteide etäisyys pyöimisakselista pieeee), jlli kulmapeus ω kasaa, kska L = Jω aki (J < J ω > ω, kska J ω = J ω ) Sami meettelee uimahyppääjä * Miksi iitita helpmpi pyöittää keskeltä kui päästä? * Miksi kissa putaa aia jalillee? * Kumpi pyöii paemmi aaka ai keitetty kaamua? Miksi? * Miksi helikpteissa kaksi ptkuia? IMPULSSIMOMENTTI eli liikemääämmetti I M = M ( t impulssi I = F ) IMPULSSIMOMENTTIPERIAATE: impulssimmetti = pyöimismäää muuts eli (t eteemisliikkeessä impulssi = liikemää muuts eli I = p ) Ositetaa seuaaaksi, että I M = L I M = L

5 ω M= Jα M = J = J ω Siis imassa: = L I M Vastaaasti sitetaa, että eteemisliikkeessä F = ma = m t Siis I = p YMPYRÄLIIKE M I J( ) J J L L L I = p M = ω ω = ω ω = = F = m I = m ( ) = m m = p p = p KAPPALE YMPYRÄRADALLA: a maalikiihtyyys eli keskeiskiihtyyys: a = F tagettikiihtyyys eli atakiihtyyys: a t = 0 keskeisima: F= ma = m F a keskeisimaa, jka pitää kappalee ympyäadalla i lla esim laga jäitysima, kitkaima, alusta tukiima, gaitaatiima, sähköie ima eli Culmbi ima, mageettiketä ima Kaaeaj: ) aakasua kaae: eteemise liikeyhtälö kmpetit: F = m R N mg = 0 N N pia tukiima, G = mg aut paiima, F µ kitka(ima), aut peus ja R ada kaaeuussäde (ks fti 5, Esim, s 66) µ G µ ) kaltea kaae: eteemise liikeyhtälö kmpetit: Tcsα mg = 0 m Tsiα = T pia tukiima, α tie kalteuuskulma, ada kaaeuussäde Tie kalteuuskulmalle α pätee: taα = (ttea!) g (ks fti 5, Esim 3, s 6768) F

6 HEILURIT: φ matemaattie heilui = paittma laga päässä heilahtelea massapiste esim hue laga aassa heilahteleapiei pall l = heilui pituus ( = pall keskipistee etäisyys ipustuspisteestä) l l l φ = heilahduskulma eli pikkeutuskulma ja φ se suui a O tasapaiasema ja Aja B at heilui ääiasemat A B Amplitudi heilui suui pikkeama tasapaiasemasta, jka O heilahduskulmaa φ astaaaa kaaepituus (ks Kua 3) Kua 3 Heiluii aikuttaat imat at paiima G= mg alaspäi sekä laga jäitysima T, jka laga suutaie Jaetaa paiima G= mg kmpetteihi maalikmpettii G ja tagettikmpettii G t G t = mgsiϕ φ Heilui liikeyhtälö G + T= ma Kmpeteille pätee G = mgsiϕ l Liikeyhtälö jaetaa ada tageti ja maali suutaisii () T mgcsϕ = ma T m kmpetteihi: (t) mgsiϕ = ma t G t φ Js kulma φ piei ja aettu adiaaeissa, silli pätee x x G si ϕ ϕ = Suutaspimus humiide saadaa l mg mg φ G G t = x, missä kei aki G t siis l l + likimai hamie ima, ku pikkeama x piei Kua 4 Heiluipall khdistua Maa etima G jakamie kmpetteihi G t ja G t siis likimai suaa eallie pikkeamaa tasapaiasemasta ja pikkeamaa ähde astakkaissuutaie, ku pikkeama tasapaiasemasta piei G t siis likimai mg hamie ima Heilui hamie äähtelijä, jka jusiaki k= l Matemaattise heilui liike hamista äähdysliikettä Heilahdusaika T saadaa hamise m äähdysliikkee jaksaja suueyhtälöstä: T= π, missä m äähtelijä massa ja k k m l jusiaki Näi saadaa T= π = π Siis heilahdusaika T mg/l g l = π g Heilui tagettikiihtyyys liikeyhtälö mukaa a t = gsiϕ a t suui ääiasemissa ja lla tasapaiasemassa Heilui kulmakiihtyyydeksi saadaa a t gsiϕ α = = Heilui liikkuu pitki ympyä kaata ja se maalikiihtyyys l l T a = = gcsϕ l m G

7 matemaattise heilui maalikiihtyyys a lla ääiasemissa, jlli heilui peus lla maalikiihtyyys a suui tasapaiasemassa, jlli heilui atapeus suui Hum! Heiluille pätee mekaaise eegia säilymislaki: E p + E k = aki mgh= m KARTIOHEILURI JÄYKKÄ HEILURI eli fysikaalie heilui KAPPALEEN YLEINEN LIIKE ETENEMISEN JA PYÖRIMISEN RIIPPUMATTOMUUS: eteemise liikeyhtälö: F = ma pyöimise liikeyhtälö: M = Jα Kappalee liikeeegia = eteemisliikkee liikeeegia + pyöimiseegia E = E + E = m + Jω k t t E k = liikeeegia eli kieettie eegia E t = eteemise liikeeegia eli taslaatieegia E t = pyöimisliikkee liikeeegia eli taatieegia Steiei säätö : J = J + m (ks ppikija s 88) Ku mmassaise kappalee hitausmmetti massakeskipistee kautta kulkea akseli suhtee J, hitausmmetti tämä kassa yhdesuutaise, etäisyydellä massakeskipisteestä lea akseli suhtee J = J + m VIERIMINEN: KAPPALE VIERII = ETENEE JA PYÖRII ieimiseht: = ω ja a= α Vieiä kappalee liikeeegia ieimisliikkee eegia (eteemisliikkee eegia + pyöimisliikkee eegia); E k = E t + E = m + Jω ieimie kaltealla alustalla ω h 0tas: E p = 0 Mekaaise eegia säilymislaki (ei liikeastuksia; W = 0): letus: kpl alussa lessa: = 0, ω = 0 E p= E t+ E t eli mgh= m + Jω yleisesti; mekaaise eegia säilymislaki: a a a l l l (a = alussa, l = lpussa) E + E + E = E + E + E GRAVITAATIO; HEITTOLIIKE a) aakaliike tasaista: peus x = aki b) pystyliike tasaisesti kiihtyää: kiihtyyys a y = g = 9,8 m/s = aki ) putamie: = gt, h= gt ) pystysua heittliike: = gt, h = t gt 3) i heittliike: aakaliike tasaista ja pystyliike tasaisesti kiihtyää; p t t p t t

8 Kua Vi heittliikkee atakäyä ja Kua Vi heittliike peusekteita kmpetteihi kdiaatistssa jaettua x säilyy samaa, mutta O = heittpiste y muuttuu A = lakipiste = alkupeus α = lähtökulma Alkupeude kmpetit (t = 0): Npeude kmpetit hetkellä t: x y x y = csα = siα = = csα siα gt h = lakikkeus R = katama (letus: g aki, ilmaastus piei) Paika (sijaii) kdiaatit hetkellä t: x = csα t y = siα t gt aakaliike tasaista: x = csα = x = aki pystyliike tasaisesti kiihtyää: a y = g Eegia säilymislaki seltuu heittliikkee tutkimisee NOUSUAIKA: LAKIKORKEUS: t h 0siα = LENTOAIKA: T= g si g α siα siα h= KANTAMA: R= g g Keplei lait (3 kpl) (ks ppikija s 0)

9 NEWTONIN PAINOVOIMALAKI eli YLEINEN VETOVOIMALAKI (gaitaatilaki): mm F = G F = massje m ja m älie etima = kappaleide keskipisteide etäisyys G = yleie gaitaatiaki = χ, f (MAOL s 7 (7)) gaitaati yleie kappaleide älie etima pai = ima, jlla Maa etää kappaletta puleesa; G = mg, g = putamiskiihtyyys = 9,8 m/s gaitaatikettä; imakkuus g = F/m LIIKE GRAVITAATIOKENTÄSSÄ: Newti kuutesti KIERTOLAINEN YMPYRÄRADALLA Esim satelliitti, jka massa m kietää maata (massa M) ympyäadalla, jka säde liikeyhtälö: F= ma (dyamiika peuslaki) gaitaatiima = keskeisima mm G = m M m SOVELLUKSIA: taiaakappaleide massje määitys, atapeus, kietaika, kkeus, kaksistähdet SUURET SÄILYMISLAIT TAIVAANKAPPALEIDEN LIIKKEISSÄ: Liikemäää, pyöimismäää, mekaaie kkaiseegia: GmM E = m = aki E < 0: ata ellipsi (ympyä), E > 0: ata hypebeli, E = 0: ata paaabeli KOSMISET NOPEUDET ELI PAKONOPEUDET: pakpeus (kietää Maata) = 7,9 km/s, pakpeus (pis Maasta) =, km/s 3 pakpeus (pis Auikkuasta) = 4, km/s (ks ppikija, s 404) aauuslutaimet, satelliittipaikatamie mekaiika kaaat (MAOL s 69 (4)) a

10 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ MAOL taulukk: TÄRKEITÄ SIVUJA: ( uusi keltaie MAOL ja suluissa iheä aha MAOL) s 66(66): SIjäjestelmä peussuueet ja yksiköt + määitelmät s 67(67): keaaisyksiköide etuliitteet ja jhdaaisyksiköt s 68(68): lisäyksiköt, mm a 365 d, lita = dm 3, t = 000 kg = Mg, s 6970(6970): muutketimia, mm lita = dm 3 = 0,00 m 3, s 7(7): luakiita, mm gaitaatiaki χ, G = 6, Nm /kg, s 095(050): tähtitiede, mm Maa massa, säde, etäisyys Auigsta, s 3(3): absluuttie kulmayksikkö s 69(34): hitausmmetteja! s 64 (4): MEKANIIKAN KAAVOJA + tuukset ja yksiköt!!! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

ASTROFYSIIKAN KAAVOJA:

ASTROFYSIIKAN KAAVOJA: ASTROFYSIIKAN KAAVOJA: Hum! Mustassa ja keltaisessa taulukssa n hieman ei lunnnakiiden aja. Mustan taulukn at at päiitettyjä aja. Useimmat alla leat suueyhtälöt at myös taulukssa: MAOL s. 4-30, 34-35,

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m Ketaustehtäät. c) Len kietokulma on t,5 ad/s (6 s) 9 ad.. a) Ratanopeus on 5, 35 m 53 cm/s. s 3. b) Tasapainoasemassa palloon kohdistuat paino G ja langan jännitsoima T. Pallon liikehtälö on F ma. n Kun

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön. LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

FYSIIKAN KURSSIEN PÄÄKOHTIA:

FYSIIKAN KURSSIEN PÄÄKOHTIA: FYSIIKAN KURSSIEN PÄÄKOHTIA:. KURSSI: Fysiikka luonnontieteenä: - mittaustarkkuus ja virhearviointi - graafiset menetelmät, tiheys, - nopeus, kiihtyvyys (tasainen liike, tasaisesti kiihtyvä/hidastuva liike),

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg)

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg) SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA ltl ka ppa leiden (vetovoima) m ja lxz välinen gavitaatiovoima Fon F_l/ mlmz 2 kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54 FORD RANGER 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 28 29 29 30 [Nm] 475 450 425 400 375 [kw] [PS] 180 245 165 224 150 204 135 184 31 350

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26 KRTIOMMSPYÖRÄT Tekniset tieot Kartiohammasvaihe on vaihe, jossa on pituussuuntaiset ristiakselit. Tämä eellyttää useimmissa tapauksissa vapaasti kantavaa laakerointia. isäksi on käytettävä melko järeitä

Lisätiedot

= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1

= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1 Pitkä matmatiikka YO-ko 4.9.4. a) b) ( )( 3) 6 3 + 6 6 + y + + ( ) y + + 3 + + ( ) TNS y ( ) + 3 tai Paraablit likkaavat pistssä (, 3). c) Mrkitää lukua : llä ( ). + 4 + 8 + 8 8 + ( 8) ( 8) 4 ± 8 ± 6 8

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 [kw] [PS] 110 150 100 136 90 122 80 109 250 230 210 190 70 60 50 95 82 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500 2000

Lisätiedot

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 125 PS 100 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136 90 122

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 350 330 [kw] [PS] 110 150 100 136 310 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

Tykillä ampuminen 2. missä b on ilmanvastuskerroin, v skalaarinen nopeus, nopeus vektorina ja nopeuden suuntainen yksikkövektori.

Tykillä ampuminen 2. missä b on ilmanvastuskerroin, v skalaarinen nopeus, nopeus vektorina ja nopeuden suuntainen yksikkövektori. Tykillä ampuminen Mallinnettaessa heittoliikettä, kuten esimerkiksi tykillä ampumista, keskeisinä vaikuttavina tekijöinä ovat painovoima sekä ilmanvastuksen aiheuttama nopeuelle vastakkaissuuntainen voima.

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta

Lisätiedot