5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN

Koko: px
Aloita esitys sivulta:

Download "5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN"

Transkriptio

1 5 KURSSI: Pyöimie ja gaitaati (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN s s KULMASUUREET; kietkulma ϕ =, kietymä = kietkulma muuts ϕ = 360 = π ad (MAOL s 34 (34)) PYÖRIMISLIIKE φ s kulmapeus = ϕ ad ω, yksikkö:[ ϕ ] = s kieste lkm kiestaajuus eli pyöimispeus; = kuluut aika =, yksikkö [ = ],, T s mi [ /s, pm, RPM ] φ = φ + ωt, ω = π MUUTTUVA PYÖRIMINEN: ω aki ϕ ϕ ϕ keskimäääie kulmapeus: ω k = = t t hetkellie kulmapeus: ω = ϕ = t,φ)kuaajalle piiety tageti fysikaalie kulmakei Tasaisesti kiihtyä pyöimie: kulmakiihtyyys α = aki ω kulmakiihtyyys; = ω ad α, yksikkö:[ α ] = ω = αt, ω = ω + αt s ω Yleie pyöimie: α aki t ω ω ω keskimäääie kulmakiihtyyys α k = = t t hetkellie kulmakiihtyyys α = ω = (t,ω)kuaajalle piiety tageti fysikaalie kulmakei KIERTYMÄ TASAISESTI KIIHTYVÄSSÄ (α = aki) PYÖRIMISLIIKKEESSÄ ω + ω + kietymä ϕ = ω k t, keskikulmapeus ω k= (t s = t k, k = ) tisi: kietymä ϕ = ω t + α t (t s = t + a t ) ω = alkukulmapeus, ω = lppukulmapeus, ω k = keskikulmapeus ata = kietkulma aja fuktia: ϕ( t ) = ϕ + ω t + α t (α = kulmakiihtyyys, t = aika) φ = kappalee kietkulma alkuhetkellä RATASUUREET kehäpistee atasiitymä = kaae pituus s = φ kulma ja atasuueide äliset yhteydet; kehäpistee atapeus eli kehäpeus = ω π π = ω = π = π = atapeus: = T T (T = kietaika (s))

2 T = kietaika eli yhtee kieksee kuluut aika (s) eteemisliikkee ja pyöimisliikkee aalgiaa (ks MAOL s 6 ()) RATAKIIHTYVYYS ELI TANGENTTIKIIHYVYYS a t = α NORMAALIKIIHTYVYYS ELI KESKEISKIIHTYVYYS (SUUNNANMUUTOSKIIHTYVYYS) a = ω keskeisima F= ma (esim laga aassa pyöiä kappale; F = lagajäitysima, pitää kpl:ee adalla) (hetkellie) kkaiskiihtyyys; a = a + a t kiihtyyyde itseisa: a = a t + a, θ = suutakulma, ta θ = Hum! Kulmapeus ja kulmakiihtyyys saadaa myös deiaattia: dϕ dω ω= α= dt dt = a a F F= m F a a t JÄYKÄN KAPPALEEN PYÖRIMISLIIKE VOIMAN MOMENTTI = ima kietaikutus (ima x ima asi); M = F d M = Nm ima asi = ima aikutussua khtisua etäisyys kietakselista yleisesti: mmetti ektisuue, jka määitellää istitula: M = F, M = F (MAOL s 8 ( 3)) Vieeise kuissa hiukkasee A aikuttaa ima F, jka saa aikaa hiukkase A kietymise kietakseli O ympäi Paikkaekti hiukkase A etäisyys kietakselista Kulma θ paikkaekti ja ima F aikutussua älie kulma ja b ima F asi eli ima F aikutussua khtisua etäisyys kietakselista O Vima F äätöaikutusta kuaaa suue eli ima F mmetti pistee O suhtee M = Fb = Fsiθ = F Tässä ima F asi b = siθ Mmettiae b sijaa idaa laskea myös ima F khtisuaa pjekti kietakselia OA = astaa, jlli F = Fsiθ ja M = F Pyöimise jatkauude laki: apaa kappale pyöii kiiteä akseli ympäi tasaisesti tai lessa STATIIKKA Tasapaiehdt: ) F = 0 (imaeht eli eteemiseht kpl ei etee ) ) M = 0 (mmettieht eli pyöimiseht kpl ei pyöi )

3 PYÖRIMISEN LIIKEYHTÄLÖ F letus: massapiste m ympyäliikkeessä mmetti M = F ataa hiukkaselle a t kiihtyyyde a = a t = α ja hiukkasee O aikuttaa ima F = ma m ima F mmetille M = F saadaa äi lauseke M = ma = mα = m α M = Jα missä J = m ( =massapistee hitausmmetti) PYÖRIMISEN LIIKEYHTÄLÖ (Pyöimise peuslaki): M i = Jα ( t F i = ma ) M = mmetti (Nm), J = hitausmmetti (kgm ), α = kulmakiihtyyys (ad/s ) hitausmmetti J pyöimisliikkee hitaude mitta (M M µ = Jα) (t massa m eteemisliikkee hitaude mitta) pyöimisliikkee ja eteemisliikkee astaauuksia: J m, M F, α a, ω, ϕ s Hitausmmetti J määitellää yleisesti massapisteide hitausmmettie sumaa b d J = m i i, jka käytäössä takittaa itegaalia = dm= = J ρ dv massapistee hitausmmetti etäisyydellä lea akseli suhtee : J= m kappaleide hitausmmetteja; MAOL s 89 (34)!! PYÖRIMISEN LIIKEENERGIA eli taatieegia: E t= Jω E t = pyöimiseegia (J), J = hitausmmetti (kgm ), ω = kulmapeus (ad/s) (t eteemisliikkee liikeeegia eli taslaatieegia: E = m ) Steiei säätö : J = J + m (ks ppikija s 45) mmeti tekemä työ W = M ϕ (t W = F s ) pyöimisliikkee eegiapeiaate: mmeti tekemä työ = pyöimiseegia muuts: W = E t (t W = E k ) pyöimisteh P = M ω (t P = F ) LIIKEMÄRÄMOMENTTI L = pyöimistä kuaaa suue (= kpl:ee pyöimie akselisa ympäi + kietliike adalla) massapistee liikemääämmetti tasa astaa khtisua ekti, jka suuuus määitellää lausekkeea L = m missä = kietakselia astaa khtisua O peude kmpetti ja m = hiukkase massa ω PYÖRIMISMÄÄRÄ eli sisäie liikemääämmetti L kuaa kappalee pyöimistä akselisa ympäi suuuus iippuu kulmapeudesta ω (kiestaajuudesta ) ja hitausmmetista J (hitausmmetti J iippuu pulestaa massasta m ja se paikasta pyöimisakselii ähde; J ~ m ) t a c

4 yleisesti: liikemääämmetti ektisuue, jka määitellää istitula: L = p = m = m Hiukkase massa m, peus, liikemäää p= m L ω ja = hiukkase paikkaekti eli etäisyys kiiteästä pisteestä O, jka suhtee liikemääämmettia L määitetää (ks ieeie kua ) Itseisaa saadaa: L = m siθ, missä θ : ja : älie kulma eli θ = θ(,) Js θ = 90 eli (ks kua ), ii L = m Kska = ω, ii L = m ω = Jω Kua Ristitul esitetty taulukssa: MAOL s 4 (38) Hum! Ristitul ylikussia, jta ei le älttämätö sata! Kappalee PYÖRIMISMÄÄRÄ eli sisäie liikemääämmetti kgm L= Jω yksikkö: [ L] = s kgm (t eteemisliikkee liikemäää: p= m, [ p= ] ) s Vastaauudet: L p, J m, ω Kua pyöimismäää säilymislaki: apaa systeemi pyöimismäää säilyy: L = Jω = aki eli Jω = J ω (t p = m= aki eli m = m ) Esim taitluistelija piuetit, uimahyppääjä ltit: J muuttuu ω muuttuu, kska L = Jω = aki Hitausmmetti J suaa eallie massaa ja se etäisyyde eliöö pyöimisakselista; J ~ m Esim Taitluistelija pieetää hitausmmettiaa J (massapisteide etäisyys pyöimisakselista pieeee), jlli kulmapeus ω kasaa, kska L = Jω aki (J < J ω > ω, kska J ω = J ω ) Sami meettelee uimahyppääjä * Miksi iitita helpmpi pyöittää keskeltä kui päästä? * Miksi kissa putaa aia jalillee? * Kumpi pyöii paemmi aaka ai keitetty kaamua? Miksi? * Miksi helikpteissa kaksi ptkuia? IMPULSSIMOMENTTI eli liikemääämmetti I M = M ( t impulssi I = F ) IMPULSSIMOMENTTIPERIAATE: impulssimmetti = pyöimismäää muuts eli (t eteemisliikkeessä impulssi = liikemää muuts eli I = p ) Ositetaa seuaaaksi, että I M = L I M = L

5 ω M= Jα M = J = J ω Siis imassa: = L I M Vastaaasti sitetaa, että eteemisliikkeessä F = ma = m t Siis I = p YMPYRÄLIIKE M I J( ) J J L L L I = p M = ω ω = ω ω = = F = m I = m ( ) = m m = p p = p KAPPALE YMPYRÄRADALLA: a maalikiihtyyys eli keskeiskiihtyyys: a = F tagettikiihtyyys eli atakiihtyyys: a t = 0 keskeisima: F= ma = m F a keskeisimaa, jka pitää kappalee ympyäadalla i lla esim laga jäitysima, kitkaima, alusta tukiima, gaitaatiima, sähköie ima eli Culmbi ima, mageettiketä ima Kaaeaj: ) aakasua kaae: eteemise liikeyhtälö kmpetit: F = m R N mg = 0 N N pia tukiima, G = mg aut paiima, F µ kitka(ima), aut peus ja R ada kaaeuussäde (ks fti 5, Esim, s 66) µ G µ ) kaltea kaae: eteemise liikeyhtälö kmpetit: Tcsα mg = 0 m Tsiα = T pia tukiima, α tie kalteuuskulma, ada kaaeuussäde Tie kalteuuskulmalle α pätee: taα = (ttea!) g (ks fti 5, Esim 3, s 6768) F

6 HEILURIT: φ matemaattie heilui = paittma laga päässä heilahtelea massapiste esim hue laga aassa heilahteleapiei pall l = heilui pituus ( = pall keskipistee etäisyys ipustuspisteestä) l l l φ = heilahduskulma eli pikkeutuskulma ja φ se suui a O tasapaiasema ja Aja B at heilui ääiasemat A B Amplitudi heilui suui pikkeama tasapaiasemasta, jka O heilahduskulmaa φ astaaaa kaaepituus (ks Kua 3) Kua 3 Heiluii aikuttaat imat at paiima G= mg alaspäi sekä laga jäitysima T, jka laga suutaie Jaetaa paiima G= mg kmpetteihi maalikmpettii G ja tagettikmpettii G t G t = mgsiϕ φ Heilui liikeyhtälö G + T= ma Kmpeteille pätee G = mgsiϕ l Liikeyhtälö jaetaa ada tageti ja maali suutaisii () T mgcsϕ = ma T m kmpetteihi: (t) mgsiϕ = ma t G t φ Js kulma φ piei ja aettu adiaaeissa, silli pätee x x G si ϕ ϕ = Suutaspimus humiide saadaa l mg mg φ G G t = x, missä kei aki G t siis l l + likimai hamie ima, ku pikkeama x piei Kua 4 Heiluipall khdistua Maa etima G jakamie kmpetteihi G t ja G t siis likimai suaa eallie pikkeamaa tasapaiasemasta ja pikkeamaa ähde astakkaissuutaie, ku pikkeama tasapaiasemasta piei G t siis likimai mg hamie ima Heilui hamie äähtelijä, jka jusiaki k= l Matemaattise heilui liike hamista äähdysliikettä Heilahdusaika T saadaa hamise m äähdysliikkee jaksaja suueyhtälöstä: T= π, missä m äähtelijä massa ja k k m l jusiaki Näi saadaa T= π = π Siis heilahdusaika T mg/l g l = π g Heilui tagettikiihtyyys liikeyhtälö mukaa a t = gsiϕ a t suui ääiasemissa ja lla tasapaiasemassa Heilui kulmakiihtyyydeksi saadaa a t gsiϕ α = = Heilui liikkuu pitki ympyä kaata ja se maalikiihtyyys l l T a = = gcsϕ l m G

7 matemaattise heilui maalikiihtyyys a lla ääiasemissa, jlli heilui peus lla maalikiihtyyys a suui tasapaiasemassa, jlli heilui atapeus suui Hum! Heiluille pätee mekaaise eegia säilymislaki: E p + E k = aki mgh= m KARTIOHEILURI JÄYKKÄ HEILURI eli fysikaalie heilui KAPPALEEN YLEINEN LIIKE ETENEMISEN JA PYÖRIMISEN RIIPPUMATTOMUUS: eteemise liikeyhtälö: F = ma pyöimise liikeyhtälö: M = Jα Kappalee liikeeegia = eteemisliikkee liikeeegia + pyöimiseegia E = E + E = m + Jω k t t E k = liikeeegia eli kieettie eegia E t = eteemise liikeeegia eli taslaatieegia E t = pyöimisliikkee liikeeegia eli taatieegia Steiei säätö : J = J + m (ks ppikija s 88) Ku mmassaise kappalee hitausmmetti massakeskipistee kautta kulkea akseli suhtee J, hitausmmetti tämä kassa yhdesuutaise, etäisyydellä massakeskipisteestä lea akseli suhtee J = J + m VIERIMINEN: KAPPALE VIERII = ETENEE JA PYÖRII ieimiseht: = ω ja a= α Vieiä kappalee liikeeegia ieimisliikkee eegia (eteemisliikkee eegia + pyöimisliikkee eegia); E k = E t + E = m + Jω ieimie kaltealla alustalla ω h 0tas: E p = 0 Mekaaise eegia säilymislaki (ei liikeastuksia; W = 0): letus: kpl alussa lessa: = 0, ω = 0 E p= E t+ E t eli mgh= m + Jω yleisesti; mekaaise eegia säilymislaki: a a a l l l (a = alussa, l = lpussa) E + E + E = E + E + E GRAVITAATIO; HEITTOLIIKE a) aakaliike tasaista: peus x = aki b) pystyliike tasaisesti kiihtyää: kiihtyyys a y = g = 9,8 m/s = aki ) putamie: = gt, h= gt ) pystysua heittliike: = gt, h = t gt 3) i heittliike: aakaliike tasaista ja pystyliike tasaisesti kiihtyää; p t t p t t

8 Kua Vi heittliikkee atakäyä ja Kua Vi heittliike peusekteita kmpetteihi kdiaatistssa jaettua x säilyy samaa, mutta O = heittpiste y muuttuu A = lakipiste = alkupeus α = lähtökulma Alkupeude kmpetit (t = 0): Npeude kmpetit hetkellä t: x y x y = csα = siα = = csα siα gt h = lakikkeus R = katama (letus: g aki, ilmaastus piei) Paika (sijaii) kdiaatit hetkellä t: x = csα t y = siα t gt aakaliike tasaista: x = csα = x = aki pystyliike tasaisesti kiihtyää: a y = g Eegia säilymislaki seltuu heittliikkee tutkimisee NOUSUAIKA: LAKIKORKEUS: t h 0siα = LENTOAIKA: T= g si g α siα siα h= KANTAMA: R= g g Keplei lait (3 kpl) (ks ppikija s 0)

9 NEWTONIN PAINOVOIMALAKI eli YLEINEN VETOVOIMALAKI (gaitaatilaki): mm F = G F = massje m ja m älie etima = kappaleide keskipisteide etäisyys G = yleie gaitaatiaki = χ, f (MAOL s 7 (7)) gaitaati yleie kappaleide älie etima pai = ima, jlla Maa etää kappaletta puleesa; G = mg, g = putamiskiihtyyys = 9,8 m/s gaitaatikettä; imakkuus g = F/m LIIKE GRAVITAATIOKENTÄSSÄ: Newti kuutesti KIERTOLAINEN YMPYRÄRADALLA Esim satelliitti, jka massa m kietää maata (massa M) ympyäadalla, jka säde liikeyhtälö: F= ma (dyamiika peuslaki) gaitaatiima = keskeisima mm G = m M m SOVELLUKSIA: taiaakappaleide massje määitys, atapeus, kietaika, kkeus, kaksistähdet SUURET SÄILYMISLAIT TAIVAANKAPPALEIDEN LIIKKEISSÄ: Liikemäää, pyöimismäää, mekaaie kkaiseegia: GmM E = m = aki E < 0: ata ellipsi (ympyä), E > 0: ata hypebeli, E = 0: ata paaabeli KOSMISET NOPEUDET ELI PAKONOPEUDET: pakpeus (kietää Maata) = 7,9 km/s, pakpeus (pis Maasta) =, km/s 3 pakpeus (pis Auikkuasta) = 4, km/s (ks ppikija, s 404) aauuslutaimet, satelliittipaikatamie mekaiika kaaat (MAOL s 69 (4)) a

10 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ MAOL taulukk: TÄRKEITÄ SIVUJA: ( uusi keltaie MAOL ja suluissa iheä aha MAOL) s 66(66): SIjäjestelmä peussuueet ja yksiköt + määitelmät s 67(67): keaaisyksiköide etuliitteet ja jhdaaisyksiköt s 68(68): lisäyksiköt, mm a 365 d, lita = dm 3, t = 000 kg = Mg, s 6970(6970): muutketimia, mm lita = dm 3 = 0,00 m 3, s 7(7): luakiita, mm gaitaatiaki χ, G = 6, Nm /kg, s 095(050): tähtitiede, mm Maa massa, säde, etäisyys Auigsta, s 3(3): absluuttie kulmayksikkö s 69(34): hitausmmetteja! s 64 (4): MEKANIIKAN KAAVOJA + tuukset ja yksiköt!!! ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

ASTROFYSIIKAN KAAVOJA:

ASTROFYSIIKAN KAAVOJA: ASTROFYSIIKAN KAAVOJA: Hum! Mustassa ja keltaisessa taulukssa n hieman ei lunnnakiiden aja. Mustan taulukn at at päiitettyjä aja. Useimmat alla leat suueyhtälöt at myös taulukssa: MAOL s. 4-30, 34-35,

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m

15 0, 035 m 53 cm/s. s. 0,065kg 0,065kg 9,81m/s 4,9 N. 0,34 m Ketaustehtäät. c) Len kietokulma on t,5 ad/s (6 s) 9 ad.. a) Ratanopeus on 5, 35 m 53 cm/s. s 3. b) Tasapainoasemassa palloon kohdistuat paino G ja langan jännitsoima T. Pallon liikehtälö on F ma. n Kun

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa

K = Q C W = T C T H T C. c = 1 dq. f) Isokoorinen prosessi: prosessi joka suoritetaan vakiotilavuudessa Sallitut apuvälineet: kijoitusvälineet ja gaafinen laskin. Muun oman mateiaalin tuominen ei sallittu. Tämä on fysiikan kussi, joten desimaalilleen oikeaa numeeista vastausta täkeämpää on että osoitat ymmätäneesi

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

FYSIIKAN KURSSIEN PÄÄKOHTIA:

FYSIIKAN KURSSIEN PÄÄKOHTIA: FYSIIKAN KURSSIEN PÄÄKOHTIA:. KURSSI: Fysiikka luonnontieteenä: - mittaustarkkuus ja virhearviointi - graafiset menetelmät, tiheys, - nopeus, kiihtyvyys (tasainen liike, tasaisesti kiihtyvä/hidastuva liike),

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg)

F_l/ mlmz SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA. Fon. (vetovoima) mr ja lxz välinen gravitaatiovoima. kappaleiden massat ovat mr ja mz (kg) SOVE LLU STE HTÄV Ä G RAVITAATI O LA I STA ltl ka ppa leiden (vetovoima) m ja lxz välinen gavitaatiovoima Fon F_l/ mlmz 2 kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26

KARTIOHAMMASPYÖRÄT. Tekniset tiedot OIKEA ASENNUSMITTA LIIAN PIENI ASENNUSMITTA LIIAN SUURI ASENNUSMITTA 1:26 KRTIOMMSPYÖRÄT Tekniset tieot Kartiohammasvaihe on vaihe, jossa on pituussuuntaiset ristiakselit. Tämä eellyttää useimmissa tapauksissa vapaasti kantavaa laakerointia. isäksi on käytettävä melko järeitä

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 [kw] [PS] 110 150 100 136 90 122 80 109 250 230 210 190 70 60 50 95 82 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500 2000

Lisätiedot

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 125 PS 100 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136 90 122

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 350 330 [kw] [PS] 110 150 100 136 310 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

NESTEIDEN ja ja KAASUJEN MEKANIIKKA NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Teknis-luonnontieteellinen koulutusohjelma PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Kandidaatintyö Takastaja: lehtoi Risto Silvennoinen Palautuspäivä: 16.9.2008 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN

Lisätiedot

Mekaniikka Dynamiikka Kinematiikka newton joule

Mekaniikka Dynamiikka Kinematiikka newton joule Mekaniikka Kinematiikka Keskivauhti v k ' s t Keskikiihtyvyys Dynamiikka F 6 ' ma 6 [F] = kgm/s 2 = N newton Kitka F µ ' µn a k ' v t ' v & v 0 t Köysikitka: F 1 F 2 ' e µθ v k ' v % v 0 2 v ' v 0 % at

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Moottorisahan ketjun kytkentä

Moottorisahan ketjun kytkentä Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö

Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Tulityöt: järjestäminen ja suunnittelu

Tulityöt: järjestäminen ja suunnittelu Tulityöt: järjestäminen ja suunnittelu 2012 Tulitöitä vat kaikki työt, jssa n syttymän aiheuttaja (esim. kipinöinti, hitsaus, avtuli, kuuma ilma) sekä ympäristössä leva palvaara Tulityökrtti ei le lakisääteinen,

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

1 3 5 7 9 11 12 13 15 [Nm] 400 375 350 325 300 275 250 225 200 175 150 155 PS 100 PS 125 PS [kw][ps] 140 190 130 176 120 163 110 149 100 136 125 30 100 20 1000 1500 2000 2500 3000 3500 4000 4500 RPM 90

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

Säätökeskus RVA36.531

Säätökeskus RVA36.531 Säätökeskus Asennusohje 1. Johdanto Tämä ohje koskee säätökeskusta joka on tarkoitettu lämmönsäätöön pientaloissa jossa on vesikiertoinen lämmitysjärjestelmä.ohje tulee säilyttää lähellä säädintä.. Säätökeskus

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Mekaniikka 0.0. Tietoja kurssista 1/122

Mekaniikka 0.0. Tietoja kurssista 1/122 Mekaniikka 0.0. Tietoja kurssista /22 Mekaniikka Fysa20 (5 op) Kevät 204, Fysiikan laitos, Jyväskylän yliopisto Luennot Juha Merikoski 3.. 5.3.204 ma-ke 4-6 (8 viikkoa) Laskuharjoitukset Ville Vaskonen,

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen MTAJAT H. Honkann Muuntaja on lait, jossa nsiön vaihtovita saa aikaan muuttuvan magnttikntän muuntajasydämn. Tämä muuttuva magnttiknttä saa aikaan vian toisiokäämiin. Tasasähköllä muuntaja i toimi, tasavita

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V.

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V. Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot