Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Koko: px
Aloita esitys sivulta:

Download "Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014"

Transkriptio

1 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

2 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö Tunnus pituus l metri m massa m kilogramma kg aika t sekunti s sähkövirta I ampeeri A lämpötila T kelvin K ainemäärä n mooli mol valovoima I kandela cd

3 SI järjestelmän johdannaisyksiköt Suure Tunnus Yksikkö Tunnus tasokulma α,β,γ,... radiaani rad avaruuskulma Ω,ω steradiaani sr taajuus f,v hertsi Hz voima F, G newton N paine p pascal Pa energia, työ E,W joule J teho P watti W sähkövaraus Q coulombi C jännite U voltti V kapasitanssi C faradi F resistanssi R ohmi Ω konduktanssi G=1/R siemens S magneettivuo Φ weber Wb magneettivuon tiheys B tesla T induktanssi L henry H valovirta Φ luumen lm valaistusvoimakkuus E luksi lx

4 Etuliite Tunnus Kerroin etuliitteet eksa E 1E+18 peta P 1E+15 tera T 1E+12 giga G 1E+09 mega M 1E+06 kilo k 1E+03 desi d 1E 01 sentti c 1E 02 milli m 1E 03 mikro µ 1E 06 nano n 1E 09 piko p 1E 12 femto f 1E 15 atto a 1E 18

5 Kerroin valitaan yleensä niin, että se on välillä 0, esim. 4,78 ma, ei 4780 µa 3,9 kω,ei 3900 Ω 92 µs, ei 0,092 ms Koneella kirjoitettaessa suureiden tunnukset kirjoitetaan kursiivilla ja yksikköjen tunnukset pystykirjaimin esim. U = 12 V Laskuissa kannattaa käyttää kertoimien sijasta kymmenen potensseja virheiden välttämiseksi. esim Ω 10 kω

6 Merkitsevät numerot mittaustulos on aina likiarvo Kun suureita kerrotaan tai jaetaan keskenään, lopputuloksen merkitsevien numeroiden määrä on sama kuin sen suureen merkitsevien numeroiden määrä, jossa niitä on vähiten Nolla ei ole merkitsevä numero, jos se on välittömästi desimaalipilkun jälkeen. Esim. Luvussa 0,0036 on kaksi merkitsevää numeroa. Esim. luvussa 5,0 nolla on merkitsevä numero. Tuloksessa 3400 Ω ei tiedetä, onko merkitseviä numeroita 2, 3 vai 4. Jos tulos annetaan muodossa 3,40 kω, merkitseviä numeroita on 3. Kun suureita lasketaan yhteen tai vähennetään toisistaan, tulos ilmaistaan niin monella desimaalilla kuin niitä on vähiten desimaaleja sisältävässä luvussa

7 Mittaustulos on siis aina likiarvo, kaikkiin mittauksiin sisältyy virhettä Mittausvirhettä syntyy mittavälineen epätarkkuudesta mittavälineen käyttäjän epätarkkuudesta mitattavat suureet ja ilmiöt vaihtelevat Pelkkä mittalaitteen lukema ei riitä useinkaan mittaustulokseksi. Mukaan liitetty tarkkuuden virhearvio auttaa arvioimaan mittaustuloksen oikeellisuutta. Mittausraportissa on mainittava, mitä virheenarviointimenetelmää on käytetty

8 Kaikkia suureita ei saada suoraan mitattua mittalaitteella. Suureen määrittämiseksi tarvitaan useita apusuureita, joiden avulla lasketaan lopullinen mittaustulos tai määritetään mittaustulos graafisesta esityksestä Kaikkien apusuureiden virheet yhdessä muodostavat mittaustuloksen virheen Lopputuloksen virheelle voidaan johtaa kaava, jota tarkastelemalla voidaan selvittää eri apusuureiden osuus lopullisesta virheestä Mittausmenetelmää voidaan kehittää em. tarkastelun perusteella.

9 esim. Mitataan resistanssia R merkitään mittausvirhettä ΔR määritetään suhteellinen virhe seuraavasti:

10 Summan ja erotuksen virhe saadaan laskemalla yhteen mitattujen suureiden virheiden itseisarvot

11 Tulon ja osamäärän virhe saadaan laskemalla yhteen mitattujen suureiden suhteellisten virheiden itseisarvot 2

12 Virhe pyöristetään ylöspäin yhden merkitsevän numeron tarkkuuteen Tulos pyöristetään niin, että sen viimeisen merkitsevän numeron yksikkö on sama kuin virheen merkitsevän numeron yksikkö esim. 0,00432 A 0,005 A 0,7432 A 0,743 A Tulos ilmoitetaan seuraavasti: 0,743 0,005 A

13 Kun mittauksien yhteydessä lasketaan virherajat, puhutaan kvantitatiivisesta (määrällisestä) virhetarkastelusta. Aina ei tehdä kvantitatiivista virhetarkastelua. Tällöin kannattaa kuitenkin tehdä kvalitatiivinen (laadullinen) virhetarkastelu. Mittaustuloksia ja niiden järkevyyttä kannattaa aina arvioida.

14 Lähteet Momentti 1, Insinöörifysiikka. Inkinen, Tuohi, Otava ISBN 13:

1. Fysiikka ja mittaaminen

1. Fysiikka ja mittaaminen 1. Fysiikka ja mittaaminen 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles

Lisätiedot

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014

Julkaistu Helsingissä 8 päivänä joulukuuta 2014. 1015/2014 Valtioneuvoston asetus. mittayksiköistä. Annettu Helsingissä 4 päivänä joulukuuta 2014 SUOMEN SÄÄDÖSKOKOELMA Julkaistu Helsingissä 8 päivänä joulukuuta 2014 1015/2014 Valtioneuvoston asetus mittayksiköistä Annettu Helsingissä 4 päivänä joulukuuta 2014 Valtioneuvoston päätöksen mukaisesti

Lisätiedot

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ

STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ STANDARDIEN LYHIN MAHDOLLINEN OPPIMÄÄRÄ HEI OPISKELIJA! Tämä opas on tehty Hei muistuttamaan opiskelija! standardisoinnin tärkeydestä ja kertomaan Oletko huomannut, että maailma toimii standardien avulla?

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

11915/08 VHK,HKE/tan DG C I A

11915/08 VHK,HKE/tan DG C I A EUROOPAN UNIONIN NEUVOSTO Bryssel, 9. lokakuuta 2008 (OR. en) 11915/08 Toimielinten välinen asia: 2007/0187 (COD) MI 257 ENT 180 CONSOM 92 CODEC 978 SÄÄDÖKSET JA MUUT VÄLINEET Asia: Neuvoston hyväksymä

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

EUROOPAN YHTEISÖJEN KOMISSIO. Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI

EUROOPAN YHTEISÖJEN KOMISSIO. Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI EUROOPAN YHTEISÖJEN KOMISSIO Bryssel 27.9.2010 KOM(2010) 507 lopullinen 2010/0260 (COD) C7-0287/10 Ehdotus EUROOPAN PARLAMENTIN JA NEUVOSTON DIREKTIIVIKSI mittayksikköjä koskevan jäsenvaltioiden lainsäädännön

Lisätiedot

Luento 1 / SMG-1100 Piirianalyysi I Risto Mikkonen

Luento 1 / SMG-1100 Piirianalyysi I Risto Mikkonen SMG-1100 Piirianalyysi I Luento 1 / 12 1 SMG-1100 Piirianalyysi I Viikot 22-24 (27.5. 14.6.) Luennot Harjoitukset ma, ti, ke, to 16-19 S2 pe 11-14 S2 ti 28.5. ja ke 29.5. SC 105B pe 14.6. SC 105B, SH 311

Lisätiedot

Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä.

Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä. 1980L0181 FI 27.05.2009 004.001 1 Tämä asiakirja on ainoastaan dokumentointitarkoituksiin. Toimielimet eivät vastaa sen sisällöstä. B NEUVOSTON DIREKTIIVI, annettu 20 päivänä joulukuuta 1979, mittayksikköjä

Lisätiedot

Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I

Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I P7_TA(2011)0209 Mittayksikköjä koskevan jäsenvaltioiden lainsäädännön lähentäminen ***I Euroopan parlamentin lainsäädäntöpäätöslauselma 11. toukokuuta 2011 ehdotuksesta Euroopan parlamentin ja neuvoston

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

Luento 1. 1 SMG-1100 Piirianalyysi I

Luento 1. 1 SMG-1100 Piirianalyysi I SMG-1100 Piirianalyysi I Luento 1 1 SMG-1100 Piirianalyysi I I + II periodi Luennot Harjoitukset ti 8 10 S4 ma 10 12 TB 110 pe 9 10 S4 ti 12 14 TC 161 Risto Mikkonen, SC 312 ti 12 14 SC 163 ke 14 16 SC

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Luento 1. 1 DEE Piirianalyysi Risto Mikkonen

Luento 1. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 1 1 DEE-11000 Piirianalyysi Kesäkurssi, viikot 22-24 (26.5. 13.6.) Luennot Harjoitukset ma, ti, ke to klo 16-19 SE 211 pe klo 11-14 SE 211 (helatorstaina 29.5. ei luentoa),

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

EUROOPAN PARLAMENTTI

EUROOPAN PARLAMENTTI EUROOPAN PARLAMENTTI 2004 Istuntoasiakirja 2009 C6-0425/2008 2007/0187(COD) 20/11/2008 YHTEINEN KANTA Neuvoston 18 päivänä marraskuuta 2008 hyväksymä yhteinen kanta Euroopan parlamentin ja neuvoston asetuksen

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units OPAS Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units Sisällys Esipuhe....3 1 Kansainvälinen mittayksikköjärjestelmä SI...4 2 Suure ja yksikkö....5 3 ISQ-suurejärjestelmä

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

SI-mittayksiköt. Martti Heinonen VTT MIKES. FINAS-päivä National Metrology Institute VTT MIKES

SI-mittayksiköt. Martti Heinonen VTT MIKES. FINAS-päivä National Metrology Institute VTT MIKES SI-mittayksiköt Martti Heinonen VTT MIKES FINAS-päivä 29.1.2019 National Metrology Institute VTT MIKES SI järjestelmän uudistus astuu voimaan 20.5.2019 National Metrology Institute VTT MIKES Sisältö: -

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Tekstiilien tutkiminen ja testaus

Tekstiilien tutkiminen ja testaus Tekstiilien tutkiminen ja testaus Yleistä johdatusta tekstiilien tutkimusmenetelmiin elokuu 2006 Riikka Räisänen Helsingin yliopisto Miksi tekstiilejä tutkitaan? Tutkimus (teoreettinen metrologia) Määritykset,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

SI-järjestelmä uudistuu

SI-järjestelmä uudistuu SI-järjestelmä uudistuu Virpi Korpelainen VTT MIKES 6.10.2018 VTT beyond the obvious 1 Sisällys SI-järjestelmä Uudistus Miksi? Mitä? Milloin? Uudet määritelmät ja toteutus Kysymyksiä? 6.10.2018 VTT beyond

Lisätiedot

Mittayksikköjärjestelmät

Mittayksikköjärjestelmät Mittaustekniikan historia: mittaustekniikan lähtökohta ihmisten luontaisen tietämyksen tarpeet, aluksi etäisyydet, massat, tilavuudet ja aika ulottuu todella kauas menneisyyteen, jopa 3000 vuotta ennen

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Sähköiset perussuureet. 1 DEE Piirianalyysi Risto Mikkonen

Sähköiset perussuureet. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Sähköiset perussuureet 1 DEE-11000 Piirianalyysi kevät 2016 ; III + IV periodi Luennot, III periodi Ma 10 12 S1 Ti 14 15 S4 Luennot, IV periodi Ma 10 12 S1 Harjoitukset, III + IV

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Tervetuloa. S Mittaustekniikan perusteet A S Mittaustekniikan perusteet Y. Pe 14:15-15:45 E111-salissa. Mittaustekniikan perusteet

Tervetuloa. S Mittaustekniikan perusteet A S Mittaustekniikan perusteet Y. Pe 14:15-15:45 E111-salissa. Mittaustekniikan perusteet Mittaustekniikan perusteet Luennot ja tiedotus S-108.1010 Mittaustekniikan perusteet A S-108.1020 Mittaustekniikan perusteet Y Pe 14:15-15:45 E111-salissa Tervetuloa Luennot TkT Maija Ojanen-Saloranta

Lisätiedot

FYSP101A Laboratoriotöiden perusteet

FYSP101A Laboratoriotöiden perusteet FYSP101A Laboratoriotöiden perusteet Luennot To 4.9. klo 14 16 FYS1 Ti 9.9. klo 14 16 FYS1 To 11.9. klo 14 15 FYS1 Harjoitustehtäviä FYSP101:n ensimmäisissä laskuharjoituksissa tiistaina 16.9. Kurssin

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely

Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely Fysiikan laboratoriotyöt Käytännöt, työselostuksen rakenne ja mittaustulosten käsittely 1 (11) 1 Yleistä ysiikan laboratoriotyöt opintojaksosta 1.1 Sisältö ja tavoitteet Opintojakson tavoitteena on perehdyttää

Lisätiedot

Tervetuloa. Luennointi ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen

Tervetuloa. Luennointi ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen Mittaustekniikan perusteet Luennointi ja tiedotus S-108.1010 Mittaustekniikan perusteet A S-108.1020 Mittaustekniikan perusteet Y Pe 14:15-16:00 A-salissa Tervetuloa Doc. Petri Kärhä Mittaustekniikan laboratorio

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Tervetuloa. Mittausteknikka. Mittaustekniikan perusteet. Mittaustekniikka. Mittaustekniikka

Tervetuloa. Mittausteknikka. Mittaustekniikan perusteet. Mittaustekniikka. Mittaustekniikka Mittaustekniikan perusteet Mittausteknikka S-08.95 Mittaustekniikan perusteet A S-08.9 Mittaustekniikan perusteet Y Pe 4:5-6:00 A-salissa Mittauksia käsittelevä tieteenhaara on metrologia. Metrologia sisältää

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

kategorioista. mittajärjestelmästä haluamasi oletusyksiköt esitettäviin ratkaisuihin.

kategorioista. mittajärjestelmästä haluamasi oletusyksiköt esitettäviin ratkaisuihin. Kappale 4: Vakiot ja mittayksiköt 4 Johdanto: Vakiot ja mittayksiköt... 82 Vakioiden tai yksiköiden syöttäminen... 83 Yksiköiden muuntaminen... 85 Ratkaisujen oletusyksikköjen asettaminen... 87 Käyttäjäkohtaisen

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Tervetuloa. Luennot ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen

Tervetuloa. Luennot ja tiedotus. Mittaustekniikan perusteet. Suorittaminen. Suorittaminen Mittaustekniikan perusteet Luennot ja tiedotus S-108.1010 Mittaustekniikan perusteet A S-108.1020 Mittaustekniikan perusteet Y Luennot Noppa ja tiedotus Pe 14:15-15:45 S4-salissa Tervetuloa TkT Maija Ojanen-Saloranta

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY

Lisätiedot

SISÄLLYS. N:o 179. Laki. ulkomaalaislain muuttamisesta. Annettu Naantalissa 10 päivänä heinäkuuta 1998

SISÄLLYS. N:o 179. Laki. ulkomaalaislain muuttamisesta. Annettu Naantalissa 10 päivänä heinäkuuta 1998 SUOMEN SÄÄDÖSKOKOELMA 2001 Julkaistu Helsingissä 7 päivänä maaliskuuta 2001 N:o 179 188 SISÄLLYS N:o Sivu 179 Laki ulkomaalaislain muuttamisesta... 569 180 Laki ampuma-aselain muuttamisesta... 571 181

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä.

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä. 123 Johdanto Extech 430 -yleismittari (osanumero EX430) on varustettu automaattisella aluevalinnalla. Mittarin tarjoamat mittaukset/testaukset ovat vaihto- ja tasajännite, vaihto- ja tasavirta, resistanssi,

Lisätiedot

Lähteet. SESKOn yhteystiedot: Särkiniementie HELSINKI puhelin sähköposti verkkosivut

Lähteet. SESKOn yhteystiedot: Särkiniementie HELSINKI puhelin sähköposti verkkosivut Lähteet Suomenkieliset lähteet SFS-IEC 60050-121 + A1 Sähköteknillinen sanasto. Osa 121: Sähkömagnetismi (1. painos) SFS-EN 60059 IEC-standardimitoitusvirrat (1. painos) SFS-EN 60269-1 Pienjännitevarokkeet.

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

KÄYTTÖOPAS. Miniyleismittari kosketuksettomalla jänniteilmaisimella (NCV) Malli EX330

KÄYTTÖOPAS. Miniyleismittari kosketuksettomalla jänniteilmaisimella (NCV) Malli EX330 KÄYTTÖOPAS Miniyleismittari kosketuksettomalla jänniteilmaisimella (NCV) Malli EX330 Johdanto Extech EX330 -yleismittarin tarjoamat mittaukset/testaukset ovat vaihto- ja tasajännite, vaihto- ja tasavirta,

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Neeviikuu 5A: opettajan oppaan liitteet

Neeviikuu 5A: opettajan oppaan liitteet Neeviikuu 5A: opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kymmenjärjestelmäalusta 2 2. Lukusuoria 3 3. Lukusuoria 4 4. Lukukortit 5 5. Sataruutu 6 6. Rahat 7 7. Ostokset ja pyramidit 8 8. Tiliote 9 9.

Lisätiedot

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä

t osatekijät vaikuttavat merkittävästi tuloksen epävarmuuteen Mittaustulosten ilmoittamiseen tulee kiinnittää kriittistä Mittausepävarmuuden määrittäminen 1 Mittausepävarmuus on testaustulokseen liittyvä arvio, joka ilmoittaa rajat, joiden välissä on todellinen arvo tietyllä todennäköisyydellä Kokonaisepävarmuusarvioinnissa

Lisätiedot

Mittayksikköjärjestelmän fysikaaliset perusteet, osa II b, sähkösuureet. 1. Jännite ja Josephson-ilmiö 4. Sähkösuureiden yksiköt SI-järjestelmässä

Mittayksikköjärjestelmän fysikaaliset perusteet, osa II b, sähkösuureet. 1. Jännite ja Josephson-ilmiö 4. Sähkösuureiden yksiköt SI-järjestelmässä Mittayksikköjärjestelmän fysikaaliset perusteet, osa II b, sähkösuureet Antti Manninen MIKES TKK, Mittaustekniikan perusteet 22.9.2006 Sähkösuureiden yksiköt SI-järjestelmässä Perusyksikkö: ampeeri (A)

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Fluke 279 FC -yleismittari/lämpökamera

Fluke 279 FC -yleismittari/lämpökamera TEKNISET TIEDOT Fluke 279 FC -yleismittari/lämpökamera Etsi. Korjaa. Tarkasta. Raportoi. 279 FC, digitaalisen yleismittarin ja lämpökameran yhdistelmä, lisää mittausten tuottavuutta ja luotettavuutta.

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Sähköiset koestimet 22

Sähköiset koestimet 22 22 Sähköiset koestimet SÄHKÖISET KOESTIMET TALO- JA SÄHKÖTEKNIIKKA Oikea sähköinen koestin joka käyttöön Johdanto tarjoaa yleiskuvan sähköisistä koestintyypeistä ja niiden käyttöalueista. Käyttöalueet

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto MATEMAATTISTEN MERKINTÖJEN KIRJOITUSOHJE TEKNIIKAN ALALLE Sivumäärä: 20 Vaasassa 28.08.2006 2 SISÄLLYSLUETTELO 1. JOHDANTO 3 1.1.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot