Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Koko: px
Aloita esitys sivulta:

Download "Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473"

Transkriptio

1 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: Torsioheilurin mitatuilla neljän jakson aikojen ja palautuskertoimen avulla määritetään kokeellisia hitausmomentteja erilaisille kappaleille. Näitä verrataan niiden teoreettisiin hitausmomentteihin, joilla on omat laskentakaavansa kaavastoissa. Vahvistetaan myös kokeellisesti Steinerin sääntö. Pelkän tangon kokeelliseksi arvoksi saatiin 0,0035±0,00 kgm ja teoreettiselle 0,004±0,0003 kgm. Steinerin kokeellistamisessa arvoiksi saatiin 0,0±0,004 kgm kokeelliseksi ja 0,08±0,005 kgm teoreettiseksi.

2 ohdanto Työssä oli tarkoituksena saada selville eri kappaleiden teoreettisia ja kokeellisia hitausmomentteja (yksikkö: kgm ) sekä verrata niiden saatuja arvoja. Käytimme torsioheiluria erilaisilla kappaleilla jaksonaikojen mittauksessa. Niiden avulla mietitään hitausmomentin ratkaisevia tekijöitä. Opintojaksona oli ensimmäisen vuoden Fysiikka (https://asio.jamk.fi/pls/asio/asio_ectskuv.kurssin_ks?ktun=iizf00&knro=&ark=&lan=f). Teoreettinen tarkastelu Teoreettiset hitausmomentit lasketaan eri kaavoilla eri kappaleille. Ohuen tangon hitausmomentti lasketaan seuraavalla kaavalla, jossa m on massa ja l on tangon pituus. m tan ko l () Kaksi punnuksen ja tangon yhteinen hitausmomentti lasketaan seuraavalla kaavalla, jossa r on etäisyys värähdysakselista ja m on massa. m on ensimmäisen punnuksen massa ja m on toisen punnuksen massa. (Molemmat ovat saman painoisia). m r m r m tan ko l () Umpinaisen puisen kiekon ja umpinaisen sylinterin hitausmomentti on laskettavissa seuraavalla kaavalla, jossa m on massa ja R on kappaleen säde mr (3) Onton sylinterin hitausmomentti lasketaan seuraavalla kaavalla, jossa m on massa, R on sisäsäde ja R on ulkosäde m R R (4) Puupallon hitausmomentti kaava ei ollut tehtävänannossa, mutta se löytyi MAOLista []. Se lasketaan seuraavalla kaavalla, jossa m on massa ja R on pallon säde mr 5 (5) Umpinainen ohut metallikiekko laskettiin Steinerin teoreeman mukaan seuraavalla kaavalla, jossa m on massa, R on kappaleen säde ja a on painopisteen ja värähdysakselin välimatka R a m (6) os välimatkaa a ei ole, hitausmomentti voidaan laskea samalla kaavalla (3) kuin umpinainen puinen kiekko ja umpinainen sylinteri.

3 Tukikehälle ei ole teoreettista kaavaa eli sitä ei lasketakaan. Kokeellisten hitausmomenttien tulosten saamiseksi tarvitaan torsioheilurin värähtelyn jaksonaika T (yksikkö: s) ja palautuskerroin D (yksikkö: /). D ratkaisemiseksi käytämme hyödyksi seuraavaa kaavaa ja johdamme sitä. Heiluria kierretään 80 verran, mikä on laskua käytettäessä -π() = ϴ. sin φ on, koska värähdysakselin etäisyys r ja voiman F välinen kulma on voimaa mitattaessa 90. Menetelmä selitetään myöhemmin selosteessa. M Fr sin D Fr D D Fr () (7) Työohjeistuksen seuraavalla kaavalla saadaan ratkaistua kokeelliset hitausmomentit T T D D T 4 D D T 4 (8) Puupallon halkaisijan sijaan mitattiin ympärysmitta, jonka avulla lasketaan säde seuraavalla kaavalla, jossa b ympärysmitta ja π pallon asteet. r b (9)

4 3 Kokeelliset menetelmät Torsioheiluri koostuu tukevasta jalasta (), spiraalijousesta (), kuulalaakerilla tuetusta torsioakselista, metallitangosta (3) ja siihen laitettavista punnuksista. Värähtelijää kierretään 80 myötä päivään, päästetään irti ja annetaan pyöriä neljä jaksoa. Sekuntikellolla otetaan neljän jakson pyörimä aika laskelmia varten. Kuva : Torsioheiluri Spiraalijousen palautuskerroin D voidaan määrätä kokeellisesti. Värähtelijää kierretään 80 myötä päivään ja dynamometri asetetaan kuvan mukaisesti, millä saadaan mitattua palauttava voima F. Mittaus suoritetaan kolmelta eri etäisyydeltä r. Kuva : Palauttavan voiman F mittaaminen dynamometrillä Eri kappaleiden massat ovat punnittu puntarilla ja mitat kuten halkaisijat, pituudet ja etäisyydet ovat saatu rulla- ja työntömitalla. Ajan mittaus suoritettiin analogisella sekuntikellolla.

5 4 Tulokset Taulukko : Kappaleiden mittausarvoja kappale massa (g) jakson aika (s) halkaisija (mm) Tanko 3,8, Tanko + puntit puntti 38,4 7, Tanko + puntit puntti 38,4 3, Ump. puinen kiekko 366,,875 3,5 Ump. sylinteri 3,5 0,75 90 Ontto sylinteri 337, R: 85, R: 3,8 Tukikehä 0,5 0,5 00 Puupallo 988,,75 0,07 Ump. ohut metallikiekko 743 4, Ump. ohut metallikiekko 743 4, Virherajat ± 5 ± 0, ± 5 Tangon pituudeksi mitattiin 60mm ± 5mm ja kaavaa () varten r = 50mm ± 5mm sekä r = 00mm ± 5mm. Steinerin teoreeman kaava (6) varten mitattiin a = 60 mm ± 5mm. Puupallon ympärysmitaksi mitattiin 455mm ja kaavan (9) avulla saatiin säteeksi: 0,455 m r 0, m 0,07 m 0, 00 m Taulukko : Voiman mittaus dynamometrillä etäisyys r (mm) voima F (N) Mittaus 300 0,0 Mittaus 50 0,5 Mittaus ,3 Taulukon arvoilla lasketaan erikseen D, D ja D3 kaavaa (7) käyttäen: F r 0,0N 0,30m D 0, , 00 Fr 0,5N 0,5m D 0, , 00 F3r3 0,3N 0,0m D3 0, , 00

6 5 Seuraavaksi lasketaan keskiarvo Dk: D D D3 D k 0, , 00 3 Kokeelliset hitausmomentit Nyt on mahdollista laskea kokeelliset hitausmomentit kaavalla (8). Seuraavassa esitetään esimerkkilasku tangolle ja sen jälkeen taulukko jokaiselle kappaleelle. Ainut muuttuja, joka muuttuu laskussa on jaksonaika T. Eri jaksonajat ovat mainittu taulukossa. Laskut löytyvät liitteessä. DT 4 0, ,65 s 4 0, kgm 0,0035 kgm Umpinaisen sylinterin ja onton sylinterin arvosta vähennetään tukikehän arvolla, koska tukikehä oli jalustana niille kappaleille. Taulukko 3: Kokeelliset hitausmomentit kappale kokeellinen hitausmomentti (kgm ) Tanko 0,0035 Tanko + puntit 0,03 Tanko + puntit 0,0075 Ump. puinen kiekko 0,008 Ump. sylinteri 0,0006 Ontto sylinteri 0,00038 Tukikehä 0,0003 Puupallo 0,005 Ump. ohut kiekko ja 0,0 Teoreettiset hitausmomentit Teoreettiset hitausmomentit lasketaan jokaisen kappaleen omilla kaavoilla. Ensiksi tanko kaavalla (). m kol 0,38 kg 0,6m 0, kgm 0, kgm tan 004 Ensimmäinen tanko puntteineen lasku kaavalla (). 0,5m 0,384 kg 0,5m 0, kgm 0, kgm 0,034 0,384 kg kgm

7 6 Toinen tanko puntteineen lasku samalla kaavalla. 0,384 kg 0, m 0,384 kg 0, m 0, kgm 0, kgm 0,0089 kgm Umpinainen puinen kiekko kaavalla (3). 0,35 m 0,336 kg 0, kgm 0,003 kgm Umpinainen sylinteri lasketaan samalla kaavalla. 0,09m 0,35 kg 0, kgm 0,0003 kgm Ontto sylinteri lasketaan kaavalla (4). 0,0038 m 0,337 kg 0,085 m 0, kgm 0,0003 kgm Puupallon lasketaan MAOLista [] löytyneellä kaavalla (5). 5 0,988 kg 0, m 0, kgm 0,00 kgm Ensimmäinen umpinaisen ohuen metallikiekon hitausmomentin laskeminen tehdään kaavalla (3), koska a = 0. 0,743 kg 0,m 0,0486 kgm 0,05 kgm Toisessa umpinaisen ohuen metallikiekon hitausmomentin laskemissa käytetään Steinerin teoreeman kaavaa (6). 0,m 0,06m 0,743 kg 0, kgm 0,08 kgm

8 7 Absoluuttiset virheet Absoluuttinen virheet lasketaan ottamalla ensin molemmilta lausekkeen puolilta logaritmit ja perään derivoimalla. okainen termi asetetaan itseisarvomerkkien sisälle ja lopuksi kerrotaan sillä muuttujalla, jonka absoluuttinen virhe lasketaan. Esimerkkinä palautuskertoimen D absoluuttinen virhe kaavan (7) avulla: D Fr () Fr ln D ln D D F F r r F D D F r r D lasketaan ottamalla keskiarvo D, D ja D3:sta. Lasketaan ensin D arvot: F r 0,05N 0,005 m D D 0, , , 006 F r 0,0 N 0,30m 0,05N 0,005 m D 0, , , 005 0,5N 0,5m 0,05N 0,005 m D3 0, , , 004 0,3N 0,0m D D D3 D k 0, , Kokeellisten hitausmomenttien absoluuttiset virheet Äskeisen menetelmän avulla tehtiin kaavalle (8) sama menetelmä D T D T Nyt esitetään esimerkkilasku tangolle ja sen jälkeen taulukko jokaiselle kappaleelle. Ainut muuttuja, joka muuttuu laskussa on jaksonaika T ja hitausmomentti. 0, , ,s,65 s 0, kgm 0,009.. kgm 0,00 kgm

9 8 Umpinaisen sylinterin ja onton sylinterin arvosta vähennetään jälleen tukikehän arvolla. Taulukko 4: Kokeelliset hitausmomentit virherajoineen kappale hitausmomentti kgm Tanko 0,0035 ± 0,00 Tanko + puntit 0,03 ± 0,009 Tanko + puntit 0,0075 ± 0,003 Ump. puinen kiekko 0,008 ± 0,0008 Ump. sylinteri 0,0006 ± 0,0000 Ontto sylinteri 0,00038 ± 0,000 Tukikehä 0,0003 ± 0,000 Puupallo 0,005 ± 0,0007 Ump. ohut kiekko ja 0,0 ± 0,004 Teoreettisten hitausmomenttien absoluuttiset virheet okaisen teoreettisen hitausmomentin kaavasta tehtiin absoluuttiset virhekaavat edellisen sivun samalla tavalla. Alla on esimerkkinä parin kappaleen virheyhtälökaava ja lopuksi taulukko hitausmomenteista ja niiden virherajoista. Tanko: m m l l 0,005 kg 0,38 kg 0,005 m 0,6m 0, kgm 0, kgm 0,0003 kgm Tanko+puntit: m r m r mt l m r m r mt l 0,005 kg 0,005 m 0,005 kg 0,005 m 0,005 kg 0,005 m 0, kgm 0,384 kg 0,5m 0,384 kg 0,5m 0,38 kg 0,6m 0, kgm 0,006 kgm

10 9 Taulukko 5: Hitausmomentit virherajoineen kappale teoreettiset [kgm ] kokeelliset [kgm ] Tanko 0,004 ± 0,0003 0,0035 ± 0,00 Tanko + puntit 0,034 ± 0,006 0,03 ± 0,009 Tanko + puntit 0,0089 ± 0,003 0,0075 ± 0,003 Ump. puinen kiekko 0,003 ± 0,0003 0,008 ± 0,0008 Ump. sylinteri 0,0003 ± 0, ,0006 ± 0,0000 Ontto sylinteri 0,0003 ± 0,00 0,00038 ± 0,000 Tukikehä ,0003 ± 0,000 Puupallo 0,00 ± 0, ,005 ± 0,0007 Ump. ohut kiekko 0,05 ± 0,0009 0,0 ± 0,004 Ump. ohut kiekko 0,08 ± 0,005 0,0 ± 0,004 Tulosten tarkastelu (johtopäätös) Suurin osa kokeellisista arvoista täsmää teoreettisia arvoja. akson aikojen mittauksessa voisi olla erilaisia tuloksia koska heiluri ei aina pyörinyt täyttä jaksoa vaan hieman alle. Kokeelliset arvot olisivat olleet joko lähempänä tai kauempana teoreettisista riippuen kuinka nopeasti heiluri olisi pyörinyt. Myös sekuntikellon aloituksessa ja lopetuksessa on tarkkojen arvojen saaminen riippuu myös refleksistä. Dynamometrillä mittaaminen ei ollut aivan helppoa. Asteikkoa oli vaikea käyttää joten virherajaa piti määrittää hieman isoksi. Siksi palautuskerroin ei varmasti ole aivan tarkka luku, joten tulokset eivät ole myöskään tarkkoja. Halkaisijalla on suurin merkitys hitausmomenttia määrittäessä. Usein mitä pienempi halkaisija, sitä nopeammin pyörii. Esimerkkinä umpinainen sylinteri 90mm ajalla 3 sekuntia ja puupallon noin 7,4mm ajalla 7s. Steinerin teoreemassa ei ajallisesti ollut eroa jos etäisyys painopisteestä oli suurempi. Laskelmissa tulokset olivat teoreettisesti erilaiset kuin kokeellisesti. Teoreettisella oli eroa noin 0,003 kgm johtunee etäisyys painopisteestä. Lähdeluettelo [] R. Seppänen, M. Kervinen, I. Parkkila, L. Karkela, P. Meriläinen, MAOL taulukot, ss.9, Otava, Helsinki, 007. Liitteet Liite : Mittauspöytäkirja Liite : Laskuja Liite 3: Alkuperäinen raportti

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen

Lisätiedot

Moottorisahan ketjun kytkentä

Moottorisahan ketjun kytkentä Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö ISKUTILAVUUDEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet 4. Olosuhteet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin iskutilavuuden mittaaminen ja laskeminen. Kyseinen on mahdollista

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

PANK PANK-4122 ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ 1. MENETELMÄN TARKOITUS

PANK PANK-4122 ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ 1. MENETELMÄN TARKOITUS PANK-4122 PANK PÄÄLLYSTEALAN NEUVOTTELUKUNTA ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ Hyväksytty: Korvaa menetelmän: 9.5.2008 26.10.1999 1. MENETELMÄN TARKOITUS 2. MENETELMÄN SOVELTAMISALUE

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015

MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015 MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015 Tehtäviin sisältyy Merikiikarin avulla suoritettavia mittauksia ja trigonometrian avulla suoritettavia laskutehtäviä. Tarvikkeet: Merikiikarit,

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta)

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) TUTKIMUSSELOSTUS Nro VTT-S-02441-07 Korvaa selostuksen Nro VTT-S-00671-07 7.3.2007 n aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) Tilaaja: SIA

Lisätiedot

Työn tavoitteita. Yleistä. opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti

Työn tavoitteita. Yleistä. opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti FYSP101/K2 HEITTOLIIKE Työn tavoitteita opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti oppia tekemään toistomittaukseen liittyviä laskuja

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Infrapunalämpömittari CIR350

Infrapunalämpömittari CIR350 Infrapunalämpömittari CIR350 Käyttöopas (ver. 1.2) 5/23/2006 Johdanto Injektor solutionsin CIR350 infrapunalämpömittari tarjoaa sinulle laadukkaan laitteen huokeaan hintaan. Tämän laitteen etuja ovat Optiikka

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN

5. KURSSI: Pyöriminen ja gravitaatio (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN 5 KURSSI: Pyöimie ja gaitaati (FOTONI 5: PÄÄKOHDAT) PYÖRIMINEN s s KULMASUUREET; kietkulma ϕ =, kietymä = kietkulma muuts ϕ = 360 = π ad (MAOL s 34 (34)) PYÖRIMISLIIKE φ s kulmapeus = ϕ ad ω, yksikkö:[

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden Oulun yliopisto Fysiikan opetuslaboratorio 1 PINTAJÄNNITYS 1. Työn tavoitteet Nesteen ollessa levossa voi havaita sen pinnan muistuttavan jännitettyä, kimmoisaa kalvoa. Pinta pyrkii saavuttamaan mahdollisimman

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta www.ktr.

DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta www.ktr. 307 Sisällysluettelo 307 Yleiskatsaus 309 Tyypit 16/10, 16/30 ja 16/50 310 Lisävarusteet: servokäyttöjen lamellikytkimet RADEX -NC 310 Tyypit 22/20, 22/50, 22/100 311 Lisävarusteet: servokäyttöjen lamellikytkimet

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

DistanceMaster 80 DE 04 GB 11 NL 18 DK 25 FR 32 ES 39 IT 46 PL 53 FI 60 PT 67 SE 74 NO TR RU UA CZ EE LV LT RO BG GR

DistanceMaster 80 DE 04 GB 11 NL 18 DK 25 FR 32 ES 39 IT 46 PL 53 FI 60 PT 67 SE 74 NO TR RU UA CZ EE LV LT RO BG GR DistanceMaster 80 DE GB NL DK FR ES IT PL PT SE NO TR RU UA CZ EE LV LT RO BG GR 04 11 18 25 32 39 46 53 60 67 74 ! a h i b 2. 4. 6.! 60 Lue lisäohjeet. käyttöohje Noudata kokonaan. annettuja Lue ohjeita.

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

ASKELÄÄNITASOKOEMITTAUKSET

ASKELÄÄNITASOKOEMITTAUKSET Rakennusakustiikka Raportti PR3701 R04 Sivu 1 (5) Virpi Toivio Sorvaajankatu 15 008 Helsinki Turku 6.11.2015 ASKELÄÄNITASOKOEMITTAUKSET Mittaukset tehty 21.10.2015 Raportin vakuudeksi Jani Kankare Toimitusjohtaja,

Lisätiedot

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

Ryhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004

Ryhmä T. Koesuunnitelma. Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Ryhmä T Koesuunnitelma Kone- ja rakennustekniikan laboratoriotyöt, KON-C3004 Henri Makkonen 430450, Iivari Sassi 311582, Alexander Hopsu 429005 12.10.2015 Sisällys Tutkimusongelma ja tutkimuksen tavoite...

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

70 vuotta. Hyvinvointia työstä. Työterveyslaitos www.ttl.fi

70 vuotta. Hyvinvointia työstä. Työterveyslaitos www.ttl.fi 70 vuotta Hyvinvointia työstä Pelastustyöntekijöiden toimintakyky kuumassa Lihaksiston väsymyksen ja palautumisen arviointi ja palautumista nopeuttavat menetelmät Satu Mänttäri Juha Oksa, Petri Tuomi,

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

ERISTELEVYN ASKELÄÄNITASOKOEMITTAUKSET

ERISTELEVYN ASKELÄÄNITASOKOEMITTAUKSET 14 Rakennusakustiikka Raportti PR-R18-1B Warmia Oy Sivu 1/4 Warmia Oy Turku 29.6.2012 Peter Jansén Lämmittäjänkatu 3 207 Kaarina ERISTELEVYN ASKELÄÄNITASOKOEMITTAUKSET WARMIA OY Mittaukset tehty 26.6.2012

Lisätiedot

Varausta poistavien lattioiden mittausohje. 1. Tarkoitus. 2. Soveltamisalue. 3. Mittausmenetelmät MITTAUSOHJE 1.6.2001 1 (5)

Varausta poistavien lattioiden mittausohje. 1. Tarkoitus. 2. Soveltamisalue. 3. Mittausmenetelmät MITTAUSOHJE 1.6.2001 1 (5) 1.6.2001 1 (5) Varausta poistavien lattioiden mittausohje 1. Tarkoitus Tämän ohjeen tarkoituksena on yhdenmukaistaa ja selkeyttää varausta poistavien lattioiden mittaamista ja mittaustulosten dokumentointia

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Koesuunnitelma Kimmokertoimien todentaminen

Koesuunnitelma Kimmokertoimien todentaminen KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot