Mittaustulosten käsittely

Koko: px
Aloita esitys sivulta:

Download "Mittaustulosten käsittely"

Transkriptio

1 Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman uskottavuuden menetelmä 9. Vahteluväl ja t-jakauma Laskettujen suureden vrheden arvont. Maksmvrheen laskemnen kokonasdfferentaaln avulla. Logartmnen dervont. Vrhebudjett. Ohjeta vrhearvon tekemseen Lukuarvosta ja yksköstä. Dmensoanalyys. Lkarvot ja tarkat-arvot. Pyörstämnen 7 Suureden välsen rppuvuuden tutkmnen 9. Mttaustulosten graafnen estys 9. Penmmän nelösumman menetelmästä

2 Vrhettä ja epävarmuutta lmasevat kästteet Kokeellsen fyskan tehtävänä on hankka systemaattsta tetoa luonnon lanalasuukssta mttausten avulla. Jotta tämä päämäärä votasn luotettavalla tavalla saavuttaa, mttaajan on tutkmansa lmön lsäks tunnettava myös käytetyn mttausmenetelmän mahdollsuudet ja rajotukset. Tarkkohn tuloksn pääsemnen edellyttää luonnollsest korkeatasosten nstrumentten käyttöä. Mttalatteden hallnnan lsäks on kutenkn tedettävä, kunka latteden tuottamaa tetoa on kästeltävä mahdollsmman tehokkaast. Tämä merktsee stä, että mttaustulokssta lasketun lopputuloksen lsäks pyrtään ana järjestelmällsest arvomaan, kunka luotettava saatu tulos on. Vakka mtattavasta suureesta tedettäsn etukäteen, että sllä on tetty okea arvo, mttaustuloksena e yleensä saada tätä arvoa melvaltasen tarkast. Mttausmenetelmen epätarkkuudesta, mttaajasta tsestään ta mttauskohteen tlastollsesta luonteesta (esm. radoaktvsuusmttaukset) johtuen on tyydyttävä joukkoon mttaustuloksna saatuja lkarvoja. Nästä etstään erlasn havantojen kästtelymenetelmn mahdollsmman todennäkönen arvo etstylle suureelle. Mttaustulosten kästtelyn tarkotuksena on ss laskea kaksta havantoarvosta ykskästtenen tulos selvttää tuloksen ja/ta mttausmenetelmän luotettavuus Vrhettä (error of measurement, mätfel) vodaan ylesest luonnehta mttauksn saadun suureen arvon ja suureen "okean" arvon erotuksena. Er tapauksssa mttausvrhetä tutkttaessa käytetään erlasa vrhekästtetä. Mttauksssa esntyvät vrheet ryhmtellään tavallsest karkesn, systemaattsn ja satunnasn vrhesn. Vrheen suuruus taas vodaan lmottaa absoluuttsena ta suhteellsena vrheenä. Karkea vrhe (parastc error, grovt fel) on seurausta mttaamsvälneen epätarkotuksenmukasesta ja väärästä kästtelystä, lukemavrheestä ym. Sen oletetaan kutenkn ana olevan postettu huolella tehdyssä mttauksssa. Systemaattnen vrhe (systematc error, systematsk fel) lmenee saman suurusena merkkeneen uusttaessa saman suureen tetyn arvon mttausta samossa olosuhtessa, ta se vahtelee säännönmukasest olosuhteden mukaan. Usen syy systemaattsn vrhesn löytyy käytetystä lattesta: sellanen syntyy, jos mttarn astekkoa e ole laadttu oken (ns. kalbrontvrhe) ta käytettäessä väärän ptusta ptuusmttaa, suortettn mttaus kunka huolellsest hyvänsä. Systemaattnen vrhe johtuu mttaajasta esm. sllon, kun analogsen mttauslatteen osotnta luetaan vnost (ns. parallaksvrhe). Systemaattnen vrhe vo aheutua myös stä, että mttausparametrt ovat lmötä kuvaavan matemaattsen lan pätevyysalueen ulkopuolella. Esmerkks, jos lämpötlassa C mtataan ptuutta mttasauvalla, jonka osotukset ovat okeat lämpötlassa C. Elle oteta huomoon mttasauvan lämpölaajenemsesta aheutuvaa korjausta, on ptuuden mttauksessa systemaattnen vrhe. Systemaattnen vrhe ols pyrttävä löytämään, arvomaan ja sen jälkeen postamaan. Jossakn tapauksssa stä e pystytä postamaan ja systemaattsten vrheden kästtelemnen joudutaan suorttamaan yhdessä muden vrheden kanssa. Jos systemaattsten vrheden osuus on pen, sanotaan, että mttauksen ulkonen tarkkuus (accuracy) on hyvä. Pentä systemaattsta vrhettä kuvaa mttauksen hyvä tostettavuus (reproducblty). Tostettavuus on tetyn suureen yksttäseen mttaukseen käytettävään akaan nähden ptkän akaväln ssällä er olosuhtessa, er havatsjan, er latteston ja menetelmn ta er laboratorossa saatujen tulosten yhteensopvuus. Satunnasvrhettä (random error, tllfällgt fel) votasn kutsua myös hajontavrheeks ta tlastollseks vrheeks. Se on vrhe, joka satunnasest vahtelee uusttaessa saman suureen tetyn arvon mttausta samossa olosuhtessa, mutta se e väärstä tulosta mhnkään tettyyn suuntaan. Satunnasten vrheden olemassaolo vodaan todeta esm. tostamalla sama mttaus useaan kertaan ja prtämällä mttaustu-

3 lokssta hstogramm. Tuloksena on tällön jakauma, jossa mttaustulokset ovat jakautuneet tetyn todennäkösmmän arvon ympärlle. Satunnasten vrheden tapauksessa vrhearvont tapahtuu tlastomatematkan kenon. Tällön sanalla vrhe tarkotetaan yleensä suuretta, joka kuvaa mttaustulosten muodostaman jakauman leveyttä. Jos satunnasten vrheden osuus lopputuloksen vrheessä on pen, sanotaan, että tuloksen ssänen tarkkuus (precson) on hyvä. Jos myös systemaattset vrheet ovat penä, saavutettu lopputulos on lähellä okeaa arvoa. Kuvassa on estetty kaks mttaustulosta, jossa vasemmanpuolesessa on hyvä ssänen tarkkuus, sllä psteden vrherajat ovat penet ja psteet sopvat hyvn samalle suoralle, mutta huono ulkonen tarkkuus, sllä ne evät sov teoreettselle suoralle, jonka ptäs kulkea orgon kautta. Okeanpuolesessa kuvassa ulkonen tarkkuus on hyvä, sllä teoreettnen suora kuvaa mttauspstetä hyvn, mutta ssänen tarkkuus on huono, sllä psteden vrherajat ovat suuret ja pstestössä on selvää hajontaa. Vodaan myös sanoa, että vasemmanpuolesessa mttauspstestössä satunnasen vrheen osuus on pen ja systemaattsen vrheen osuus suur, kun taas okeanpuolesessa satunnanen vrhe on suur mutta systemaattnen vrhe pen. Jos mttauksen ssänen tarkkuus on hyvä, tostomttaukslla saadaan ana hyvn lähellä tosaan oleva tuloksa, ja jos mttauksen ulkonen tarkkuus on hyvä, nn tostomttausten keskarvo osuu hyvn lähelle okeaa arvoa. Pentä satunnasvrhettä kuvaa myös mttauksen hyvä tostuvuus (repeatablty, repeterbarhet). Tostuvuus on tetyn suureen lyhyenä akavälnä samossa olosuhtessa, saman havatsjan, samon latteston ja menetelmn sekä samassa laboratorossa saatujen tulosten yhteensopvuus. Mttausvälnettä kuvaava käste on mttausvälneen tarkkuus (accuracy of a measurng nstrument, noggrannhet hos mätdon). Tämä on välneellä saadun suureen mttaustuloksen ja suureen "okean " arvon yhteensopvuus. Mttavälneen tarkkuus määrttää mttaustapahtumassa mtatun parametrn vrherajat. Absoluuttnen vrhe (absolute error, absolutfel) on saadun mttaustuloksen ja ns. vertaluarvon välnen erotus x x o, mssä x on mttaustulos ja x o etstyn suureen okea arvo. Vertaluarvo vo olla suureen okea arvo, slle sovttu arvo (taulukkoarvo ym.) ta mttaussarjan perusteella määrtetty arvo. Suhteellnen vrhe määrtellään samon merknnön suureena a b VIRTA (A) JÄNNITE (V) JÄNNITE (V) Kuva. Ssäsen ja ulkosen tarkkuuden ero. Ssänen tarkkuus on hyvä kuvassa a) ja huono kuvassa b). Ulkonen tarkkuus verrattuna katkovvalla estettyyn teoreettseen arvoon on a) kuvassa huono ja b) kuvassa hyvä.

4 x! x o x o. () Käytännössä okea arvo x o joudutaan korvaamaan mttaustulokssta saadulla todennäkösmmällä arvolla. Epävarmuus (uncertanty of measurement, mätosäkerhet) lmasee mttaustulosten hajontaa ja johtuu ss satunnasvrhestä. Sen kvanttatvsta esttämstä varten lasketaan tlastollnen luottamus- ta varmuusväl, joka pettää suureen "okean" arvon etukäteen sovtulla todennäkösyydellä (yleensä % ta 9%). Epätarkkuus (naccuracy, onoggrannhet) lmasee mttauksen kakk vrheet, sekä systemaattset vrheet että satunnasvrheet. Jos systemaattset vrheet on postettu, on epätarkkuus sama kun epävarmuus.

5 Tostokoe ja satunnasvrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut Suuretta, jonka arvo vahtelee satunnasest havantokerrasta toseen, kutsutaan tlastomatematkassa satunnasmuuttujaks. Jotta satunnasmuuttujan jakauma votasn kuvalla tarkast, satunnasmuuttujasta ols tehtävä ääretön määrä havantoja. Käytännössä joudutaan tyytymään äärellseen joukkoon havantoja, josta laskettuja jakaumaa kuvaava tunnuslukuja kutsutaan estmaateks el arvoks jakauman todellslle tunnusluvulle. Jakauman todellset tunnusluvut ovat ss estmaatten raja-arvoja, kun havantojen määrä lähenee ääretöntä. Havantosarjan tlastollsen kästtelyn tehtävänä on löytää jakauman tunnusluvulle parhaat mahdollset estmaatt. Olkoon x satunnasmuuttujasta x tehty yksttänen havanto, ja olkoon havantoja tehty N kpl. Havantojen muodostaman jakauman keskarvo µ määrtellään raja-arvona % µ! lm $ x ' N"# & N (. Kun havantoja on äärellnen määrä N, keskarvon m estmaatt on otoskeskarvo x : N x =! N x. = Jakauman leveyttä kuvaava suure on hajonta (standardpokkeama) σ, joka määrtellään raja-arvona! " lm N#$ &( x % µ ), N mssä µ on kaavassa () määrtelty jakauman keskarvo. Kun havantoja on äärellnen määrä N, hajonnan σ estmaatt on otoskeskhajonta s: () () () s = "( x! x ), N! () mssä x on kaavassa () määrtelty otoskeskarvo. Nän laskettuna otoskeskhajonta kuvaa hajontaa, jonka ssälle mahtuu % havannosta. Mkäl halutaan, että 9% tapahtumsta mahtuu hajonnan ssälle, tulee hajonnan estmaattna käyttää arvoa s. Otoskeskhajonnan käyttö tarkkuusmttana perustuu shen, että se lmottaa alueen, johon seuraavan tostomttauksen tuloksen tuls tetyllä todennäkösyydellä osua. Tästä syystä yhtälön () määrttelemää otoskeskhajontaa vodaan kutsua myös yksttäsen havannon keskvrheeks. Fyskan tostomttauksssa on kutenkn tavallsest päämääränä laskea lopputulos mttaussarjan keskarvona ja pyrkä lttämään tähän lopputulokseen jokn vrheraja Δx. Tähän tarkotukseen otoskeskhajonta e kelpaa.

6 Mtattu arvo, otoskeskarvo ja otoskeskhajonta Mttaustapahtuma: tostettu x kertaa Kuva Mttaustulokset tostomttauksesta, jossa on tostettu kertaa tostomttauksen sarja. Kuvn prretyt vvat vastaavat otoskeskarvoa ja otoskeskhajontaa lsättynä ja vähennettynä otoskeskarvosta. Otoskeskarvon vahtelua on havannollstettu kuvassa, jossa on estetty neljän tostomttaussarjan tulokset mustlla pstellä. Kussakn mttaussarjassa on tehty tostomttausta suureelle, jonka "okea" arvo on.. Kuhunkn kuvaan on laskettu mttaussarjan otoskeskarvo ja otoskeskhajonta lsättynä ja vähennettynä keskarvosta. Kuvasta nähdään, että otoskeskarvo vahtelee "okean" arvon molemmn puoln ja että kakk otoskeskarvot ovat huomattavast lähempänä tosaan kun otoskeskhajonnan avulla laskettu yhden mttauksen hajonta. Jos mttaus vodaan tostaa rttävän monta kertaa, vodaan tulokselle määrttää vrhearvo sten, että suortetaan useta mttaussarjoja ja lasketaan kullekn otoskeskarvo x. Saadut arvot vahtelevat satunnasest, ja nlle vodaan laskea uus otoskeskarvo ja otoskeskhajonta. Nän laskettu otoskeskhajonta kertoo alueen, johon seuraavan mttaussarjan keskarvo tetyllä todennäkösyydellä osuu Nän saatua arvoa vodaan käyttää fyskaalsen mttauksen vrherajona. Tlastomatematkassa vodaan kutenkn osottaa, että keskarvolle vodaan laskea vrhearvo jo yhden mttaussarjan perusteella. Tätä vrhearvota kutsutaan keskarvon keskvrheeks m, ja sen rppuvuus otoskeskhajonnasta s on m = s N. Keskarvon x vrhearvo Δx lasketaan ss kaavalla ()!x = #( x " x ). N( N ") Keskarvon keskvrhe lmottaa sen alueen, jolle (seuraavan) mttaussarjan keskarvo %:n todennäkösyydellä osuu. Keskarvon keskvrheen lausekkeesta nähdään, että havantojen määrän N kasvaessa keskarvon keskvrhe Δx penenee. Tostokokeen avulla vodaan ss parantaa lopputuloksen tarkkuutta verrattuna yksttäsen mttauksen tarkkuuteen, ja saavutettu tarkkuus on stä paremp mtä pdemp mttaussarja suortetaan. (7)

7 7. Keskarvo... Tostokertojen lukumäärä Hajonta.. Tostokertojen lukumäärä ( mttausta) Kuva Otoskeskarvon ja hajonnan muuttumnen tostokertojen lukumäärän kasvaessa, kun kussakn tostokokeessa on on tehty mttausta suureesta, jonka okea arvo on. Yläkuvassa näkyy kunka otoskeskarvo lähestyy okeaa arvoa. Alakuvassa on pstellä prretty mttaussarjasta saatu otoskeskhajonta ja yhtenäsellä vvalla keskarvon keskvrhe. Keskarvon keskvrhettä on ylemmässä kuvassa käytetty mttausarjan keskarvon vrheenä. Mttaustarkkuuden parantumsta tostomttauksen lukumäärän kasvaessa on havannollstettu kuvassa. Snä on estetty otoskeskarvo mttauksesta jossa mttauksen sarja on tostettu nn monta kertaa kun vaaka-aksel osottaa. Kuvasta nähdään, että otoskeskarvo lähenee okeaa arvoa, joka on, kun tostomttausten määrä kasvaa. Kuvan. alaosassa on estetty otoskeskhajonnan ja keskarvon keskvrheen erlanen käyttäytymnen tostojen määrän kasvaessa. Otoskeskhajonta sälyy lkman vakona vakka mttaus tostettasn yhä uudelleen, koska se kuvaa yhteen mttaukseen lttyvää hajontaa. Keskarvon keskvrhe penenee mttausten määrän kasvaessa osottaen, että tostomttaukslla vodaan mttaustarkkuutta parantaa. Keskarvon keskvrhettä on ylemmässä kuvassa käytetty myös tostomttauksen keskarvon vrheenä, ja kuvasta vo havata, että okea arvo jää usemmssa tapauksssa mtatun suureen vrherajojen ssälle. Nän ollen keskarvon keskvrhe on hyvä estmaatt tostomttauksen vrheelle.. Normaaljakauma Satunnasten vrheden kästtelyssä oletetaan tavallsest, että useden, samossa olosuhtessa tostettujen mttausten tulokset noudattavat normaaljakaumaa el normtettua Gaussn jakaumaa G(x) =! " e# $ x # µ ' & ) %! ( ()

8 mssä µ on jakauman keskarvo ja σ on hajonta. Normtus tarkottaa, että yhtälön () kuvaajan ja x- akseln väln jäävä pnta-ala on, el " # G(x)dx =. (9)!" Normaaljakauman suur käyttökelposuus fyskan mttaustulosten kästtelyssä perustuu shen, että sen on kokeellsest todettu olevan hyvä arvo lukusten ertyyppsten mttaussarjojen antamen tulosten jakaumalle. Lsäks normaaljakauman erkosprre on, että paras mahdollnen estmaatt jakauman keskarvolle µ on juur kaavan () mukanen otoskeskarvo x. Normaaljakauma vodaan tulkta todennäkösyystheydeks. Todennäkösyys slle, että normaaljakautuneeseen satunnaslmöön lttyvä havantotulos on penellä välllä (x, x+dx) on dp = G(x) dx () Todennäkösyys slle, että havantotulos on välllä (a,b), saadaan ntegromalla yhtälöä (): P(a < x < b) =! G(x)dx, () a el todennäkösyys on yhtä suur kun sen alueen pnta-ala, jota kuvassa rajottavat x-aksel, suorat x=a ja x=b sekä käyrä G(x). Usen tarkastellaan van symmetrstä tapausta el välä (-a,a). Jos yhtälössä () suortetaan muuttujanvahdos b z = x! µ ", () saadaan Gaussn jakauma () muotoon G(z) = z! e". () Yhtälö () on Normaaljakauman tapauksessa, jossa havantoaneston keskarvo µ = ja hajonta σ =. Muuttujanvahdoksen () avulla mkä tahansa G (x)-jakauma vodaan muuttaa G, (z)- jakaumaks. Tästä on hyötyä laskuteknsest, sllä jakaumaa G(z) e voda ntegroda suljetussa muodossa. Muuttujanvahdoksen ansosta tarvtsee van tuntea jakauman G, (z) arvot. Taulukkoon on laskettu jakauman () avulla todennäkösyys slle, että muuttujan z pokkeama keskarvosta µ = on penemp kun, ts. z <. Taulukon todennäkösyys P on ss ntegraal P = P (!" < z < ") = # " e! z $ dz.!" µ = σ = P(a<x<b) Kuva. Todennäkösyyden laskemnen sllon, kun normaaljakautuneen satunnaslmön yksttänen havantotulos on välllä (a,b) Taulukosta nähdään, että havannon pokkeama keskarvosta on % todennäkösyydellä välllä (- σ,+σ) ja 9% todennäkösyydellä välllä ( σ,+σ). Tosaalta tarkastelemalla todennäkösyyttä P=, (λ=,) nähdään, että suuresta havantosarjasta puolet on sellasa havantoja, joden pokkeama keskarvosta on korkentaan,σ. ()

9 9 Taulukko. Jakauman () avulla laskettu todennäkösyys (P) slle, että muuttujan z pokkeama keskarvosta µ = on tsesarvoltaan penemp kun parametr λ. λ,,,,,, P,,,,7,9,997. Tostokoe ja suurmman uskottavuuden menetelmä Fyskan mttaustulosten kästtelyssä esntyy tosnaan tlanteta, jossa tostomttaussarjan jokasella yksttäsellä mttauksella x on myös oma vrheraja Δx. Tällön keskarvon ja sen vrheen laskemseen käytetään tlastomatematkassa suurmman uskottavuuden menetelmää. Snä oletetaan, että mttaustulosten x jakauma on normaaljakauma (nän e käytännössä ana ole), ja vrherajat vodaan tulkta tämän normaaljakauman standardpokkeamks, σ Δx. Todennäkösyys slle, että mttaustulos x pokkeaa todennäkösmmästä arvosta x, on kaavan () mukaan P(x ) =! " e# $ & % x # x! ' ) (, () Huomattakoon, että kaavan () eksponentssa esntyy tostomttauksen vuoks kaklle pstelle x yhtenen keskarvo x. Jos tostomttaukset ovat tosstaan rppumattoma, todennäkösyys koko mttaussarjan pokkeamalle keskarvosta on termen () tulo, jota kutsutaan lkelhoodfunktoks. Paras arvo mttaussarjan keskarvolle on nyt se, joka maksmo lkelhoodfunkton arvon. Kaavan () perusteella tämä merktsee lkelhoodfunkton eksponentn mnmomsta, ts. ) # % $ x! x " & ( ' Tästä vodaan osottaa, että keskarvon paras estmaatt on mttaustulosten panotettu keskarvo x = N x " ( ) = N!x " ( ) =!x (), (7) mssä panona ovat vrherajojen nelöden kääntesluvut. Keskarvon keskvrheen Δx lauseke johdetaan kehttämällä keskarvon lauseke (7) sarjaks muuttujen x avulla ja määrttämällä sopvast katkastulle sarjakehtelmälle hajonta. Tulokseks saadaan panotettu summa (!x) ) = (!x ) # % "x &, / ( + * $ "x '., - mssä panona on yksttäsen mttapsteen keskarvoon aheuttaman vakutuksen nelö. Sjottamalla kaavasta (7) saatava keskarvo kaavaan () saadaan keskarvon keskvrheeks!x = N " = ( )!x. (9) ()

10 . Vahteluväl ja t-jakauma Mtattavan suureen satunnasta vahtelua keskarvon ympärllä vodaan kuvata jakauman hajonnan lsäks käyttämällä vahteluvälä. Suureen (-α) %:n luottamusvälks kutsutaan aluetta, joka todennäkösyydellä -α pettää alleen suureen todellsen arvon. Tavallsmmn käytetään 9 %:n luottamusvälä. Jos normaaljakautuneen suureen hajonta σ tunnettasn tarkast, 9 %:n luottamusrajat saatasn yksnkertasest kaavan () ntegraalsta valtsemalla ntegrontrajat ±λ sten, että ntegraaln arvo ols.9 (taulukon mukaan tällön λ σ). Käytännössä tuntemattoman suureen hajontaa e tunneta tarkast, vaan sen estmaatt on kaavan () antama otoskeskhajonta s. Otoskeskhajonta on N:n satunnasmuuttujan funkto, joten luottamusvälen laskemnen muuttuu monmutkaseks tlastomatemaattseks ongelmaks. Tässä yhteydessä todetaan van, että rppumattomsta satunnasmuuttujsta vodaan er laskutomtukslla muodostaa useta uusa muuttuja, joden jakaumat ovat keskesessä osassa tlastollsten luottamusrajojen laskemsessa. Luottamusvälejä haettaessa tällanen jakauma on t-jakauma (ta Student-jakauma), t(n) = x, () N! x mssä muuttujat x ja x ovat normaaljakautuneta s.e x = x = ja σ(x) = σ(x ) =. Normaaljakautuneen suureen keskarvon x (-α) %:n luottamusväl on nyt x ± t!" / (N!) s N, () mssä alandeks -α/ johtuu stä, että t-jakauma (kuten normaaljakaumakn) on symmetrnen orgon suhteen. t-jakauman arvoja 9 %:n luottamusrajolle vapausasteden funktona on estetty taulukossa. Laadunvalvonnassa käytetty keno tostomttauksen luotettavuuden arvontn on vahteluväln käyttö, josta saadaan helpost arvo vrheelle. Vahteluväl R on suurmman ja penmmän mttaustuloksen erotus. Normaaljakautunelle suurelle vodaan osottaa, että vahteluväln ja hajonnan σ välllä on yhteys W = R/σ, () mssä W on nmeltään suhteellnen vahteluväl, ja se rppuu anoastaan havantojen lukumäärästä N. Yhdstämällä kaavat () ja () saadaan luottamusväln lausekkeeks x ± x max! x mn F () jota vodaan käyttää vrhearvon tekemseen, kun tostokokeden määrä on pen. Tekjän F arvoja on laskettu taulukkoon vastaamaan 9%:n vahteluvälä. F-tekjään perustuva vrhearvo on hekomp kun t-jakauman käyttöön perustuva, koska koko havantoanestoa e käytetä hyväks, ja F-tekjän antamat 9 %:n luottamusrajat vovat olla hukan t- jakaumaa suuremmat. Vahteluväln käyttötarkotus onkn nopean lkmääräsen vrhearvonnn tekemnen. Taulukko. 9%:n vahteluväln F-tekjän arvo tostokokeden lukumäärän N funktona ja t- jakauman ylemmän (-α/) -psteen arvo (α =.) vapausasteden N funktona. N 7 9 F -,,7,77,,,,9,, t,77,,,77,7,7,,,,

11 Laskettujen suureden vrheden arvont Ensmmänen askel tutkttavan suureen vrheen arvonnssa on mtata ta arvoda mtattujen parametren vrherajat Δx. Tämä tulee tehdä jokaselle mtatulle suureelle. Harvassa mttaustapahtumassa vodaan kutenkaan tutkttavaa suuretta mtata suoraan. Se onnstuu, jos ollaan knnostuneta metalltangon ptuudesta ta jänntteestä akun napojen välllä, mutta yleensä mttaustapahtuma on monmutkasemp ja tutkttava suure saadaan jonkun ta jodenkn apusuureden avulla. Yksnkertasmmllaan tämä on vastuksen arvon mttauksessa jänntteen ja vrran avulla ta sylntern tlavuuden mttauksessa ptuuden ja halkasjan avulla. Jos tutkttavaa suuretta e voda mtata suoraan, mttaukset kohdstetaan suuresn, joden funkto tutkttava suure on. Fyskaalsta lmötä kuvaava matemaattnen mall oletetaan tunnetuks, ja tutkttavan suureen arvot lasketaan malln avulla mtatusta suuresta. Tällön tutkttavan suureen arvo saadaan laskemalla suuretta esttävän funkton arvo, jonka muuttujna ovat välttömäst mtattavat suureet. Funkto olkoon F(x, x,...), jossa (x, x...) ovat edellä sanotut välttömäst mtattavat, tosstaan rppumattomat suureet. Esmerkknä manttakoon ohuen lnssn polttoväln f määrtys lnssyhtälön f = a + b avulla, jollon mtattavat suureet (x, x ) ovat a ja b el kuvan ja esneen etäsyys lnssstä. Jotta votasn sanoa jotan tehdyn mttauksen tarkkuudesta, tulee arvoda funkton F vrhe ΔF, kun muuttujen vrheet Δx, Δx,... ovat annetut. Kunka pääsemme yksttässtä mtatusta vrhestä Δx, Δx,... vrheeseen ΔF? Vodaan kysyä, mllä tavalla vrhe etenee mttaustapahtumasta lopputulokseen? Ensmmänen askel on luonnollsest mttauslatteen antamen tulosten vreen arvont. Nän saadaan vrheet Δx, Δx,.... Maksmvrheen laskemnen kokonasdfferentaaln avulla Matemaattsest funkton arvon F vahtelua muuttujan x vahdellessa hukan kuvaa funkton F dervaatta muuttujan x suhteen. Yhden muuttujan tapauksessa tämä vastaa käyrän korvaamsta sen tangentlla psteen x lähesyydessä. Jos jokasessa muuttujassa tapahtuu pen muutos dx, funkton arvon muutoksen antaa kokonasdfferentaal df =!F!x dx +!F!x dx +. () Kaavassa () on käytetty hyväks osttasdervonta. Se tapahtuu lähes samojen sääntöjen mukaan kun dervont yhden muuttujan tapauksessa. Erona on, että dervont tehdään kunkn muuttujan suhteen vuorollaan ptäen muta muuttuja vakona. Fyskan mttauksssa lopputuloksen F vrhettä laskettaessa kaavassa () esntyvät dfferentaalt korvataan suureden x vrherajolla Δx. Vrheden suuntaa e yleensä tedetä, mutta eräs yläraja-arvo lopputuloksen vrheelle saadaan, kun kakka vrherajoja pdetään postvsna. Lsäks, koska tavotteena on laskea vrheelle yläraja-arvo, kakk osttasdervaatat oletetaan postvsks. Elle nän tehtäs, vastakkasmerkkset termt saattasvat kumota tosaan. Vrhearvo lasketulle suureelle saadaan ss kaavalla!f = "F "x!x + "F "x!x + ()

12 Esmerkk. Lasketaan funkton f = ax y vrhe Δf, kun x ja y ovat muuttuja ja a on tarkka vako. Dervodaan x:n suhteen! "f "x = axy Dervodaan y:n suhteen! "f "y = ax Krjotetaan lauseke maksmvrheelle!f = axy!x + ax!y Esmerkk. Lasketaan funkton g = ax + by vrhe Δg, kun x ja y ovat muuttuja, sekä a ja b ovat parametreja, jolla on epätarkkuutta. Nyt tulee dervoda sekä muuttujen että parametren suhteen:!g!x = ax!g!y = b!g!a =!g x!b = y " #g = ax #x + b #y + x #a + y #b Esmerkk : Lasketaan vrhearvokaava lnssyhtälön antamalle polttovällle. Samon kun edellsessä esmerkssä muodostetaan osttasdervaatat ja lasketaan ne yhteen. Tässä tapauksessa sekä a että b ovat muuttuja.!f = "f "f!a + "a "b!b = b a + b ( )!a + a!b ( a + b). Logartmnen dervont Jos matemaattnen mall ssältää van kerto- ja jakolaskuja sekä potenssn korotuksa, vodaan vrhearvon laskemsessa vaadttaven laskutomtusten määrää penentää ns. logartmsen dervonnn avulla. Matemaattsest logartmnen dervont ja kokonasdfferentaaln avulla tapahtuva vrheen laskemnen ovat denttsä, ja tuottavat sten saman lausekkeen vrhearvolle. Logartmsessa dervonnssa funktosta otetaan ensn logartm, jonka jälkeen se dervodaan. Logartmnen dervont perustuu shen, että ottamalla luonnollnen logartm dervotavasta funktosta kertoja jakolaskut vodaan käteväst muuttaa yhteen- ja vähennyslaskuks. Lsäks luonnollnen logartm on helppo dervoda: d dx ln x ( ) = x () Usen on helpompaa johtaa yhtälöä suhteellselle vrheelle kun absoluuttselle vrheelle. Lopullnen absoluuttnen vrhe vodaan tällön laskea helpost suhteellsesta vrheestä kertomalla se lopputuloksen arvolla Esmerkk : Lasketaan funkton f = kx a y b z c vrhe Δf, mssä k, a, b ja c ovat postvsa ta negatvsa reaallukuja. Ensn otetaan funktosta puolttan logartmt: ln f = ln kx a y b z c ( ) = ln k + a ln x + b ln y + c ln z Saadun yhtälön kumpkn puol dervodaan, ja termt asetetaan tsesarvomerkken ssälle vastakkas-

13 merkksten termen kumoutumsen estämseks:!f f = a!x x + b!y y + c!z z Lauseke antaa suureen f suhteellsen vrheen Δf/f suureden x, y ja z suhteellsten vrheden avulla. Tästä päästään absoluuttseen vrheeseen Δf kertomalla suhteellnen vrhe lopputuloksella. Esmerkk : Lasketaan funkton f = ax y vrhe Δf, kun x ja y ovat muuttuja ja a on tarkka vako.! f! x! y = + f x y Krjotetaan lauseke maksmvrheelle!f =!x x +!y joka antaa saman lausekkeen kun esmerkssä. " # y $ % ax y, Esmerkk : Tehtävänä on selvttää funkton Fl R = bh suurn mahdollnen systemaattnen vrhe, kun muuttujna oleven suureden F, l, b ja h arvot arvodaan votavan mtata sten, että " F " l " b " h!,%,!,%,!,%,!,% F l b h Esmerkssä estetyn lausekkeen mukasest vodaan krjottaa! R! F! l! b! h " R f l b h, " R R josta saadaan!,%.. Esmerkk 7: Eräässä kokeessa pyrttn määrttämään gravtaatovakon g arvo pudottamalla koekappale korkeudelta h= m ja mttaamalla putoamseen kulunut aka t. Pudotuskorkeus kyettn mttaamaan Δh=, m:n tarkkuudella. Klasssen mekankan mukaan pudotuskorkeus on verrannollnen putoamsakaan yhtälön h = gt mukasest. Ajan mttaustarkkuuden parantamseks suortettn kymme- nen tostomttausta, jossa saatn taulukossa E olevat tulokset: Tulokssta laskettn putoamsajalle keskarvo ja keskarvon keskvrhe kaavolla (.) ja (.), jollon putoamsajaks saatn t = (, ±,) s. Koska pudotuskorkeus ja putoamsaka tunnetaan, vodaan gravtaatovakon lausekkeeks ratkasta g = h t. Tällön tulokseks saadaan g = 9, m/s. Lasketaan seuraavaks lopputuloksen vrheraja Δg. Lausekkeessa esntyy anoastaan kerto- ja jakolaskuja, joten logartmsen dervonnn avulla saadaan helpost g:n suhteellnen vrhe:! g! h! t = +. g h t Sjottamalla tähän Δh=, m ja Δt=, s saadaan gravtaatovakon vrhearvoks Δg=, m/s. Lopputulos lmotetaan muodossa g = (9, ±,) m/s.

14 Esmerkstä 7 nähdään, että mtattujen suureden vrherajat, jota käytetään lasketun suureen vrhettä arvotaessa, vovat määräytyä erlasn perusten, esm. yksttäsen mttauksen tarkkuudesta (kuten Δh) ta tostomttauksesta (kuten Δt). Esmerkssä näytetään, mten lausekkeeseen, jossa on mukana vähennyslasku, vodaan soveltaa logartmsta dervonta. Esmerkk. Ratkastaan funkton f kokonasdervaatta ja maksmvrhe logartmsella dervonnlla. f = a! b cd ln( f ) = ln(a! b ) + ln(c) + ln(d ) "f f = $ "f = & % # #a (a! b ) "a + (a! b ) # #b (a! b ) "b + "c (a! b ) c + "d d "a (a! b ) + b"b (a! b ) + "c c + "d d ' ) * f (. Vrhebudjett. Kun mttaustulos rppuu monesta muuttujasta on tärkeää saada selvlle, mtkä muuttujat aheuttavat suurmman vrheen mtattavaan lopputulokseen. Tämä teto auttaa mttausten suunnttelussa, jollon vodaan tehdä tarvttava parannuksa suurmman epävarmuuden aheuttavan parametrn mttaamseen. Vrhebudjetn tekemnen fyskan laboratorotössä hodetaan taulukon avulla, johon kerätään kunkn muuttujan nm, vrhe(arvo) ja muuttujan vakutus lopputuloksen vrheeseen, kuten taulukossa on estetty. Tällä tavalla vodaan laskea kunkn suureen epätarkkuuden vakutus lopputulokseen ja lopputulemana saadaan tuloksen kokonasvrhe. Vrhebudjett tulee tehdä kakssa sellasssa fyskan laboratorotössä, jossa lopputulokseen vakuttaa vähntään kaks mtattua suuretta. Yleensä vrhebudjett saadaan suoravvasest käyttämällä kokonasdfferentaaln lauseketta. Taulukosta havataan, että muuttujen z ja x merktys lopputulokseen on suurn, joten nden mttaukset tuls tehdä suuremmalla tarkkuudella. Vrhebudjetn perusteella vo sellasten muuttujen vrheet, joden vakutus lopputulokseen on hävävän pen, jättää pos lopputa vältulosten laskettaessa. Taulukon tapauksessa tällasa ovat muuttujat k ja y. Mkäl nän tehdään, on stä kutenkn ana oltava mannta selostuksen tekstssä. Seuraava esmerkk kuvaa yhtä tyypllstä tlannetta fyskan laboratorotössä. Graafsen estyksen perusteella on saatu kulmakertomen arvo vrheneen laskettua, mutta lopputuloksen vrheeseen vakuttaa lsäks jodenkn mtattujen suureden vrheet. Ongelman kuvaus, tulokset ja graafnen estys on otettu esmerkstä 7. Esmerkk 9: Vrhebudjetn käyttö kahden muuttujan tapauksessa Taulukko. Vrhebudjett funktolle f = k x y / / z muuttuja arvo vrhe kokonasdfferentaal x,, f x / x, f y,, f y / y, f z,, f z / z, f k 9,, f k / k. f f,9, f,77 Korkea sylnternmuotonen putk (halkasja d=(9,±,) mm) on täytetty nesteellä. Putken alapäässä on ohut kapllaar, josta ajanhetkellä t = aletaan juoksuttaa nestettä. Nesteen ulosvrtaus kapllaarn läp on melko tarkast suoraan verrannollnen nestepatsaan korkeuteen. Kapllaarputken vrtausvastus esmerkn 7 mukaan saadaan kaavasta

15 R =! A = " ka = " k#d, mssä putken pokkpnta-ala A on lmotettu putken halkasjan d avulla ja τ on aka, jonka kuluessa nestepatsaan korkeus penenee puoleen alkuperässtä. Tämä akasuure saadaan kulmakertomen k käänteslukuna. Vrtausvastuksen vrhearvo saadaan helpommn logartmsella dervonnlla: "!R = R!k k +!d $ # d %. Tämän lausekkeen perusteella vodaan tehdä taulukon vrhebudjett ja nähdä kummankn muuttujan aheuttavan yhtä suuren vrheen lopputulokseen. Taulukko. Vrhebudjett funktolle R = / (kπd ) muuttuja arvo vrhe kokonasdfferentaal k,, R k / k, R d 9,, R d / d, R R,, R. Ohjeta vrhearvon tekemseen Edellä on kuvattu useta erlasa tapoja laskea ta arvoda vrhettä. Yhteenvetona nästä er tavosta on seuraavassa estetty ohjestus: Yksttäsen mttaustuloksen kohdalla käytetään annettua mttalatteen tarkkuutta, lukematarkkuutta ta havattua mttauksen epätarkkuutta. Tostokokeen tapauksessa, kun tostokertojen lukumäärä on pen, käytetään F-tekjää Tostokokeen tapauksessa, kun tostokertojen määrä on suur, lasketaan keskarvon keskvrhe Nän saadut mttaustulokset vrheneen sjotetaan graafseen estykseen Tällön saattaa olla tarpeellsta käyttää kokonasdfferentaala vrheen laskemseks graafsta estystä varten. Graafsen estyksen perusteella määrtetään yleensä kulmakertomen ja mahdollsest jodenkn muden parametren vrhe. Nästä edetään lopputuloksen vrheeseen kokonasdfferentaaln avulla.

16 Lukuarvosta ja yksköstä. Dmensoanalyys Jokasella fyskassa mtatulla suureella on sekä lukuarvo että dmenso, laatu. Dmensoden kästtelyssä olemme Euroopassa varsn onnellsessa asemassa, koska SI-järjestelmä on otettu käyttöön vuosa stten ja se on pohjana myös arkpävän mttaykskössä. SI-järjestelmän heno prre, on snä, että laskettaessa fyskaalslla suurella, nden laadulla vo tehdä algebrallsa laskutomtuksa lman vakeast mustettava muunnoskertoma. Mahdollsuutta tehdä tällasa laskutomtuksa vo Fyskan laboratoron mttauksssa käyttää kahdella tavalla hyödyks: Yhtäältä lopputuloksen laatu tulee laskea mtattujen suureden ja annettujen parametren laatujen avulla. Tosaalta pelkken laatujen tarkastelu auttaa monessa tapauksessa havatsemaan onko käytetyt kaavat oken. Jos laatujen tarkastelu (dmensoanalyys) e anna lopputulokselle okeaa laatua, on käytetyt kaavat syytä tarkastaa ja tarvttaessa korjata. Tyypllsest tällä tavalla vodaan löytää esm. kneettsen energan kaavasta mv potenssvrhe, koska laatu e tule oken. Vakotermen vrhetä dmensoanalyys e kutenkaan paljasta. Dmensoanalyysn avulla vo myös löytää anakn lähes oketa rppuvuussuhteta fyskaalslle parametrelle, vakka e mustaskaan käytettävää malla tarkast. Esmerkk. Mllanen on jänntetyssä kelessä etenevän aallon etenemsnopeus jänntyksen ja langan massan välllä? Laadut ovat v = [m/s], T = [N] = [kgm/s ] ja m =[kg]. Oletetaan että kaava on muotoa v! T a m b, mssä a ja b ovat knnostuksen kohtena oleva parametreja. Kysymys muokkautuu nyt muotoon, mllaset eksponentn arvot a ja b antavat nopeudelle okean laadun? Sjottamalla laadut yhtälöön saadaan m / s = ( kgm / s ) a ( kg) b = kg a+ b m a s!a Tämän perusteella saadaan uudet yhtälöt: a + b =, -a = - ja a =. Havataan, että nälle e ole ratkasua, joten kaavaa tulee velä hukan muuttaa. Korvaamalla langan massa m langan massalla ptuusykskköä koht ρ = [kg/m], saadaan yhtälö muotoon ( ) a kg / m m / s = kgm / s ( ) b = kg a+ b m a!b s!a Tällön yhtälöt a + b =, -a = - ja a - b = antavat ratkasuks, a = / ja b = -. Nän saatn nopeudelle lauseke v = C T /!, mssä C on laaduton vako. Kaavassa esntyvän vakon arvoa dmensoanalyys e pysty selvttämään.. Lkarvot ja tarkat-arvot Tulosten kästtelyn kannalta luvut ovat joko lkarvoja ta tarkkoja arvoja. Lkarvoja ovat havantoarvot, väl- ja lopputulokset. Tarkkoja arvoja ovat matemaattset vakot kaavossa ja kästeltävn lkarvohn verrattuna tarkast tunnetut fyskaalset vakot. Monet tarkat arvot ovat joko päättymättömä desmaallukuja, kuten /, π ja e, ta muuten erttän monnumerosa lukuja. Laskussa nämä on katkastava ja pyörstettävä nn, että nstä e laskuhn aheudu merkttävä vrhetä. Matematkan kannalta tällaset luvut ovat ss lkarvoja, mutta laskjan kannalta tarkkoja, koska nhn vo ana tarvttaessa ottaa lsää numerota. Tässä melessä e luvulla / =,..., =,... ta π =,9... ole mtään eroa, ne ovat kakk tarkkoja arvoja. Nden pyö-

17 rstämsessä noudatetaan samoja sääntöjä, jotka estetään tuonnempana lukuarvojen pyörstämsen yhteydessä. Lähtökohdaks tuloksssa käytettäven numeroden lukumäärälle vodaan tehdä seuraava määrtelmä: Suureen lukuarvon numeroden tulee lmasta mttauksn saadun suureen arvon suuruus, ja sen lsäks vmesen merktsevän numeron tulee lmasta mttauksen vrhettä ta epätarkkuutta. Tehtäessä kokeellsa mttauksa saadaan tuloksks lukuja (laatuneen). Mttaustapahtuman yhteydessä on syytä ottaa ylös mtatun suureen lukuarvo rttävän monella numerolla. Mttalatteen vrhe on syytä selvttää ennen mttauksen tekemstä, jotta yhtäältä tuloksa krjattaessa vo tehdä tarkkalla tapahtuuko mtattavassa sgnaalssa mttaustarkkuuden puttessa merkttävä muutoksa ja tosaalta tetää, mllä tarkkuudella tulokset kannattaa merktä mustn. Yleensä kutenkaan lan suuren numeromäärän käyttämnen e hattaa mttausten tekemstä. Jos esmerkks dgtaalsen ylesmttarn näyttämässä vmen numero vahtelee, sen vahtelun suuruus kannattaa krjata mttaustuloksn, vakka stä e välttämättä tarvttasnkaan. Laskussa saataven vältuloksen kohdalla vodaan käyttää runsaast numerota. Mkäl nätä halutaan vähentää, tulee ptää huol stä, että vältuloksen suhteellnen tarkkuus on paremp kun shen astsen laskun epätarkmmn lmastun suureen suhteellnen tarkkuus. Lopputuloksen kohdalla käytettäven numeroden määrään on syytä knnttää ertystä huomota. Vrhearvon perusteella vodaan päätellä mtkä lopputuloksen lukuarvon numerot ovat luotettava. Rppuen mttausten luonteesta, käytetystä lattesta ja myöskn selttävän teoran hyvyydestä, lopputuloksen vrhe lmotetaan yhden ta korkentaan kahden merktsevän numeron tarkkuudella. Fyskan laboratorotössä yhden merktsevän numeron tarkkuus vrherajossa on ana rttävä. Vrherajan perusteella saadun lopputuloksen lukuarvo on helppo katkasta, nn että sen vmenen annettu luku kuvaa vrheen suuruutta. Esmerkk. Tulokseks saatn luvut,,,9,,79,,,,77,,77,,7,,9,,,,7. Mten tulos estetään? Kakk lukuarvot ovat ss välllä, < x <,77 ja keskarvo on,. Lukuarvossa varmoja numerota ovat van,, sllä van ne löytyvät kaksta mttaustulokssta. Kutenkn tuloksen tarkkuus on hukan tätä paremp. Käytetään vrherajan laskemsessa taulukon F-tekjää. Rppuen stä, mnkälanen on tuloksen luonne, krjotetaan x =,7 ±,7 jos x on lähtöarvo ta vältulos x =, ±, jos x on lopputulos. 7. Pyörstämnen Pyörstyssäännöks sovtaan seuraavat:. Jos ensmmänen posjäävä numero on <, e vmestä mukaan tulevaa numeroa muuteta.. Jos ensmmänen posjäävä numero on >, korotetaan vmestä mukaan tulevaa numeroa yhdellä.. Jos ensmmänen posjäävä numero on =, jota seuraa nollaa suuremp luku, korotetaan vmestä mukaan tulevaa numeroa yhdellä.. Jos ensmmänen posjäävä numero on =, jota seuraa nolla ta e mtään, pyörstetään vmenen mukaan tuleva numero lähmpään parllseen numeroon. Säännöt ja ovat luultavast kaklle tuttuja ja sääntöjen ja kohdalla on olemassa myös muta tulkntoja. E ole ss vrheellstä pyörstää ylöspän vmesen numeron ollessa.

18 Esmerkk. Seuraavat luvut on pyörstetty kolmnumerosks: Luku pyörstys sääntö Luku pyörstys sääntö,7,,,,,,,,,,, Taulukossa käytetään usen ns. desmaalsta tarkkuuslmotusta, jossa taulukkoarvon vrhettä e ana merktä näkyvn. Desmaalsessa tarkkuuslmotuksessa esm. x =, merktsee, että x on välllä,7 < x <,, ja arvo x =,, että x on välllä,79 < x <,. Tätä vodaan kutenkn ptää huonona tarkkuuden lmasutapana, elle stä ole erkseen lmotettu. Tähän lttyvät sanonnat: n:n desmaaln tarkkuus sekä n:n numeron tarkkuus. Tonen taulukkotedossa käytetty (huomattavast paremp) tapa on,() ta,, jossa sulussa ta alandeksnä oleva luku tarkottaa lukuarvon vmesen numeron suuruusluokassa annettua vrherajaa, ss x =,±,. Lukuarvojen pyörstämsen perussääntö mttaykskkömuunnoksssa on seuraava: lukuarvojen ssältämän nformaaton tulee sälyä muunnoksssa. Yleensä muunnoksen seurauksena saatu uus lukuarvo ssältää "turha" desmaaleja, jotka ols karsttava. Tämä käy pänsä pyörstämällä muunnettu lukuarvo sten, että muunnetun lukuarvon suhteellnen vrhe on yhtä suur kun alkuperäsen lukuarvon suhteellnen vrhe Δx/x. Käytännössä edellä manttu menettelytapa on kutenkn hankala. Käytännöllnen sääntö, jonka perusteella vodaan pyörstää lukuarvot ja samalla noudattaa anakn lkman edellä estettyä peraatetta on, että alkuperäsen lukuarvon ja muunnetun lukuarvon merktseven numeroden lukumäärät valtaan yhtä suurks, jos muunnettu lukuarvo on suuremp kun alkuperänen. Jos muunnetun arvon numeroden muodostama luku on penemp kun alkuperäsen arvon numeroden muodostama luku, otetaan muunnettuun lukuarvoon yks merktsevä numero lsää. Esmerkk., hv on lmastava klowattena. ( hv =,7 kw). Klowattena lmastavan suureen lukuarvo on x' =,7, kw=, kw. Koska alkuperäsessä lukuarvossa on merktsevää numeroa, nn myös muunnettuun lukuarvoon otetaan anakn merktsevää numeroa. Koska kutenkn nden muodostama luku on penemp kun alkuperäsen lukuarvon numeroden muodostama luku, otetaan muunnettuun lukuarvoon yks lsänumero. Ss vastaukseks saadaan, hv =, kw, jossa vmenen numero on korotettu akasemmn estetyn säännön mukasest.

19 Suureden välsen rppuvuuden tutkmnen 9 Kokeellsessa fyskassa ollaan yleensä knnostuneta pats tarkkojen mttaustulosten saamsesta, myös fyskan teoroden pätevyysalueden testaamsesta käytännössä. Tähän tarkotukseen vakona pdettävssä olosuhtessa suortettavat tostomttaukset soveltuvat huonost. Tavallsest koeolosuhteta halutaan nmenomaan aktvsest muuttaa, jotta malln pakkansaptävyyttä vodaan testata mahdollsmman laajast. Fyskan laboratoromttaukset pyrtään mahdollsuuksen mukaan suorttamaan sten, että vahdellaan jonkn suureen x arvoja (esm. vrtaprn jännte) ja tutktaan, mten tämä vakuttaa mtattavaan suureeseen y (esm. prssä kulkeva vrta). Suureta x ja y yhdstää tosnsa mall y = f(x) (esm. Ohmn lak). Tarkotuksena on tutka noudattavatko mtatut y ja x malln f mukasta käyttäytymstä (esm. Ohmn laka), määrttää malln f lttyvät fyskaalset vakot (esm. prn sähkövastus).. Mttaustulosten graafnen estys.. Graafsen estyksen laatmnen Paras ja ylesmmn käytetty tapa tutka, noudattavatko mttaustulokset malln ennustamaa käyttäytymstä, on esttää mttaustulokset graafsest. Graafnen estys on lmasuvomanen tapa esttää fyskaalsta rppuvuutta, koska sen avulla vo arvoda tutkttavan lan pätevyysaluetta, havata systemaattsa vrhetä ja karkeaa vrhettä ssältävä mttaustuloksa, laskea malln parametren arvoja ja arvoda nden vrhetä. Hyvn tehty graafnen estys nopeuttaa myös selostuksen laatmsta. Jos esmerkks halutaan tutka Ohmn laka U=RI, mtattu jännte estetään prssä kulkevan vrran funktona. Mkäl Ohmn lak on vomassa, mttauspsteet muodostavat orgon kautta kulkevan suoran. Tämän suoran kulmakertomesta saadaan lsäks määrtettyä vastuksen R arvo. Oletetaan, että on mtattu suureet y ja x, jota yhdstää tosnsa mall f sten, että y=f(x). Mttaukset on suortettu pstettän, joten tuloksena on arvopareja (x, y ). Ensmmäsenä tehtävänä on arvoda mtattujen suureden vrherajat Dx ja Dy. Nämä saadaan esm. valmstajan lmottamasta mttauslatteen mttaustarkkuudesta, mttareden astekkojen lukematarkkuudesta ta tostokokeen avulla lasketusta keskarvon keskvrheestä. Jos tulosten kästtelyä varten tarvtaan jonkn mtatun suureen funkton vrhe (esm. x ), käytetään luvussa estettyä dfferentaaln laskemseen perustuvaa menettelyä (esm. D(x )=xdx). Mtatut pstepart (x, y ) prretään koordnaatstoon kuvan mukasest. Mttauspstesn merktään myös vrherajat Dx ja Dy vaaka- ja pystyvvona psteparn (x, y ) kohdalle. Usen tonen suuresta x ja y on määrtetty selväst tarkemmn kun tonen. Jos tarkemmn määrtetyn suureen vrherajat ovat hyvn penet, ntä e tarvtse merktä näkyvn. Astekot pyrtään valtsemaan sten, että psteden muodostama suora on n. asteen kulmassa akselehn nähden. Tällön suoran kulmakerron vodaan määrttää parhammn. Astekkojen valnnalla on kutenkn myös fyskaalsta ssältöä. Valtsemalla astekot sopvast vodaan usesn erlasn mallehn y=f(x) lttyvät pstepart esttää suorana. Jos esm. tutktaan rppuvuutta y=ax ja pyrtään määrttämään vako a, prretään suure y suureen x funktona. Tällön psteet asettuvat (x, y)- koordnaatstossa suoralle, jonka kulmakerron on haettu vako a. Taulukossa Taulukko Mahdollsuuksa koordnaatston valntaan, jos tutkttava rppuvuus on tunnettua muotoa Rppuvuus pystyaksellle vaaka-aksellle y=ax y x y=ax y x y=e ax lny x y=a/x y /x

20 OIKEIN VÄÄRIN NOPEUS (m/s) v AIKA (s) t Kuva Mtattujen psteparen (x, y ) sekä vrherajojen Dx ja Dy sjottamnen koordnaatstoon. Vasemmanpuolesessa kuvassa on astekko valttu sten, että koko kuva-ala täyttyy, ja mtatut pstepart ja vrherajat on sjotettu oken koordnaatstoon. Okeanpuolesesta kuvasta puuttuvat astekkojen laadut ja psteden vrherajat. Pystyastekko on valttu huonost ja mttapsteet on yhdstetty murtovvalla. on lueteltu muutama lsäesmerkkejä stä, kunka tutkttava mall vodaan huomoda graafsen estyksen laatmsessa. Mkäl nässä esmerkktapauksssa psteet muodostavat suoran, vodaan todeta, että tutkttava mall on koetlanteessa vomassa, ja malln lttyvä verrannollsuusvako a saadaan määrtettyä suoran kulmakertomesta... Suoran kulmakertomen ja sen vrhearvon määrttämnen Otetaan lähtökohdaks kuvan mttauspstestö. Prretään kuvaan slmämääräsest pstestöä mahdollsmman hyvn kuvaava suora. Tämä on tehty kuvassa. Nyrkksääntönä on, että suoran kummallekn puolelle tuls jäädä lkman yhtä paljon pstetä. Karketa vrhetä (pstetä, jotka ovat selväst svussa suoralta) e suoraa prrettäessä tule ottaa huomoon. Psteden vrherajat otetaan huomoon sten, että psteen vakutus suoran sjantn on stä penemp mtä suuremp vrheraja ko. psteeseen lttyy. Mkäl mahdollsta, prrettävän suoran tuls kulkea kakken psteden vrherajojen ssällä. k = Dv/Ds =, m/s Prrettäessä suoraa mttauspstestöön on tärkeää huomata, että suoraa e saa pakottaa kulkemaan orgon kautta, vakka teorassa se seltä kulkskn (esm. y = kx). Tämä johtuu ensnnäkn stä, että pstestöön sovtettavan suoran kulmakertomella ja sten suoran ja y-akseln lekkauskohdalla on jokn vrheraja, jollon suoran e tarvtse kulkea täsmälleen orgon kautta. Toseks, tuloksssa saattaa esntyä systemaattsa vrhetä, esm. jokanen mtattu y-arvo on määrällä y suuremp kun todellnen arvo. Jos tässä tapauksessa pstestöön prrettävää suoraa e pakoteta kulkemaan orgon kautta, saadaan suoran NOPEUS (m/s) Ds =, s Dv =, m/s AIKA (s) Kuva Mttauspstestöön parhaten sopva suora. Vrhesuorat on prretty katkovvolla.

21 kulmakerron määrtettyä oken systemaattsesta vrheestä huolmatta. Systemaattsen vrheen läsnäolo vo ss näkyä snä, että suora e kulje orgon kautta. Kun mttaustuloksn on prretty pstestöä mahdollsmman hyvn kuvaava suora, suoran kulmakerron vodaan määrttää. Määrttämstä varten valtaan prretyltä suoralta kaks tosstaan rttävän kaukana olevaa pstettä, jotka evät yleensä ole mtattuja pstetä. Fyskassa kulmakertomella on ana laatu, joka saadaan sjottamalla edellä valttujen psteden lukuarvot laatuneen kaavaan y - y k =, (7) x - x kuten kuvassa on tehty. Kulmakertomen vrheen laskemseks pstestöön prretään vrhesuorat, jotka antavat penmmän ja suurmman mahdollsen arvon mttaustuloksn sopvalle kulmakertomelle (kuva.). Vrhesuorat prretään tostensa kanssa rstn, ja nden tulee lekata tosensa ja varsnanen mttausta kuvaava suora pstejoukon panopsteessä ta sen lähesyydessä. Jos pstestö on lkman tasavälnen ja yksttästen psteden vrherajat ovat lkman yhtäsuuret, panopste sjatsee rttävällä tarkkuudella pstestön keskpsteessä. Mkäl pstejoukon panopsteen ( x, y) määrttämnen slmämääräsest on vakeaa, stä vo arvoda antamalla kullekn psteelle panoks sen vrhettä kuvaavan laatkon pnta-alan. Tällön päädytään laskennallsnn lausekkesn x = x y  DxDy DyDx y =  Dx Dy Dy Dx  ( )  ( ) ( ) ( ), () jolla vodaan pakkaa arvoda. Mkäl tosen muuttujan vrhe on nolla, jätetään sen suuntanen tekjä yllä olevsta kaavosta pos. Tärkeää vrhesuoren prtämsessä on myös se, että vrhesuoren tulee kulkea kakken yksttästen psteden vrherajojen ssällä ana kun se on mahdollsta. Tällön vrhesuoren kulmakertomet usen määräytyvät pstejoukon äärpstestä. Pokkeuksen muodostaa tlanne, jossa pstejoukon keskvahella mttaustarkkuus on selväst paremp kun pstejoukon äärpässä. Jos mttauspsteet pokkeavat suoralta enemmän kun vrhearvonsa verran, kannattaa käyttää PNS-menetelmää kulmakertomen ja sen vrheen määrttämseen. Kun vrhesuorat on prretty graafseen estykseen, pstestöön sovtetun suoran kulmakertomelle vodaan laskea vrhearvo. Vrhesuoren kulmakertomsta saadaan kulmakertomen maksmarvo k max ja mnmarvo k mn. Kulmakertomen vrhe Dk vodaan arvoda maksmvrheenä k Dk = max - k mn. Kuvassa 7 ja on estetty muutama ylesä, mutta vrheellsä, tapoja prtää vrhesuora. Kunkn vrheellsen kuvan veressä on estetty samaan pstestöön prretyt okeat suorat. Kuvatekstssä onkommentotu kussakn tapauksessa tehtyjä vrhetä. Kuvassa 7A vrhesuorat evät kulje psteden vrherajojen ssällä ja laskettu vrheraja kulmakertomelle ols nän lan suur. Kuvan 7B-kohdassa vrhesuorat on pakotettu kulkemaan koordnaatston orgon kautta. Houkutus tähän on suur, koska psteden vrherajat penenevät orgoa koht. Tällasessa tapauksessa pstejoukon panopste srtyy lähemmäks penempen vrheden päätä, mutta e koskaan pstejoukon ulkopuolelle. (9)

22 VÄÄRIN A OIKEIN NOPEUS (m/s) NOPEUS (m/s) AIKA (s) AIKA (s) VÄÄRIN B OIKEIN NOPEUS (m/s) NOPEUS (m/s) AIKA (s) AIKA (s) Kuva 7 Erlasa väärllä tavolla (vasen puol) ja okella tavolla prretyt vrhesuorat (okea puol). Kuvassa A vrhesuorat ovat lan leveällä alueella evätkä kulje kakken psteden vrherajan ssällä. Kuvassa B vrhesuorat on pakotettu kulkemaan orgon kautta, vakka nden tuls lekata lähellä pstejoukon panopstettä.

23 VÄÄRIN C OIKEIN NOPEUS (m/s) NOPEUS (m/s) AIKA (s) AIKA (s) VÄÄRIN D OIKEIN NOPEUS (m/s) NOPEUS (m/s) AIKA (s) AIKA (s) Kuva Erlasa väärllä tavolla (vasen puol) ja okella tavolla prretyt vrhesuorat (okea puol). Kuvassa C vrhesuorat on prretty käyttäen äärpäden vrherajoja, jollon vrhesuorat evät kulje kakken psteden vrhesuoren ssällä ja kuvassa D vrhesuora on prretty selväst vrheellsen psteen kautta, vakka se vodaan jättää huomomatta.

24 Kuvassa C vrhesuorat on prretty käyttäen äärpsteden vrherajoja ja vrhesuorat tulevat nän lan leveälle. Nän tehden keskellä olevat, tarkemmat psteet savat lan vähän panoarvoa ja kulmakertomen vrhe kasvaa tarpeettoman suureks. Kuvassa D on yks vrheellnen pste, ja tonen vrhesuora on vrheellsest prretty kulkemaan tämän psteen kautta. Tosnaan saattaa olla tarpeellsta määrttää myös vakon b arvo suoralle y = kx + b. Esmerkks kuvan tapauksessa nän saatu arvo kuvas kappaleen alkunopeutta sen lähtessä kuvan. mukaseen khtyvään lkkeeseen. Vakon b arvo saadaan suoran ja pystyakseln lekkauspsteen y- koordnaatn arvona. Fyskassa myös tällä vakolla on laatu. Vakon b vrherajat vodaan määrttää vrhesuoren ja pystyakseln lekkauspstestä, mutta nän tehden vakon vrherajat tulevat usen tarpeettoman suurks, varsnkn, jos mttaukset on tehty kaukana tästä lekkauspsteestä. Suosteltava tapa Db:n arvomseks on prtää pstejoukkoon verhokäyrät, jolla on sama kulmakerron kun varsnasella suoralla. Verhokäyrät on prretty kuvan pstestöön kuvassa 9. Graafsen tarkastelun lopputuloksena on ss kulmakertomen ja pystyakseln lekkauspsteen arvot vrherajoneen, k ± Dk ja b ± Db. Lsäks graafnen tarkastelu näyttää, että testattava fyskaalnen mall on koetlanteessa vomassa, mkäl mtatut psteet muodostavat sopvast valtussa koordnaatstossa suoran. Yhteenveto graafsen estyksen laatmsesta : ) Valtaan akselt sten, että tutkttava fyskaalnen mall saadaan estettyä suorana, mkäl se on mahdollsta. ) Numerodaan akselt sten, että kakk mttauspsteet mahtuvat kuvaan ja suora jakaa käytettävssä olevan tlan non kulmassa. Astekkojen täytyy olla helpost luettavssa, mutta nden e tarvtse alkaa nollasta. Astekolla on yleensä jokn laatu. ) Prretään mtatut (lasketut) psteet kuvaan. ) Määrtetään yksttästen psteden vrherajat ja prretään ne kuvaan. Tarvttaessa tulee käyttää kokonasdfferentaala, jotta mtatusta vrhestä saadaan malla vastaavan muuttujan vrhetä. ) Prretään graafsen estyksen pstestään mahdollsmman hyvn sopva suora. Suoran prtämsessä tulee psteden vrherajat ottaa huomoon. Prrettävän suoran on mahdollsmman hyvn kuljettava kakken psteden vrherajojen ssällä. Suoraa e saa "pakottaa" kulkemaan koordnaatston orgon kautta. ) Lasketaan suoran kulmakerron k ja tarvttaessa pystyakseln lekkauspste b mttauspstesn sovtetulta suoralta (e yksttästä pstestä). Kulmakertomen ykskkö saadaan astekkojen avulla. 7 Kulmakertomen ) vrherajan selvttämseks prretään pstestöön vrhesuorat. Vrhesuoren tulee lekata pstejoukon panopsteessä ja kulkea kakken psteden vrherajojen ssäpuolella. Lasketaan ) arvo suoran kulmakertomen vrheelle käyttäen kulmakertomen maksmarvoa ja mnmarvoa. NOPEUS (m/s) AIKA (s) Kuva 9 Vakotermn arvon määrttämnen suoran yhtälöstä käy parhaten prtämällä datajoukolle verhokäyrät. Vakotermn arvoks saadaan kuvasta.±..

25 9) Graafnen estys vmestellään antamalla kuvalle otskko ja merktsemällä muut kuvan tunnstamseen tarvttavat tedot... Esmerkkejä Katsotaan seuraavaks mllä tavalla tostokoe ja parametren arvoja vahtamalla suortettu koe eroavat tosstaan. Palataan esmerkssä 7 kästeltyyn putoamskhtyvyyden mttaamseen kappaleen pudotusmttauksella. Esmerkk : Putoamskhtyvyyden mttaamnen II Tostokokeen sjasta koe suortetaan nyt sten, että kappaleen putoamsaka määrtetään käyttämällä vttä er pudotuskorkeutta ja mtataan ntä vastaavat putoamsajat. Kokeessa saatn taulukossa E olevat tulokset: Putoamsaka kyettn mttaamaan tarkkuudella Dt =, s ja pudotuskorkeus tarkkuudella Dh =, m. Lähes kakk mttausvrhe on nyt peräsn ajan t mttauksesta, joten korkeuden h vrhe vodaan jättää huomoon ottamatta. Klasssesta mekankasta tunnetaan kappaleen putoamsajan ja -korkeuden välstä yhteyttä kuvaava mall h = gt /. (E) Kokeessa on mtattu putoamsaka pudotuskorkeuden funktona. Ratkastaan mallsta aka t = g h = k h. (E) Prtämällä ss putoamsaka korkeuden nelöjuuren funktona vodaan mttaustuloksn sovtetun suoran kulmakertomesta k määrttää putoamskhtyvyys g. Mttaustulosten graafnen estys on kuvassa. Kuvasta nähdään, että mttaustulokset muodostavat ( h, t)-koordnaatstossa suoran, joten tulokset noudattavat klasssen mekankan malla. Lsäks mttaustuloksn sovtettu suora näyttää lekkaavan pystyakseln lkman orgossa: suura systemaattsa vrhetä e mttaukseen näytä ssältyvän. Kulmakertomks parhammn pstestöön sopvalle suoralle sekä vrhesuorlle saadaan seuraavat kuvassa estetyt arvot. Kulmakertomen vrherajaks saadaan kaavan (9) perusteella Dk =, s/m /, el kulmakerron on k = (, ±,) s/m /. Putoamskhtyvyys vodaan nyt ratkasta kulmakertomen lausekkeesta g = /k. Putoamskhtyvyyden suhteellnen vrhe saadaan helpommn logartmsella dervonnlla: Dg = g Dk k. (E) Taulukko E: Putoamsajan rpuvuus pudotuskorkeudesta Pudotuskorkeus h (m):,,,,, h (m / ):,,,7, 7,7 Putoamsaka (s):,,,9,, Putoamsaka (s) k =. s/m / k mn =. s/m / k max =. s/m / Pudotuskorkeuden nelöjuur (m / ) Kuva Mttaustulosten graafnen estys kokeessa, jossa kappaleen putoamsakaa mtattn pudotuskorkeuden funktona

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 1 761121P

FYSIIKAN LABORATORIOTYÖT 1 761121P FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2009

MAOL-Pisteitysohjeet Fysiikka kevät 2009 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (6)

SU/Vakuutusmatemaattinen yksikkö (6) SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

KUVIEN LAADUN ANALYSOINTI

KUVIEN LAADUN ANALYSOINTI KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607 046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö Karttaprojekton vakutus aluettasten geometrsten tunnuslukujen määrtykseen: Mkko Hämälänen 50823V Maa-23.530 Kartografan erkostyö SISÄLLYSLUETTELO JOHDANTO... 4. TUTKIMUKSEN LÄHTÖKOHTA... 4.2 RAPORTISTA...

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Maanhintojen vikasietoisesta mallintamisesta

Maanhintojen vikasietoisesta mallintamisesta Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä Maa-57.270 Fotogrammetran, kuvatulknnan ja kaukokartotuksen semnaar Automaattnen 3D - mallnnus kalbromattomlta kuvasekvensseltä Terh Ahola 2005 Ssällysluettelo 1 Johdanto...2 2 Perusteoraa...2 2.1 Kohteen

Lisätiedot

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ Suomen Ammattn Opskeleven Ltto - SAKKI ry AMMATILLINEN KOULUTUS MUUTOKSEN KOURISSA Suomalasen ammatllsen koulutuksen vahvuus on sen laaja-alasuudessa

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta.

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta. D-000 Pranalyys Harjotus 3 / vkko 5 4.4 Laske kuvan vrta käyttäen energalähteden muunnoksa. Tarkotuksena on saada energalähteden muutokslla ja yhdstämsllä akaan yksnkertanen pr, josta vo Ohmn lan avulla

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston

Lisätiedot

Betoniteollisuus ry 18.2.2010 1 (43)

Betoniteollisuus ry 18.2.2010 1 (43) Betonteollsuus r 18.2.2010 1 (43) 2 Jäkstsjärjestelmät... 2 2.1 Rakennuksen jäkstssuunnttelun tehtävät... 4 Alustava jäkstssuunnttelu... 4 Jäkstksen mtotus murtorajatlassa... 6 Jäkstksen mtotus kättörajatlassa...

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella

Lisätiedot

5. Datan käsittely lyhyt katsaus

5. Datan käsittely lyhyt katsaus 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,

Lisätiedot

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta

PUTKIKELLON SUUNNITTELU 1 JOHDANTO 2 VÄRÄHTELEVÄN PALKIN TEORIAA. dm Q dx = (1) Matti A Ranta Matt A Aaltoylopsto Perusteteden korkeakoulu Matematkan ja systeemanalyysn latos PL 1100, 02015 Espoo matt.ranta@tkk.f 1 JOHDANTO Putkkellot kuuluvat lyömäsotnten ryhmään. Putkkellot koostuvat erptussta

Lisätiedot

Valmistelut INSTALLATION INFORMATION

Valmistelut INSTALLATION INFORMATION Valmstelut 1 Pergo-lamnaattlattan mukana tomtetaan kuvallset ohjeet. Alla olevssa tekstessä on seltykset kuvn. Ohjeet on jaettu kolmeen er osa-alueeseen, jotka ovat valmstelu, asennus ja svous. Suosttelemme,

Lisätiedot

Leica DISTO TM S910 The original laser distance meter

Leica DISTO TM S910 The original laser distance meter Leca DISTO TM S910 The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto - - - - - - - - - - - - - - - - - - - - - -

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

Segmentointimenetelmien käyttökelpoisuus

Segmentointimenetelmien käyttökelpoisuus Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

X310 The original laser distance meter

X310 The original laser distance meter TM Leca DISTO touch TMD810 Leca DISTO X10 The orgnal laser dstance meter The orgnal laser dstance meter The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - -

Lisätiedot

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS Tarmo Räty* Juss Kvstö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk

Lisätiedot

Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1

Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1 Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

Saatteeksi. Vantaalla vuoden 2000 syyskuussa. Hannu Kyttälä Tietopalvelupäällikkö

Saatteeksi. Vantaalla vuoden 2000 syyskuussa. Hannu Kyttälä Tietopalvelupäällikkö Saatteeks Tomtlojen rakentamsta seurattn velä vme vuoskymmenen lopulla säännöllsest vähntään kerran vuodessa tehtävllä raportella. Monsta tosstaan rppumattomsta ja rppuvsta systä johtuen raportont loppu

Lisätiedot

porsche design mobile navigation ß9611

porsche design mobile navigation ß9611 porsche desgn moble navgaton ß9611 [ FIN ] Ssällysluettelo 1 Johdanto ------------------------------------------------------------------------------------------------ 07 1.1 Tästä käskrjasta ---------------------------------------------------------------------------------------------

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot