MAOL-Pisteitysohjeet Fysiikka kevät 2009

Koko: px
Aloita esitys sivulta:

Download "MAOL-Pisteitysohjeet Fysiikka kevät 2009"

Transkriptio

1 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa - p - karkeamp pyörstysvrhe - - laskussa käytetty pyörstettyjä vältuloksa -/3 p - kaavassa vrhe, joka e muuta ykskköä - - kaavavrhe, joka johtaa väärään ykskköä, vähntään - p - lukuarvosjotukset puuttuvat - - yksköt puuttuvat lukuarvosjotuksssa - - ykskkövrhe lopputuloksessa, vähntään - - täysn kaavaton estys, yleensä -3 p "Solvern" käyttö e hyväksyttävää Suureyhtälö on ratkastava kysytyn suureen suhteen, lukuarvot ykskköneen sjotetaan vasta saatuun lausekkeeseen. Graafset estykset - puutteet koordnaatstossa (akselt, symbolt, yksköt, jaotus), vähennys,5 - p - graafnen tasotus puuttuu - - suoran kulmakertomen määrtys yksttässtä havantopstestä (evät suoralla) - - koko, tarkkuus, ylenen huolmattomuus, vähennys,5 - MOL ry / Fyskan pstetysohjeet kevät 9

2 . a) Oken,5 p Gravtaatovuorovakutuksen ansosta Kuu pysyy Maata kertävällä radalla. b) Väärn,5 p Voma ja sen vastavoma ovat tsesarvoltaan yhtä suuret. c) Oken,5 p Ilmanvastuksen kasvaessa panovoman suuruseks hyppääjä saavuttaa vakonopeuden. d) Väärn,5 p Valovuos on matka, jonka valo kulkee vuodessa.. a) Kuvaaja 3 p b) Kuvaajasta v m s E 57 MWh c) P,873 MW t h P 87,3 kw 9 kw p MOL ry / Fyskan pstetysohjeet kevät 9

3 3. m,8 kg m3, kg m,54 kg H? c 4,9 kj kg K H Q m3 s 333kJ kg Δ T K Jää sulaa: Q s m 333 kj kg,8 kg73,6 kj Ves lämpenee: Q c ( m+ m) Δ T 4,9 kj kgk (,8 kg+,54 kg) K 569,84 kj Yhteensä Q 73,6 kj+569,84 kj84,9 kj Q 84,9 kj H 3833 kj kg 38MJ kg 4 p m 3, kg Saatu arvo on todennäkösest lan pen koska: - astan lämpökapasteetta e ole huomotu - systeem e ole erstetty, mm lämpösätely - veden höyrystymnen lämpenemsen akana kaks oleellsta p 4. a) Kautnkalvon värähtely synnyttää paneen vahteluja lmaan. Ilmassa ään etenee mekaansena, ptkttäsenä aaltolkkeenä p b) Ihmskorvan astma äänen vomakkuus on ntensteetn suhteen logartmnen p c) Intensteetttaso L log I W mssä I vertaluntensteett I m L 3 db L 7 db L L I I I I I I L I L I, V: kertanen p MOL ry 3/ Fyskan pstetysohjeet kevät 9

4 5. a) : vaunu harmonsen lkkeen tasapanoasemassa, jollon a ja v vmax (ta perustelussa toteamus jousvoman harmonsuudesta) G vaunun pano N alustan tukvoma B: vaunu pakollaan äärasemassa, jollon a a, v max lketla,5 p vomat nmettynä G vaunun pano N alustan tukvoma F j jousvoma b) : pallo putoaa; tasasest khtyvä lke G pano F lmanvastus lketla,5 p vomat nmettynä lketla,5 p vomat nmettynä B: pallo pakollaan, rtoamassa lattasta G pano N lattan tukvoma lketla,5 p vomat nmettynä MOL ry 4/ Fyskan pstetysohjeet kevät 9

5 6. Tasapanoehto F Fx ; F Gx F μ F y ; N Gy F μ N+ G x F μmgcosα+ mgsn α mg ( μcosα+ sn α) m 48 kg 9,8 (,5 cos5 + sn5 ) s 9 N Tasapanoehto M F r T r F r 9 N 3,6 cm T r 43 cm 6 N 7. a) R R l 5 m ρ,84 Ωm 3, Ω π 7 TERÄS TERÄS πr 3 (, 5 m) l 5 m ρ,68 Ωm π π π π 8 KUPRI KUPRI r r 3 3 (,65 m) (,5 m) 5,66 Ω p MOL ry 5/ Fyskan pstetysohjeet kevät 9

6 ITERÄS + IKUPRI I U ITERÄS RTERÄS ITERÄS RKUPRI U IKUPRI RTERÄS IKUPRI RKUPRI IKUPRI IKUPRI I IKUPRI + I I TERÄS TERÄS + IKUPRI RKUPRI + RTERÄS, 7 7% 5,66Ω + 3,Ω b) U RI Vastukset rnnan RKUPRI + RTERÄS + R RTERÄS RKUPRI RKUPRI RTERÄS RKUPRI RTERÄS 5,66Ω 3,Ω U I 3,5 R + R 5,66Ω+ 3,Ω KUPRI TERÄS 3,8 v4 V p p 8. a) Kun vrta alkaa kasvaa, käämssä tapahtuu tsendukto, joka hdastaa vrran kasvua p b) Vrta vakotuu arvoon I, 6 E IR E 7,5 V R 4,6875Ω 4,7Ω I, 6 p c) Krchoff II E UL+ RI josta UL E RI Kuvaajasta t, s I, Indusotunut jännte U L 7,5 V 4,6875Ω,,875 V ΔI Δ I, Tosaalta U L, kuvaajasta Δ t Δt, s (tangentn fyskaalnen kulmakerron) U,875 V L,34Vs 34 mh ΔI, Δ t, s MOL ry 6/ Fyskan pstetysohjeet kevät 9

7 9. Valosähkösellä lmöllä tarkotetaan lmötä, jossa valo rrottaa elektroneja metalln pnnasta Comptonn lmössä rttävän lyhytaaltosen sätelyn foton sroaa aneesta. Fotonn energa penenee (λ kasvaa) ja samalla elektron rtoaa. Valosähkösen lmön tutkmusmenetelmstä valon hukkasluonnetta tukevat - rronneen elektronn E Kmax rppuu lneaarsest sätelyn taajuudesta mutta e ntensteetstä. - kynnystaajuutta f penemmllä taajuukslla elektroneja e rtoa hf W+ EKmax W h f 3 p Comptonn sronnassa tapahtuva sätelyn aallonptuuden kasvu vodaan selttää kokeden kanssa yhtäptäväst ajattelemalla tapahtuma fotonn ja vapaan elektronn kmmosena törmäyksenä, jossa energa ja lkemäärä sälyvät.. messnkpallo alumnpallo B m m ϕ V ϕ kg 8, 4 m ϕ V ϕ 3 kg,7 m 3 3 B B B 3 Ilmanvastusta e oteta huomoon. Mekaansen energan sälymsen perusteella - pallon nopeus ennen törmäystä m gh m v v gh gl( cosα) - pallon B nopeuden tulee olla het törmäyksen jälkeen mu B B mgh B B ub ghb gl Täysn kmmosassa törmäyksessä sälyvät sekä lke-energa että lkemäärä. MOL ry 7/ Fyskan pstetysohjeet kevät 9

8 m v m u m u + B B mv mu + mu B B mv mu B B u m ϕ gl( cosα) ϕb gl ϕ m mv mu + mu ϕv B B mb ϕbv ϕv ϕu+ ϕbub sjotetaan lkemäärän yhtälöstä saatu u ϕ gl( cosα) ϕb gl gl( ) B ϕ ϕ cosα ϕ + ϕ gl supstetaan gl ja ϕ : lla ϕ B ϕ cosα cosα + ϕ ϕ B B B B ϕ ϕ ϕ cosα cosα cosα + ϕ + ϕ ϕ ϕb supstetaan :lla ϕ B cosα ϕ + : () ϕ ϕb α + ϕ ϕb α + ϕ 3 kg,7 3 m + 3 cos cos 8,4,563 α 55, 7 56 Pokkeutuskulma vähntään 56 Pstetys - mekaansen energan sälymslan perusteella laskettu v ja u B + - törmäyksen kästtely oken 3 p - laskut yhteensä 6 p - jos tehty oletus, että pallo pysähtyy törmäyksessä max p - jos lkemäärän sälymslaka on käytetty, mutta tehty oletus, että pallo palaa takasn törmäyksen jälkeen max 4 p MOL ry 8/ Fyskan pstetysohjeet kevät 9

9 . a) Intensteett I H r r r r H r r H H msv,5 m H 3,8 h 4,5 m 47 μsv h b) Kuvosta matkavamennuskerron μ m p Hekennyslak I μ x Ie H x μ x H e H ln H μ μsv h ln 38 μ Sv h m 5,9 cm c) Raskaan ytmen kentässä rttävän energan omaava gammakvantt vo muuttua elektronks ja sen anthukkaseks, postronks. p +. a) Valon aallonptuuden jakaumaa sanotaan spektrks (valon ntensteett aallonptuuden funktona) b) Hehkulampun lähettämän valon spektr on jatkuva, joka ssältää kakk valon aallonptuudet. Kaasupurkausputken lähettämän valon spektr on vvaspektr el se ssältää van tettyjä aallonptuuksa c) ) Valoaaltojen nterferenss. Kun valoaalto kulkee hlan läp, tapahtuu valon tapumnen el dffrakto sten, että ptkäaaltonen valo tapuu enten. ) Prsma-aneen tatekerron rppuu valon aallonptuudesta. Kun valoaalto kulkee prsman läp säde tattuu kummassakn rajapnnassa sten, että lyhytaaltonen valo tattuu enten d) Kuvastaα ϕ 3 ; α α + θ p MOL ry 9/ Fyskan pstetysohjeet kevät 9

10 Ilmalle n,, joten tattumslasta sn α n sn α nl sn α n n sn α l l allonptuus tatekerron sn 3 + 3,5 388,7 nm ( ) sn 3 sn 3 + 9, 447, nm ( ) sn 3 sn 3 + 8,35 5,6 nm ( ) sn 3 sn 3 + 7,5 587,6 nm ( ) sn 3 sn 3 + 6,55 796,5 nm ( ) sn 3, 67, 65, 64, 6, 6 taulukko kuvaaja p MOL ry / Fyskan pstetysohjeet kevät 9

11 + 3. a) b) p c) p-tyypn puoljohteessa varauksenkuljettaja ovat postvset aukot. 4. ryhmän alkuanesta (p- ta germanum) valmstettuun kteeseen lsätään 3. ryhmän alkuanetta, jollon jokasta lsättyä atoma koht jää kderakenteeseen yhden elektronn vajaus el aukko. n-tyypn puoljohteessa varauksen kuljettaja ovat negatvset elektront. 4. ryhmän alkuanesta valmstettuun kteeseen lsätään 5. ryhmän alkuanetta. Jokasta lsättyä atoma kohden jää yks elektron sdosten ulkopuolelle. p d) - tyhjennusalueen syntymnen (dffuuso, rekombnaato, sähkökenttä, kynnysjännte) p - päästösuunnassa tyhjennysalue kapenee, varaus srtyy rajapnnan yl aukkojen ja elektronen rekombnotuessa - estosuunnassa tyhjennysalue levenee, rajapnnan ympärstö tyhjenee varauksen kuljettajsta, vuotovrta - tarvttavat kuvat, ptää lmetä päästösuunta p MOL ry / Fyskan pstetysohjeet kevät 9

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 1 761121P

FYSIIKAN LABORATORIOTYÖT 1 761121P FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) 1 b) Lasketaan 180 N:n voimaa vastaava kuorma. G = mg : g m = G/g (1) m = 180 N/9,81 m/s 2 m = 18,348... kg Luetaan kuvaajista laudan ja lankun taipumat

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Sähkömagnetismin kaavoja

Sähkömagnetismin kaavoja ähkömagnetsmn kaavoja. Pstevaraukset ja Coulombn voma..... Coulombn lak kahden pstevarauksen välselle vomalle..... Usean pstevarauksen aheuttama voma varaukseen..... ähkökentän vomakkuus psteessä r....

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue PUOLIJOHTEET n-tyypin- ja p-tyypin puolijohteet - puolijohteet ovat aineita, jotka johtavat sähköä huonommin kuin johteet, mutta paremmin kuin eristeet (= eristeen ja johteen välimuotoja) - resistiivisyydet

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Pikaopas. Valmistelu ja esitäyttö

Pikaopas. Valmistelu ja esitäyttö Pkaopas Valmstelu ja estäyttö Kerää seuraavat tarvkkeet ennen valmstelua: yks 500 ml:n ta 1 000 ml:n puss/pullo estäyttöluosta (0,9-prosenttnen NaCl, johon on lsätty 1 U/ml heparna) yks 500 ml:n ta 1 000

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Viiteopas. 2 Kokoa ja kiinnitä uusi natronkalkkikolonni. 1 Poista vanha natronkalkki. Esitäyttö esiliitetyn letkuston avulla

Viiteopas. 2 Kokoa ja kiinnitä uusi natronkalkkikolonni. 1 Poista vanha natronkalkki. Esitäyttö esiliitetyn letkuston avulla Vteopas Valmstelu ja estäyttö esltetyllä letkustolla Kerää seuraavat tarvkkeet ennen valmstelua: Yks 500 ml:n ta 1 000 ml:n puss/pullo tavallsta kettosuolaluosta, jossa on yks (1) ykskkö (U) heparna kettosuolaluoksen

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet Vestntäjärjestelmät PRS-xPxxx- ja -tehovahvstmet PRS-xPxxx- ja - tehovahvstmet www.boschsecrty.f 1, 2, 4, ta 8 äänlähtöä (valnta 100 / 70 / 50 V:n lähdöstä) Äänenkästtely ja jokasen vahvstnkanavan vve

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka syksy 2012

MAOL-Pisteitysohjeet Fysiikka syksy 2012 MOL-Pisteitysohjeet Fysiikka syksy 1 Tyypiisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaaassa): - pieni askuvirhe -1/3 p - askuvirhe, epämieekäs tuos, vähintään -1 p - vastauksessa yksi merkitsevä

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

- Suoritukset tarkastaa ja alustavasti arvostelee (esteetön) asianomaisen aineen opettaja.

- Suoritukset tarkastaa ja alustavasti arvostelee (esteetön) asianomaisen aineen opettaja. FYSIIKAN YO-KOKEEN RAKENNE - Osa reaalikoetta, jolloin koeaika 6 tuntia. Alkaa klo. 9.00, poistua saa klo. 1.00 ja päättyy klo. 15.00 - Tarvittavat välineet: kirjoitus- ja piirustustarvikkeet (punaista

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

Harjoitukset (KOMPRIMOINTI)

Harjoitukset (KOMPRIMOINTI) Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607 046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS 35 3 SÄTEILYN JA AINEEN VUOROVAIKUTUS Säteilyn hiukkaset ja kvantit vuorovaikuttavat aineen rakenneosasten kanssa. Vuorovaikutusten aiheuttamat prosessit voivat muuttaa aineen rakennetta ja ominaisuuksia,

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2.

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2. l u T p Kla ö t t e k Teho a j s m a koko e j h o s u asenn KlapTul-palotla KlapTul-palotlan osat, kokoams- ja turvaiisuusohje 1. Nupp 2. HoIkk 3. Kans 4. Ruuv Knntä holkk ja nupp ruuvlla kannen läp ja

Lisätiedot

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 [kw] [PS] 110 150 100 136 90 122 80 109 250 230 210 190 70 60 50 95 82 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500 2000

Lisätiedot

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 125 PS 100 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136 90 122

Lisätiedot

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 350 330 [kw] [PS] 110 150 100 136 310 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA 8 7 0 :9 0 9 :97 6 9 609: 89 9:6 97 7 :60 rp :90 80 7 6 7 8 :9 0 rp0 6 68 69 6 7 :96 rp7rp8 6 8 9 YYDÄÄN LOAKENNUS- :6 KNTESTÖ 8 :98 :09 :9 6 :9 8 90 9: 9 :0 76 8 :9.7 Kohde 0 66 9 7 rp9 0.7 rp66 :9 9.8

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

(µ 2 sg 2 a 2 t )r2. t = a t

(µ 2 sg 2 a 2 t )r2. t = a t Fysiikan valintakokeen 11.6.2013 klo 10-13 ratkaisut 1. Auto lähtee levosta hetkellä t = 0 ympyrän muotoiselle vaakasuoralle radalle tasaisella tangenttikiihtyvyydellä a t = 2,34 m/s 2. Oleta, että tien

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot