Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä Palautuspäivä

Koko: px
Aloita esitys sivulta:

Download "Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28"

Transkriptio

1 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä Palautuspävä /7

2 LABOATOIOTYÖ KUVAUS Tehtävän äärttely: Tarkotus on tutka ja äärttää ttauksssa käytetyn puoljohteen tyypp (p- ta n-tyypp), sekä laskea all-vako kokeellsest tattujen tulosten perusteella. Tehtävän suorttasen akana tullaan ttaaaan all-jänntteen suuruutta, sekä kentän voakkuutta ersuurusa vrtoja käyttäen. Tulokset krjataan etukäteen tehtyyn ttauspöytäkrjaan (svu 4, ttaustulokset ja lte, ttauspöytäkrja). Mtatusta arvosta prretään kuvaaja (svu 6, all-jännte agneettkentän funktona), josta graafsest äärtteleällä lasketaan suoren kulakertoet, sekä lasketaan näen tetojen perusteella all-vakot. Lopuks all-vakosta lasketaan keskarvo ja keskvrhe (svu 5, laskujen tulokset). Johanto: Vuonna 897 Ewn all huoas, että vrrallsen johten ollessa kohtsuorassa agneettkentässä elektronen kulkurata uuttuu. El kun johteen kytketään jännte ja kohtsuoraan shen agneettkenttä syntyy vrransuunnalle ja agneettkentällä kohtsuora jännte, jota kutsutaan alln jänntteeks. Myöhen tään lön huoattn tapahtuvan yös puoljohtessa. Tehtävässä käytetyt yhtälöt: Kulakertoen ( k ) laskenen: k U B all-jännte Magneettkentänvoakkuus all-vakon ( ) laskenen: k I I U B I all-jännte Magneettkentänvoakkuus Volfrajohten paksuus Volfrajohten läp enevä vrta ajonnan ( ) laskenen: Keskarvon keskvrheen ( ) laskenen: Mttaustulosten lukuäärä Keskarvon pokkeaen nelöen sua /7

3 Mttausenetelät: 5 Työn suorttasessa käytetään johtena ohutta ( 5 0 ) volfraluskaa (vasen kuva, allgeneraattor, kohta ), joka on knntettynä all-generaattorn, sekä sähköagneetta jonka napakenkäparn väln generaattor latetaan. Mttalattena käytetään vrta-, jännte- ja kentänvoakkuusttareta. Lsäks kokoonpanoon kuuluu kaks vrtalähettä. all-generaattor Mttauskytkentä Kytkentä valsteltn ensn kentänvoakkuuen ttaasta varten. Sähköagneetn napakenkäparn laväl sääettn okeaks käyttäen generaattorn tuklevyä. apakengät krstettn kunnolla pakalleen ja nen ptävyyttä testattn kääntäällä agnetontvrta non 6A:n suuruseks. Tään jälkeen etsttn napakenken välstä antura lkuttelealla suurn kentänvoakkuus,, ja 4A:n D agnetontvrtoja käyttäen. Suurat löyetyt arvot krjattn ttauspöytäkrjaan. all-jännttetä tattaessa all-generaattor on asennettuna sähköagneetn napakenken väln. Sähköagneett eagnetsoaan syöttäällä kelohn 5A A-vrta ja vähentäällä stä htaast koht nollaa. Tään jälkeen nollataan krovolttttar. all-generaattorn syötetään 0A:n tasavrta ja potentoetrn (vasen kuva, all-generaattor, kohta 4) avulla sääetään krovolttttarn näyttää nollaks. Tään jälkeen suortetaan all-jänntteen ttaus ersuuruslla agnetont- ja all-generaattorn vrrolla tulokset ylös krjaten /7

4 Mttaustulokset: Mtattu all-jännte ( ): I IM,07 A,00 A,0 A 4,05 A,0 A -0,05-0, -0,5-0,4 6,0 A -0,09-0,0-0,60-0,76 9,0 A -0, -0,69-0,89 -,4,0 A -0,78 -,0 -,4 -,75 Vaalealla pohjalla olevat tulokset uutettava toellsks kaavalla tulos 0 5 V Mtattu kentänvoakkuus ( B ): VITA KETTÄ,07 A 89 T,00 A 554 T,06 A 758 T 4,07 A 877 T Yhstetyt ttaustulokset tsesarvona (svun 5 kuvaajaa varten): B I,0 A 6,0 A 9,0 A,0 A 0,89 T 0,50 µv,0 µv,50 µv 4,0 µv 0,554 T 0,90 µv,00 µv 6,00 µv 7,60 µv 0,758 T,0 µv 6,90 µv 8,90 µv,4 µv 0,877 T 7,80 µv,0 µv 4, µv 7,5 µv /7

5 Laskueserkt: Kulakertoen laskenen: (9,0 A:n suora) μv -μv μv k 5,7μVT 0,9T - 0,T 0,7T alln-vakon laskenen: (9,0 A:n suora), ,7μVT 87, 0 I 9,0 A alln-vakon keskarvon ja keskvrheen laskenen: 68, 0 87, 0 90,8 0 4, 0, 0, 0,6 0, 0 89, ,0 0 5, 0,7 0 49, ,0 0 5,4 0 4 ± ( 90 ± 8) 946, , ,4 0 Laskujen tulokset: Kulakertoet: Vrta I Kulakerron,0 A 6,4 μvt 9,0 A 5,7 μvt 6,0 A 0,9 μvt,0 A 6,7 μvt all-vakot: Vrta I,0 A 68, 0 9,0 A 87, 0 6,0 A 90,8 0,0 A,6 0 all-vakon keskarvo keskvrheneen: - Δ 90 ± 8 0 ± ( ) /7

6 Kuvaajat: all-jännte agneettkentän funktona: alln generaattor agneettkentässä: /7

7 Työn ja tulosten arvont: all-vako: Itse laskettu arvo Krjallsuusarvo - ( 90 8) 0 - ± 89 0 Lähe: all-labran työ-ohje Laskettua tulosta verrattaessa krjallsuusarvoon e vo olla kun tyytyvänen. Tok tse vrheargnaal lähentelee 0 %:a, utta laskettu arvo lan vrherajaa on hyvn lähellä krjallsuusarvoa, kä on toella hyvä juttu. Mttaus on ss onnstunut hyvn. Mttavrhetä synty agneettkentän ttauksen yhteyessä, koska antura käsn lkuttaalla pt löytää kentän aksarvo. Sähköagneetn ja volfra-luskan vrran säätö e ollut kovn helppoa, koska säätöuuntajan nupp ol hyvn epäherkkä. Tästä syystä saan vrran saanen tosella ttauskerralla olkn vakeaa. Muutaassa ttauksessa olkn hean er vrransuuruuet kun kentänvoakkuuksa tattaessa. Tok kyseessä ol aksssaan uutaen kyenen llapeeren hetosta, joka tuskn kovn rakaalsest vakutt lopputuloksn. Myöskään vrtattaren näyttään okeellsuuesta ja tarkkuuesta e voa olla täysn varoja. Mttavrheen lsäks vrhettä synty yös käyrästön prron yhteyessä. Psteet evät täysn osuneet saalle suoralle, varsnkn penepen vrtojen kanssa tehtyjen ttausten ollessa kyseessä. Vvojen sjant pt karkeast arvoen prtää kohtaan joka vastas suunnlleen toellsta vvan sjanta. Jokasen suoran ptäs olla yös saansuuntasa (saa kulakerron), utta nän e ollut varsnkaan kahella alalla suoralla. Syy on toennäkösest ttavrhessä sekä nhllsstä vrhestä ttauksa tehtäessä. Suoren er kulakertosta huolatta nen avulla lasketut allvakot ja nstä laskettu keskarvo ja keskvrhe antovat lopputuloksesta yllättävän hyvän. Saausta ttaustulokssta ja käytetyn kytkennän (svu 6, alln generaattor agneettkentässä) perusteella voaan päätellä, että käytetty puoljohe ol tyypltään P. Kokonasarvo: Mttausten tekenen ol suhteellsen nopeaa ja helppoa. Tosn aluks nollaus en peleen ja sae akaseks hassuja tuloksa. ouate yös lan tarkast ohjeta ja ehe tata lähes puolet arvosta ohjeen ukasest napasuuksa vahellen ennen kun opettajae Pas epo tul korjaaaan tlanteen. Lopputuloksen kannalta ols rttänyt yksllä jänntteen napasuukslla ttaanen, tällön tuloksa tuls 6 kpl. Ohjeta seuraaalla ntä ols tullut 64 kpl. ollauksen ollessa pelessä ee okeastaan enettäneet tään, sllä suorte ttaukset uuestaan nollauksen jälkeen uusen ohjeen ukasest. Työ onnstu loppujenlopuks hyvn ja tse raporttnkn olen onen uutoksen jälkeen tyytyvänen /7

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA 8 7 0 :9 0 9 :97 6 9 609: 89 9:6 97 7 :60 rp :90 80 7 6 7 8 :9 0 rp0 6 68 69 6 7 :96 rp7rp8 6 8 9 YYDÄÄN LOAKENNUS- :6 KNTESTÖ 8 :98 :09 :9 6 :9 8 90 9: 9 :0 76 8 :9.7 Kohde 0 66 9 7 rp9 0.7 rp66 :9 9.8

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15 A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60

Lisätiedot

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18

Tietojen laskentahetki λ α per ,15 0,18 per ,15 0,18 per tai myöhempi 0,20 0,18 SU/Vakuutusmatemaattnen ykskkö 6.3.07 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08.

-d;'$ d{ee lr a ;{*.v. ii{:i; rtl i} dr r/ r ) i a 4 a I p ;,.r.1 il s, Karttatuloste. Maanmittauslaitos. Page 1 of 1. Tulostettu 22.08. Maanmttauslats Page 1 f 1 -d;'$ d{ee lr a ;{*.v {:; rtl } dr r/ r ) a 4 a p ;,.r.1 l s, Karttatulste Tulstettu 22.08.2014 Tulsteen keskpsteen krdnaatt (ETRS-TM3SFlN): N: 6998249 E: 379849 Tulse e le mttatarkka.

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

MIKROAALTOMITTAUKSET 1

MIKROAALTOMITTAUKSET 1 MIKROAALTOMITTAUKSET 1 1. TYÖN TARKOITUS Tässä harjoituksessa tutkit virran ja jännitteen käyttäytymistä gunn-oskillaattorissa. Piirrät jännitteen ja virran avulla gunn-oskillaattorin toimintakäyrän. 2.

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (6)

SU/Vakuutusmatemaattinen yksikkö (6) SU/Vakuutusmatemaattnen ykskkö 28.0.206 (6) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan

Lisätiedot

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet FYSI116 Sähkö / Pranalyy yky 14 - kevät 15 1 /7 akharjot 6: ahtovrta-analyyn perteet Tehtävä 1. Olkoon nmotonen jännte (t) = 8 co(1t 6º). Tehtävä 1 / 1 8 6 4 - -4-6 -8-1,,4,6,8 1 1, 1,4 1,6 1,8,,4,6,8

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

SOV Lisätiedot: varhaiskasvatuspäällikkö Annika Hiitola, puh

SOV Lisätiedot: varhaiskasvatuspäällikkö Annika Hiitola, puh Suomenkielinen opetus- ja varhaiskasvatuslautakunta 3 28.02.2017 Varhaiskasvatuksesta perittävät asiakasmaksut 1.3.2017 alkaen 597/02.05.00/2014 SOV 28.02.2017 3 Lisätiedot: varhaiskasvatuspäällikkö Annika

Lisätiedot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 17: Interpolointi emoneliön ja emokolmion alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 17: Interpolointi emoneliön ja emokolmion alueessa. 7/ EEMETTIMEETEMÄ PERUSTEET SESSIO 7: Interpolointi emoneliön ja emokolmion alueessa. ITERPOOITI EMOEIÖ AUEESSA Yksiulotteisen interpoloinnin yhteydessä tulivat esille interpolointifunktioiden perusominaisuudet

Lisätiedot

SUOMEN MATKAILIJAYHDISTYS MATKAILUMAJAT TALVELLA

SUOMEN MATKAILIJAYHDISTYS MATKAILUMAJAT TALVELLA SUOMEN MATKAILIJAYHDISTYS MATKAILUMAJAT TALVELLA 1938 HIIHTOKURSSIT JA -NEUVONTA. HIIHDON OPETUSTA järjestetään Suomen Matkaljayhdstyksen tomesta Koln, Inarn ja Pallastunturn matkalumajolla sekä Pohjanhovssa

Lisätiedot

, 3.7, 3.9. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu

, 3.7, 3.9. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu Lineaarikobinaatioenetelät 3.5-3.7, 3.7, 3.9 Sisältö Pääkoponenttianalyysi (PCR) Osittaisneliösua (PLS) Useiden vasteiden tarkastelu Laskennallisia näkökulia Havaintouuttujien uunnokset Lähtökohtana useat

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7

W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7 ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t )

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy

Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy Sosiaali- ja terveyslautakunta 380 09.11.2011 Sosiaali- ja terveysalan lupa- ja valvontavirasto/botnia Scan Oy 1068/61/616/2011 STLTK 380 Botnia Scan Oy on pyytänyt sosiaali- ja ter veysalan lupa- ja valvontavirastolta

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani

KÄYTTÖOHJE ELTRIP-R6. puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi. PL 163 87101 Kajaani KÄYTTÖOHJE ELTRIP-R6 PL 163 87101 Kajaani puh. 08-6121 651 fax 08-6130 874 www.trippi.fi seppo.rasanen@trippi.fi SISÄLLYSLUETTELO 1. TEKNISIÄ TIETOJA 2. ELTRIP-R6:n ASENNUS 2.1. Mittarin asennus 2.2. Anturi-

Lisätiedot

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Lukuteoria ja logiikka. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 6 MAA11 Lukuteoria ja logiikka Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Lukuteoria ja logiikka (MAA11) Pikatesti ja kertauskokeet

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI 06 07 11 12 13 14 UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS 15 16 17 18 19 19 YLEISKUVAUS VASEN panke

Lisätiedot

TUOTETIEDOT SAHATARVIKKEET. Text

TUOTETIEDOT SAHATARVIKKEET. Text TUOTETIEDOT Text SAHATARVIKKEET ProSelect on ainutlaatuinen valikoimamme metsäkoneiden varaosia, lisätarvikkeita ja kuluvia osia. Sarja on suunniteltu tarjoamaan metsäkoneen käyttäjälle mahdollisuus parantaa

Lisätiedot

FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 2003-2004

FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 2003-2004 FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 003-004 OAMK TEKNIIKAN YKSIKKÖ ARI KORHONEN Moste ssältää - laboatootöh lttvä lesä ohjeta - OAMK: teto- ja automaatotekka sekä hvvottekologa koulutusohjelmassa tehtäve

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

DEE Polttokennot ja vetyteknologia

DEE Polttokennot ja vetyteknologia DEE-54020 Polttokennot ja vetyteknologa Polttokennon hävöt 1 Polttokennot ja vetyteknologa Rsto Mkkonen Polttokennon tyhjäkäyntjännte Teoreettnen tyhjäkäyntjännte E z g F Todellnen kennojännte rppuu er

Lisätiedot

KIRJANPITO 22C Tilikauden tilinpäätös

KIRJANPITO 22C Tilikauden tilinpäätös KIRJANPITO 22C00100 Luento 2a: Tilikauden tilinpäätös LUENTO 2 Tilikauden tilinpäätös (2a): Tilikausi Tilinpäätöksen sisältö Tilinpäätöksen laatiminen Menojen jaksottaminen (2b): Varaston muutos Varaston

Lisätiedot

Työllistymistä edistävän monialaisen yhteispalvelun (TYP) yhteistyösopimus

Työllistymistä edistävän monialaisen yhteispalvelun (TYP) yhteistyösopimus Kunnanhallitus 305 27.11.2014 Kunnanhallitus 151 10.06.2015 Kunnanhallitus 19 28.01.2016 Työllistymistä edistävän monialaisen yhteispalvelun (TYP) yhteistyösopimus 143/00.04.01/2014 KH 27.11.2014 305 Työ-

Lisätiedot

OULUN YLIOPISTO Koneensuunnittelun tutkimusryhmä

OULUN YLIOPISTO Koneensuunnittelun tutkimusryhmä 1 OULUN YLIOPISTO Konnsuunnttlun tutkmusryhmä 464124A Polttomoottortknkan prustt Intrnal Combuston Engns Tavottt: Polttomoottortknkan prustdn opntojaksossa on tutustutaan polttomoottordn kokllsn tutkmusmntlmn

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

201X 201X-1 201X-2 201X-3 201X-4

201X 201X-1 201X-2 201X-3 201X-4 Liite 1.1 Tiivistelmä tunnusluvuista ; B-osasto Vakuutusmaksutulo/ Maksutulo, Maksetut eläkkeet ja muut korvaukset, ¹) Sijoitustoiminnan nettotuotto käyvin arvoin, Sijoitustoiminnan nettotuotto sitoutuneelle

Lisätiedot

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN

Lisätiedot

J. Virtamo Jonoteoria / Prioriteettijonot 1

J. Virtamo Jonoteoria / Prioriteettijonot 1 J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Elektronin ominaisvaraus

Elektronin ominaisvaraus IIZF3010 Sovellettu Fysiikka, ryhmälaboratoriotyö IST4SE / E / A1 Jyväskylän Ammattikorkeakoulu, IT-instituutti IIZF3010 Sovellettu fysiikka, Syksy 005, 5 ETS Opettaja Pasi Repo Elektronin ominaisvaraus

Lisätiedot

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti

Lisätiedot

1 NIBE FIGHTER 410P ilmanvaihdon lämmöntalteenoton vuosihyötysuhteen laskenta lämmöntarveluvuilla

1 NIBE FIGHTER 410P ilmanvaihdon lämmöntalteenoton vuosihyötysuhteen laskenta lämmöntarveluvuilla 1/7 29.9.2008 1 NIBE FIGHTER 410P ilmanvaihdon lämmöntalteenoton vuosihyötysuhteen laskenta lämmöntarveluvuilla 1.1 Ilmanvaihdon lämmöntalteenoton vuosihyötysuhteen laskentamenetelmä NIBE FIGHTER 410P

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi FIAS S5/000 Opas äytteeoto tekste vaatmuste täyttämseks akkredtota varte 5 (9) Lte äytteeoto vrhelähteet, luotettavuude estmot ja äytteeottoketju optmot Pett Mkke äytteeoto vrhelähteet, luotettavuude estmot

Lisätiedot

Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0.

Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. A Bittien nollaus Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. Saat käyttää seuraavia operaatioita: muuta jokin bitti vastakkaiseksi (0 1 tai 1 0) muuta kaikki

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna! Funktiot, L3a n kuvaaja n kuvaaja n kuvaaja Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!) Funktio (Käytännöllinen

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

KÄYTTÖOPAS MALLI: RN-100

KÄYTTÖOPAS MALLI: RN-100 Vdeonauhur Fnnsh KÄYTTÖOPAS MALLI: RN-100 PAL Ennen tämän tuotteen kytkemstä, käyttöä ta säätöä pyydämme snua lukemaan tämän opaskrjasen huolellsest ja kokonaan. Varotomet & omnasuudet Tedoks käyttäjälle

Lisätiedot

T-Cam IPC900 HD PTZ valvontakamera

T-Cam IPC900 HD PTZ valvontakamera T-Cam IPC900 HD PTZ valvontakamera Sisällysluettelo Ennen käyttöä... 1 Käyttöehdot... 1 Huomioitavaa... 1 Käyttöolosuhteet... 1 Valvontakameran käyttöönotto... 2 Kameran etäkäyttö... 2 Kameran kytkeminen...

Lisätiedot

mukaisuudet nyt kuoppakorotuksilla oikaistaan«normaaleihin palkkamarkkinoihin siirryttäessä tällainen toimenpide Joka tapauksessa

mukaisuudet nyt kuoppakorotuksilla oikaistaan«normaaleihin palkkamarkkinoihin siirryttäessä tällainen toimenpide Joka tapauksessa 21 T mukasuudet nyt kuoppakorotukslla okastaan«normaalehn palkkamarkknohn srryttäessä tällanen tomenpde Joka tapauksessa ols suortettava. Mlle ryhmlle ja mten suurna okasut ols 1 1 l enssjasest tehtävä,

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

Kasvatus- ja opetuslautakunta Perusopetuksen koulun hyvinvointiprofiili

Kasvatus- ja opetuslautakunta Perusopetuksen koulun hyvinvointiprofiili Kasvatus- ja opetuslautakunta 53 11.08.2014 Perusopetuksen koulun hyvinvointiprofiili KOLA 53 Valmistelija / lisätiedot: Perusopetusjohtaja Mari Routti, puh. 040 837 2646 etunimi.sukunimi@lappeenranta.fi

Lisätiedot

Hoitoon pääsyn seuranta erikoissairaanhoidossa

Hoitoon pääsyn seuranta erikoissairaanhoidossa Hoitoon pääsyn seuranta erikoissairaanhoidossa Tilanne 30.4.2009 Erikoissairaanhoidon hoitoon pääsy - 30.4.2009 tilanne 1 Yleistä 30.4.2009 tiedonkeruussa kysyttiin tietoja sekä kiireettömien että kiireellisten

Lisätiedot

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI Asko Poikela Samuli Hujo TULOSKALVOSARJAN SISÄLTÖ I. Vanha mittauskäytäntö -s. 3-5 II. Keskusmuotolukujen funktiointi -s. 6-13 III.Uusi mittauskäytäntö -s.

Lisätiedot

Käyttöopas (ver. 1.29 Injektor Solutions 2006)

Käyttöopas (ver. 1.29 Injektor Solutions 2006) KombiTemp HACCP Elintarviketarkastuksiin Käyttöopas (ver. 1.29 Injektor Solutions 2006) web: web: www.haccp.fi 2006-05-23 KombiTemp HACCP on kehitetty erityisesti sinulle, joka työskentelet elintarvikkeiden

Lisätiedot

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen The Photogrammetrc Journal of Fnland, Vol. 22, No. 3, 2011 TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ Juha Hyyppä, Anna Salonen Geodeettnen latos, Kaukokartotuksen ja fotogrammetran osasto

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

PROBYTE kallistusnäyttöautomatiikka

PROBYTE kallistusnäyttöautomatiikka PROBYTE kallistusnäyttöautomatiikka 1 Toimintaperiaate PROBYTE kallistusnäyttöautomatiikka on tarkoitettu puoliautomaattiseksi tiekoneiden kallistuskulmamittariksi. Laite ohjaa käyttäjää äänimerkeillä

Lisätiedot

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db

> 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db Kmnrtno Ln Kmnlnn Hov Kore unsr etso Turv Ps Uus Kmnsuu Hovnsr Rstnlus Rstnem Vssr Hnmä Pävä-lt-ömelutso Vt 7 Phtää Hmn (sentoreus: m) Rs Russlo Tnem eltt Svnem S Ps Het Pohjos-Pots Ptäjänsr Rnth Suutr

Lisätiedot

Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304. Toijalan asema-alueen tärinäselvitys. Toijala

Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304. Toijalan asema-alueen tärinäselvitys. Toijala Insinööritoimisto Geotesti Oy TÄRINÄSELIVITYS TYÖNRO 060304 Toijalan asema-alueen tärinäselvitys Toijala Insinööritoimisto TÄRINÄSELVITYS Geotesti Oy RI Tiina Ärväs 02.01.2006 1(8) TYÖNRO 060304 Toijalan

Lisätiedot