Pro gradu -tutkielma

Koko: px
Aloita esitys sivulta:

Download "Pro gradu -tutkielma"

Transkriptio

1 Pro gradu -tutkielma Kolmen pisteen Schwarzin-Pickin lemma Ahmed Khalif Matematiikan Pro Gradu -tutkielma Helsingin yliopisto Matematiikan ja tilastotieteen laitos Joulukuu 2012

2 Tiivistelmä Tässä opinnäytetyössä tarkastellaan kompleksitasossa määriteltyjä analyyttisia kuvauksia. Tarkastelun kohteena ovat erityisesti kompleksitason avoimen yksikkökiekon itselleen kuvaavat analyyttiset kuvaukset. Luvuissa 1,2,3 ja 4 esitellään tutkielman kannalta tärkeät kompleksianalyysiin liittyvät määritelmät ja tulokset. Luvussa 5 osoitetaan klassinen Schwarzin lemma muodossa, että kompleksitason avoimen yksikkökiekon itselleen kuvaavat analyyttiset funktiot joko kutistavat euklidista etäisyyttä tai ovat kiertoja origon ympäri. Luvussa 7 käsitellään hyperbolista tasoa. Hyperbolinen taso muodostetaan varustamalla kompleksitason avoin yksikkökiekko hyperbolisella metriikalla. Hyperbolisen tason ainoat isometriat ovat luvussa 6 esitettävät automorfismit. Luvussa 9 esitellään Schwarzin-Pickin lemma. Lemma on hyperbolinen versio klassisesta Schwarzin lemmasta ja se antaa myös vahvempia tuloksia avoimen yksikkökiekon itselleen kuvaaville analyyttisille kuvauksille kuin klassinen Schwarzin lemma. Toiseksi viimeisessä luvussa laajennetaan ja vahvennetaan Schwarzin-Pickin lemmaa, esittelemällä kolmen pisteen Schwarzin- Pickin lemma. Kolmen pisteen Schwarzin-Pickin lemmasta saadaan tärkeitä seurauksia, joita sovelletaan viimeisessä luvussa hyperbolisen tason hyperbolisten derivaattojen tarkastelussa.

3 Sisältö 1 Johdanto 4 2 Analyyttiset funktiot 5 3 Gaussin keskiarvolause 7 4 Maksimiperiaate 8 5 Schwarzin lemma 10 6 Yksikkökiekon konformiset automorfismit 12 7 Kiekko D hyperbolisena tasona Hyperbolinen pituus ja etäisyys Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 26 8 Hyperboliset geodeesit 35 9 Schwarzin-Pickin lemma Schwarzin-Pickin lemman laajennus Kolmen pisteen Schwarzin-Pickin lemma Hyperbolinen derivaatta 48

4 1 Johdanto 4 1 Johdanto Tarkastelemme tutkielmassa avoimen yksikkökiekon D itselleen kuvaavia analyyttisia kuvauksia f : D D. Kiekko D on kompleksitason alue ja määrittelemme sen D = {z C : z < 1}. Alussa kuvauksen f tarkastelu tapahtuu kompleksitasossa C, jonka jälkeen siirrymme tarkastelemaan sitä hyperbolisessa tasossa D. Otamme tarkastelun lähtökohdaksi saksalaisen matemaatikon Herman Schwarzin ( nimeä kantavan tuloksen eli Schwarzin lemman: Jos f on avoimen yksikkökiekon D itselleen kuvaava analyyttinen kuvaus, jolle pätee ehto f(0 = 0, niin silloin on voimassa, että f(z < z, kaikilla z D\{0} ja f (0 < 1 tai f(z = e iφ z, jollakin φ R. Muotoilemme Schwarzin lemmalle hyperbolisen version. Tulos, jonka alunperin esitti itävaltalainen matemaatikko Georg Pick ( , tunnetaan nimellä Schwarzin-Pickin lemma: Olkoon f avoimen yksikkökiekon D itselleen kuvaava analyyttinen kuvaus. Tällöin pätee h D (f(z, f(w h D (z, w, kaikilla z, w D. Yhtäsuuruus on voimassa, jos ja vain jos f on kiekon D konforminen automorfismi. Tutkielmamme pääaiheessa esitämme kolmen pisteen Schwarzin-Pickin lemman: Olkoon f avoimen yksikkökiekon D itselleen kuvaava analyyttinen kuvaus, joka ei ole kiekon D konforminen automorfismi. Tällöin pätee h D (f (z, v, f (w, v h D (z, w, kaikilla z, w, v D. Kuvaus f on hyperbolinen erotusosamäärä. Epäyhtälön yhtäsuuruus on voimassa, jos ja vain jos f on astetta kaksi oleva Blaschken tulo. Kolmen pisteen Schwarzin-Pickin lemman avulla, saamme muotoiltua erilaisia lausekkeita hyperbolisen tason D hyperbolisille derivaatoille.

5 2 Analyyttiset funktiot 5 2 Analyyttiset funktiot 2.1 Määritelmä. Olkoon G C avoin joukko ja f : G C kompleksiarvoinen funktio. Tällöin funktiolla f on kompleksinen derivaatta pisteessä z 0 G, jos raja-arvo f(z f(z 0 lim z z 0 z z 0 on olemassa. Kyseistä raja-arvoa kutsutaan funktion f derivaataksi pisteessä z 0 ja sitä merkitään f (z Määritelmä. Olkoon z o C ja r > 0 ja sovitaan, että D r (z 0 = D(z 0, r on z 0 -keskinen r-säteinen avoin kiekko. Tällöin f on analyyttinen pisteessä z 0, jos funktio f on kompleksisesti derivoituva pisteen z 0 ympäristössä, eli on olemassa r > 0 siten, että f on kompleksisesti derivoituva kaikilla z D r (z 0. Funktio f on analyyttinen avoimessa joukossa A, jos f on analyyttinen jokaisessa avoimen joukon A pisteessä. 2.3 Määritelmä (polkuyhtenäisyys. Joukko A C on polkuyhtenäinen, jos jokainen pari z, w A voidaan yhdistää joukossa A polulla γ : [a, b] A, a < b. 2.4 Lause. [KA, 2.20 yhtenäinen joukko] Jos joukko A on polkuyhtenäinen, niin se on yhtenäinen. 2.5 Määritelmä (Alue. Jos kompleksitasossa ei-tyhjä joukko A on sekä avoin, että yhtenäinen, niin silloin joukko A on alue kompleksitasossa. 2.6 Määritelmä (Konformisuus. Olkoon f analyyttinen kuvaus alueessa A ja olkoon kaikilla z 0 A voimassa, että f (z 0 0. Tällöin funktio f on konforminen alueessa A. Funktio f säilyttää pisteen z 0 kautta kulkevien polkujen väliset kulmat. 2.7 Määritelmä (Konformisen automorfismin määritelmä. Olkoon A kompleksitason alue ja f analyyttinen bijektio, jolle pätee f : A A. Tällöin kuvaus f on alueen A automorfismi. Lisäksi, jos funktio f on konforminen alueessa A, silloin sanomme, että f on alueen A konforminen automorfismi.

6 2 Analyyttiset funktiot Lause. [RHS, Cauchyn-Riemannin yhtälöt] Olkoon A epätyhjä alue kompleksitasossa ja f analyyttinen alueessa A. Silloin, jos f = u + iv eli f(x, y = u(x, y + iv(x, y, missä x, y R ja u, v : A R, niin u ja v ovat reaalisesti differentioituvia joukossa A ja toteuttavat Cauchyn- Riemannin yhtälöt alueessa A seuraavasti. u x = v y ja v x = u y 2.9 Lause. Oletetaan, että f : A C on analyyttinen alueessa A C ja z 0 A on funktion f nollakohta. Tällöin f(z = (z z 0 n g(z, jollakin n N, missä g on analyyttinen alueessa A ja g(z Lause. [KA, 3.13] Olkoon f analyyttinen alueessa A ja oletetaan, että alueessa A jokin seuraavista funktioista on vakio Re(f, Im(f, f tai Arg(f. Tällöin funktio f on vakio alueessa A Lause. [RHS, 7.10 Cauchyn integraalikaava] Oletetaan, että f on analyyttinen avoimessa joukossa A C ja kiekolle D r (z 0, r > 0 pätee D r (z 0 A. Tällöin f(z = 1 f(ξ 2πi ξ z dξ, z D r(z 0 D r(z 0 kun D r (z 0 on kiekon D r (z 0 reuna suunnistettuna vastapäivään. Reunaympyrä voidaan parametrisoida polulla γ(t = z 0 + re it, kun t [0, 2π] Määritelmä. [KA, s.62 Tulopolku] Olkoon A kompleksitason C alue.tällöin, jos γ 1 : [a, b] A ja γ 2 : [c, d] A ovat sileitä polkuja alueessa A siten, että polun γ 1 loppupiste on sama kuin polun γ 2 alkupiste eli γ 1 (b = γ 2 (c, niin silloin polkujen γ 1 ja γ 2 tulopolku on { γ1 (t, a t b (γ 1 γ 1 (t = γ 2 (c b + t, b t b + (d + c.

7 3 Gaussin keskiarvolause 7 3 Gaussin keskiarvolause Gaussin keskiarvolause saadaan erikoistapauksena Cauchyn integraalikaavasta. Gaussin keskiarvolause ilmoittaa, että analyyttisen funktion arvo kiekon keskipisteessä saadaan määritettyä, kun se lausutaan funktion kiekon reunalla saamien arvojen keskiarvona. Esitämme lyhyen Gaussin keskiarvolauseen todistuksen. Todistus idea pohjautuu lähteeseen [KA, s.81]. 3.1 Lause (Gaussin keskiarvolause. Olkoon A kompleksitason alue ja f : A C analyyttinen kuvaus. Oletetaan, että kiekon D r (z 0 sulkeuma D r (z 0 sisältyy alueeseen A. Tällöin f(z 0 = 1 2π f(z 0 + re it dt. 2π 0 Todistus. Olkoon nyt z D r (z 0. Cauchyn integraalikaavan nojalla pätee jokaisella z D r (z 0 f(z = 1 f(ξ 2πi D r(z 0 ξ z dξ. Valitaan nyt z = z 0 ja merkitään ξ z 0 = re it, jolloin saamme ξ = z 0 + re it ja dξ = ire it dt. Nyt sijoittamalla yllä olevat merkinnät Cauchyn integraalikaavan saamme f(z 0 = 1 2π f(z 0 + re it ire it dt = 1 2π f(z 2πi 0 z 0 + re it 0 + re it dt. z 0 2π 0 Esitämme seuraavassa luvussa yksi kompleksianalyysin keskeisimmistä tuloksista. Kyseinen tulos seuraa osittain Gaussin keskiarvolauseesta.

8 4 Maksimiperiaate 8 4 Maksimiperiaate Lauseessa 2.10 mainitaan alueessa A analyyttisen funktion saavan vakioarvon, jos sen moduli on vakio. Maksimiperiaatteessa tämä ehto tiukkenee entisestään. Maksimiperiaatteen mukaan analyyttisen funktion moduli ei voi saada paikallisia maksimia alueen A sisällä, ellei kyseessä ole vakiofunktio alueessa A. Lauseen todistuksen idea pohjautuu lähteeseen [KA, s.81]. 4.1 Lause (Maksimiperiaatteen heikko muoto. Oletetaan, että f on analyyttinen alueessa A C. Jos funktion modulilla f on lokaali maksimi jossakin alueen A pisteessä, niin f on vakiofunktio. Todistus. Olkoon z 0 sellainen mielivaltainen alueen A piste, että funktion f modulilla on lokaali maksimi siinä pisteessä. Tällöin on olemassa R > 0 siten, että f(z f(z 0 kaikilla z D(z 0, R. Olkoon nyt 0 < r < R. Gaussin keskiarvolauseen nojalla 2π f(z 0 = 1 f(z 0 + re it dt 2π 0 1 2π f(z 0 + re it dt 2π 0 1 2π f(z 0 dt 2π 0 = f(z 0. Koska f on jatkuva, niin f(z 0 = f(z 0 + r exp(it kaikilla t [0, 2π]. Näin pätee kaikilla r (0, R. Siis f(z = f(z 0 kaikilla z D(z 0, R. Eli itse f on vakio koko kiekossa D(z 0, R. Koska z 0 oli mielivaltainen piste alueessa A, niin täytyy funktion f olla vakio koko alueessa A.

9 4 Maksimiperiaate 9 Voimme nyt maksimiperiaatteen heikon muodon avulla muotoilla maksimiperiaatteen vahvan muodon. Maksimiperiaatteen vahvan muodon mukaan analyyttisen funktion moduli saavuttaa maksimiarvonsa alueen A reunapisteissä A. 4.2 Lause (Maksimiperiaatteen vahva muoto. Olkoon f analyyttinen rajoitetussa alueessa A ja jatkuva alueen A sulkeumassa. Tällöin jokaisella z A pätee f(z max z A f(z. Jos tässä yhtäsuuruus on voimassa jollakin alueen A pisteellä z, niin funktio f on vakiokuvaus alueessa A. Todistus. Jatkuvana kuvauksena f saa maksimiarvon jossakin kompaktin joukon Ā pisteessä. Oletetaan, että maksimiarvo saavutetaan jossakin joukon A pisteessä eli että on olemassa piste z 0 A, jolla f(z f(z 0 jokaisella z Ā. Tällöin maksimiperiaatteen heikon muodon nojalla f on vakiokuvaus joukossa A ja jatkuvuuden nojalla f on vakiokuvaus joukossa Ā. Kääntäen, jos f ei saavuta maksimiarvonsa missään joukon A pisteessä, silloin maksimiarvo saavutetaan jollakin z Ā \ A = A. Tällöin jokaisella z A pätee seuraava arvio f(z max f(z. z A

10 5 Schwarzin lemma 10 5 Schwarzin lemma Tämä luku käsittelee Schwarzin lemmaa. Lemma asettaa tiukkoja rajoituksia analyyttisille kuvauksille. Tässä työssä rajoitumme kuvauksiin f : D C siten, että f(z 1 kaikilla z D. Esitettävä todistus idea pohjautuu lähteisiin [KA, s.83] ja [AN, ]. 5.1 Lause (Schwarzin lemma. Olkoon D avoin yksikkökiekko ja f : D C analyyttinen kuvaus alueessa D. Oletetaan, että funktio f toteuttaa ehdot f(0 = 0 ja f(z 1 jokaisella z D. Tällöin jokaisella z D pätee seuraavat arviot f(z z (5.1 f (0 1. (5.2 Jos yhtäsuuruus pätee kohdassa (5.1 jollakin z D\{0}, niin f on tason kierto. Tällöin f on funktio, jolla on esitys f(z = λz jokaisella z D, missä λ C, λ = 1 ja f (0 = 1. Todistus. Analyyttisen funktion nollakohtaominaisuuden ja ehdosta f(0 = 0 saamme f(z = (z 0g(z = zg(z, missä g : D C on analyyttinen funktio alueessa D. Asetamme funktion g seuraavasti f(z, z D\{0} z g(z = (5.3 f (0, z = 0. Nyt g on selvästi jatkuva, kun z 0. Toisaalta f(z lim g(z = lim z 0 z 0 z = lim z 0 f(0 + z f(0 z = f (0 = g(0, eli g on myös jatkuva origossa. Olkoon z D mielivaltaisesti valittu ja sitten kiinnitetty. Valitaan R siten, että z < R < 1. Oletuksen f(z 1 nojalla saamme g(z = f(z z 1 z = 1 R kaikilla z = R. Maksimiperiaatteen vahvan muodon nojalla on voimassa seuraava arvio g(z 1 R,

11 5 Schwarzin lemma 11 kun z R < 1. Annamme luvun R lähestyä lukua 1, jolloin g(z 1, z D. (5.4 Nyt f(z z mikä todistaa kohdan (5.1 epäyhtälön. Epäyhtälö (5.4 toteuttaa myös kohdan (5.2 arvion f (0 = g(0 1. Jos nyt yhtäsuuruus on voimassa epäyhtälölle (5.4 jollakin z D, niin siitä seuraa maksimiperiaatteen vahvan muodon nojalla, että kuvaus g on vakio kiekossa D(0, R eli g = 1. Näin kaikilla R < 1. Siis myös kiekossa D. Tällöin f(z = z ja löydämme vakion λ C jonka modulille pätee λ = 1. Nyt f(z = λz ja funktio f on tason kierto. Edelleen, kun asetamme λ = e iα, α R, saamme g(0 = f (0 = 1 kuten pitääkin.

12 6 Yksikkökiekon konformiset automorfismit 12 6 Yksikkökiekon konformiset automorfismit Tässä luvussa määrittelemme yksikkökiekon konformiset automorfismit tai tarkemmin sanottuna yksikkökiekon analyyttiset bijektiot itselleen. Otamme lähtökohdaksi Möbius-kuvaukset. Möbius-kuvaukset ovat muotoa f(z = az + b, kun a, b, c, d C ja ad bc 0 (6.1 cz + d olevia ensimmäisen asteen analyyttisia rationaalifunktioita. Ne ovat laajennetun kompleksitason konformisia bijektioita itselleen. Ehto ad bc 0 estää Möbius-kuvauksia surkastumasta vakioksi,[rhs, 13.2]. Möbius-kuvaukset muodostavat ryhmän, kun laskutoimituksena on kuvausten yhdistäminen. Möbius-kuvausten käänteiskuvaukset ovat muotoa f 1 (z = dz b, kun a, b, c, d C ja ad bc 0, (6.2 cz + a olevia Möbius-kuvauksia. Tavoitteemme on löytää ne Möbius-kuvaukset, jotka kuvaavat avoimen yksikkökiekon D itselleen. Seuraavien lauseiden tiedot ja todistusideat pohjautuvat lähteeseen [BM1, 1.1.1]. 6.1 Lause. Jos f on Möbius-kuvaus, jolla on seuraava esitys f(z = az + c cz + a, kun a, c C ja a 2 c 2 = 1, (6.3 niin silloin kuvaus f määrittelee kiekon D konformisen automorfismin. Todistus. Kuvaus f toteuttaa kohdan (6.1 ehdon aa cc = a 2 c 2 = 1 0, joten selvästikin f on Möbius-kuvaus. Möbius-kuvauksena, kuvaus f on analyyttinen ja myös bijektiivinen. Lisäksi sen derivaatalle pätee f (z = a 2 c 2 0, z D. (6.4 (cz + a 2 Siis f on, Määritelmän 2.6 nojalla, konforminen kiekossa D. Näytämme vielä, että muotoa (6.3 olevat funktiot kuvaavat yksikkökiekon D itselleen. Olkoon z = 1 ja siis piste z D. Nyt

13 6 Yksikkökiekon konformiset automorfismit 13 f(z = az + c = cz + a azz + cz = cz + a = a + cz cz + a z az + c cz + a = a z 2 + cz cz + a = cz + a cz + a = 1. Siis f kuvaa kiekon D reunan kiekon D reunalle eli f( D = D. Näytetään, että kiekon D sisäpisteet kuvautuvat kiekon D sisäpisteille. Olkoon z = 0. Nyt f(0 = a0 + c c0 + a = c a. Koska a 2 c 2 = ( a c ( a + c = 1, niin täytyy olla a c > 0, josta seuraa, että a > c. Edelleen f(0 = c a = c a < 1, siis sisäpiste z = 0 kuvautuu jollekin kiekon D sisäpisteelle. Jatkuvana kuvauksena funktio f kuvaa yhtenäiseen joukon D yhtenäiselle joukolle D ja siis f(d = D. Siis analyyttisena kuvauksena, f on Määritelmän 2.7 nojalla kiekon D automorfismi. Olemme näin saaneet osoitettua, että muotoa (6.3 olevat Möbius-kuvaukset määrittelevät kiekon D konformisia automorfismeja. Tulemme osoittamaan Lauseessa 6.4, että kiekon D konformiset automorfismit määrittelevät myös muotoa (6.3 olevia Möbius-kuvauksia. Merkitsemme tästä eteenpäin kaikki muotoa (6.3 olevat Möbius-kuvaukset joukoksi A(D ja kutsumme sen alkioita kiekon D konformisiksi automorfismeiksi. ( Osoitamme seuraavaksi, että joukko A(D muodostaa ryhmän A(D,, kun laskutoimituksena on kuvausten yhdistäminen.

14 6 Yksikkökiekon konformiset automorfismit Lause. ( Kiekon D konformisten automorfismien joukko A(D muodostaa ryhmän A(D,, kun laskutoimituksena on kuvausten yhdistäminen. Todistus. Olkoon nyt h A(D sellainen kuvaus, jonka vakio c on nolla. Tällöin h(z = az + 0 0z + a = z, kun a = 1. Jos nyt f A(D on mikä tahansa kiekon D konforminen automorfismi, niin silloin pätee, että h f = f h = f. Siis h on joukon A(D neutraalialkio (identiteettialkio. Kuvauksen f käänteiskuvaus f 1 (z = az c cz + a, kun a, c C ja a 2 c 2 = 1, kuuluu myös joukkoon A(D. Olkoon f, g A(D, ja merkitään f(z = a 1z + c 1 c 1 z + a 1 ja g(z = a 2z + c 2 c 2 z + a 2, missä a 1 2 c 1 2 = 1 ja a 2 2 c 2 2 = 1. Nyt yhdistetty kuvaus (f g(z = f(g(z = (a 1a 2 + c 1 c 2 z + a 1 c 2 + c 1 a 2 (c 1 a 2 + a 1 c 2 z + c 1 c 2 + a 1 a 2 täyttää kohdan (6.3 ehdot, sillä a 1 a 2 + c 1 c 2 = c 1 c 2 + a 1 a 2 ja a 1 c 2 + c 1 a 2 = c 1 a 2 + a 1 c 2 ja edelleen a 1 a 2 + c 1 c 2 2 c 1 a 2 + a 1 c 2 2 = 1. Eli f g A(D, ja siis ryhmä on suljettu kuvausten yhdistämisen suhteen. Lisäksi, jos f, g, h A(D, niin silloin on voimassa (f g h = f (g h, eli liitäntälaki pätee. ( Olemme siis saanneet näytettyä, että joukko A(D muodostaa ryhmän A(D,, kun laskutoimituksena on kuvausten yhdistäminen.

15 6 Yksikkökiekon konformiset automorfismit 15 Möbius-kuvauksilla on monia hyödyllisiä ominaisuuksia, joita käytetään kuvaustehtävien ratkaisuissa. Möbius-kuvaukset muun muassa säilyttävät kaksoissuhteet, [RHS, 13.5]. Ne kuvaavat ympyrät ympyröiksi tai suoriksi ja suorat ympyröiksi tai suoriksi, [RHS, 13.8]. Yksi Möbius-kuvausten hyödyllisistä ominaisuuksista työssämme tulee olemaan joukkoon A(D liittyvä ominaisuus. Tämä ominaisuus kertoo meille, että jos z, w D, niin silloin on olemassa kuvaus f A(D siten, että f(z = w. 6.3 Lemma. Möbius-kuvausten ryhmä A(D toimii transitiivisesti kiekossa D. Todistus. Olkoon f A(D sellainen funktio, joka kuvaa origon mielivaltaisesti valitulle pisteelle z 0 D. Tällöin funktio f on muotoa f(z = az + az 0 z 0 az + a, missä a D ja a 2 z 0 a 2 = 1. Toisaalta, jos myös g A(D ja funktiolla g on esitys g(z = az aw 0 w 0 az + a, missä w 0 on mielivaltaisesti valittu kiekon D piste ja a D siten, että a 2 aw 2 = 1, niin silloin g kuvaa piste w 0 origoksi. Nyt yhdistetty kuvaus h(z = (f g(z kuvaa piste w 0 pisteeksi z 0, eli h(w 0 = z 0. Lauseen 6.2 nojalla kuvaus h kuuluu joukkoon A(D. Olemme siis saanneet näytettyä, että kaikilla w 0, z 0 D on olemassa kuvaus h A(D, siten että h(w 0 = z 0. Käyttämällä edellisiä kohtia hyväksi, näytämme seuraavassa lauseessa, että jokainen kiekon D konforminen automorfismi on myös muotoa (6.3.

16 6 Yksikkökiekon konformiset automorfismit Lause. Olkoon f kiekon D konforminen automorfismi. Tällöin f on muotoa (6.3 oleva Möbius-kuvaus. Todistus. Olkoon f kiekon D konforminen automorfismi. Tällöin f(0 D, ja Lemman 6.3 nojalla löytyy sellainen kuvaus g A(D, että g(f(0 = 0. Määritellään h = g f. Tällöin pätee Lauseen 6.2 nojalla, että h A(D ja siis myös h 1 A(D. Kuvauksella h on voimassa h(0 = f(g(0 = 0, jolloin myös h 1 (0 = 0. Nyt kuvaukset h ja h 1 toteuttavat Schwarzin lemman oletukset ja siitä seuraa, että h(z z ja h 1 (w w, kaikilla z, w D. Erityisesti, kun z = h 1 (w, niin silloin on voimassa h(z = w ja saamme pääteltyä, että z = h 1 (w w = h(z z. Siis h(z = z, kaikilla z D. Schwarzin lemman erikoistapauksen nojalla kuvaus h on nyt kierto origon ympäri ja sillä on esitys h(z = e iφ z, jollakin φ R. Edellinen esitys kuvaukselle h näyttää ensisilmäyksellä poikkeavaan merkittävästi muotoa (6.3 olevista kuvauksista. Kuitenkin, kun sijoitamme siihen a = e 1 2 iφ ja c = 0 saamme h(z = e 1 2 iφ + 0 = e 1 2 iφ z 0z + e 1 2 iφ e = e iφ 2 iφ+ 1 2 iφ z = e iφ z, kun e 1 2 iφ = 1. Eli funktio h tosiaankin on muotoa (6.3 oleva Möbiuskuvaus. Nyt kuvauksella f on esitys f = g 1 h. Koska g 1, h A(D, niin täytyy Lauseen 6.2 nojalla olla voimassa, että myös f A(D. Olemme siis saanneet näytettyä, että jokainen kiekon D konforminen automorfismi on muotoa (6.3 oleva Möbius-kuvaus.

17 7 Kiekko D hyperbolisena tasona 17 7 Kiekko D hyperbolisena tasona Varustamalla kiekon D metriikalla λ(z dz saamme uuden tason, joka toteuttaa kaikki tasolta vaadittavat ehdot. Kutsumme jatkossa tätä uutta tasoa hyperboliseksi tasoksi. Hyperbolisen tason D geometria poikkeaa meille varsin tutusta euklidisen tason geometriasta. Euklidisen tason geometria sopii hyvin yhteen intuitiomme kanssa, sillä tason pisteiden väliset etäisyydet antaa aina jana. Edellinen ei aina toteudu Hyperbolisessa tasossa D, koska tason pisteiden väliset etäisyydet voivat olla ympyrän kaaria. Tämän takia toisinaan kutsutaan hyperbolista tasoa D epäeuklidiseksi tasoksi. Tämän luvun määritelmät, lauseet ja todistusideat pohjautuvat lähteisiin [BM1], [BM2] ja [OL]. Lisäksi käytämme runsaasti hyväksi edellisten lukujen tietoja. 7.1 Määritelmä. Hyperbolinen taso on kiekko D varustettuna metriikalla λ(z dz = 2 dz 1 z 2. Herää kysymys miksi varustamme nimenomaan kiekon D juuri tällä metriikalla? Ideana metriikan λ(z dz tuominen kiekoon D perustuu differentiaalilausekkeen ( kaarialkio dz 1 z 2 ominaisuudesta pysyä muuttumattomana kiekon D konformisten automorfismien kuvauksissa, [OL, s.35]. Osoitamme differentiaalilausekkeen muuttumattomuutta kuvauksen f A(D avulla. Nyt Lauseen 6.1 nojalla on voimassa, että f(z = az + b bz + a, kun a, b C ja a 2 b 2 = 1. Olkoot z 1, z 2, w 1, w 2 D. Merkitsemme w 1 = f(z 1 ja w 2 = f(z 2. Tällöin

18 7 Kiekko D hyperbolisena tasona 18 edelleen jolloin Tällöin w 1 w 2 = az 1 + b bz 1 + a az 2 + b bz 2 + a = (az 1 + b(bz 2 + a (bz 1 + a(bz 2 + a (az 2 + b(bz 1 + a (bz 2 + a(bz 1 + a = aaz 1 + bbz 2 aaz 2 bbz 1 (bz 1 + a(bz 2 + a = (aa bb(z 1 z 2 (bz 1 + a(bz 2 + a z 1 z 2 = (bz 1 + a(bz 2 + a, 1 w 1 w 2 = 1 1 z 1 z 2 = 1 z 1 z 2 (bz 1 + a(bz 2 + a, 1 (1 w 1 w 2 (bz 1 + a(bz 2 + a. Nyt, kun z 1 z 2, saamme z 1 z 2 1 z 1 z 2 = w 1 w 2 (bz 1 + a(bz 2 + a 1 w 1 w 2 (bz 1 + a(bz 2 + a z 1 z 2 1 z 1 z 2 = w 1 w 2 1 w 1 w 2. dz 1 z 2 = dw 1 w 2, eli differentiaalilauseke pysyy muuttumattomana.

19 7.1 Hyperbolinen pituus ja etäisyys Hyperbolinen pituus ja etäisyys 7.2 Määritelmä. Polku γ on jatkuva kuvaus γ : [a, b] A, missä A on kompleksitason alue, a < b ja a, b R. Polku γ on sileä, jos se on paloittain jatkuvasti differentioituva välillä [a, b]. Olkoot z ja w mielivaltaisia pisteitä kiekossa D ja olkoon γ sellainen kiekoon D sisältyvä sileä polku, joka yhdistää pisteet z ja w. Tällöin saamme määriteltyä polun γ hyperbolisen pituuden hyperbolisessa tasossa D, kun integroimme hyperbolista metriikkaa polkua γ pitkin, [BM2, s.11], l D (γ = γ λ D dz = γ (t dt, kun t [0, 1]. (7.1 1 γ(t 2 Euklidisessa tasossa etäisyys määritellään kaavalla d(x, y = y x, kun x, y R 2. Vastaavasti saamme määritettyä hyperboliselle tasolle D etäisyyslausekkeen, kun otamme infimumin kaikkien kiekon D sileiden polkujen γ yli, jotka yhdistävät pisteet z ja w avoimessa yksikkökiekossa D, [BM2, s.11], h D (z, w = inf γ l D (γ. (7.2 Tällä tavalla määritelty hyperbolinen etäisyys h D toteuttaa kaikki etäisyydeltä vaadittavat ehdot, [BM2, s.11]. 1. h D (z, w 0, kaikilla z, w D ja h D (z, w = 0, jos ja vain josnz = w. Todistus. Olkoon z w. Tällöin on voimassa kaikille pisteet z ja w yhdistäville kiekon D sileille poluille, että l D (γ > 0. Nyt kohdan (7.2 nojalla pätee myös, että h D (z, w > 0. Oletetaan nyt, että z = w. Tällöin kaikille edellä mainituille poluille pätee, että l D (γ = 0, mikä tarkoittaa kohdan (7.2 nojalla, että myös h D (z, w = 0. Eli kaikilla z, w D pätee, että h D (z, w 0.

20 7.1 Hyperbolinen pituus ja etäisyys h D (z, w = h D (w, z, kaikilla z, w D. 3. h D (z, w h D (z, u + h D (u, w, kaikilla z, w, u D. Todistus. Olkoon γ z u kiekon D sileä polku, joka yhdistää pisteet z, u D kiekossa D. Olkoon γ u w toinen kiekon D sileä polku, joka yhdistää pisteet u, w D kiekossa D. Tällöin Määritelmän 2.12 nojalla tulopolku { γz u (2t, kun t [0, 1 γ z w (t = (γ z u γ u w (t = ] 2 γ u w (2t 1, kun t [ 1, 1] 2 on hyvin määritelty ja yhdistää pisteet z, w D kiekossa D. Saamme nyt kohdan (7.2 nojalla h D (z, w = inf l D = inf λ D (z dz γ z w γ z w λ D (z dz = λ D (z dz γ z w γ z u γ u w = λ D (z dz + λ D (z dz. γ z u γ u w γ z w Ottamalla nyt infimum kaikkien pisteitä z ja u sekä u ja w yhdistävien polkujen yli, saamme halutun muodon h D (z, w h D (z, u + h D (u, w. Tarkastelemme nyt hyperbolista etäisyyttä h D, kun pisteet sijaitsevat hyperbolisen tason D reaaliakselilla eli avoimella välillä ( 1, 1. Seuraavan lauseen tiedot ja todistusideat pohjautuvat lähteisiin [BM1, 1.2.2] ja [BM2, s.13].

21 7.1 Hyperbolinen pituus ja etäisyys Lause. Olkoot a ja b reaalilukuja, joille pätee 1 < a < b < 1. Tällöin on voimassa seuraava kaava ( 1 + b a 1 ab h D (a, b = log. (7.3 1 b a 1 ab Lisäksi, jos myös c on reaaliluku, jolle pätee 1 < a < b < c < 1, niin silloin on voimassa h D (a, c = h D (a, b + h D (b, c (7.4 Todistus. Olkoon γ kiekon D sileä polku, joka yhdistää avoimen yksikkökiekon D reaaliakselin pisteet a ja b ja olkoon lisäksi a < b. Esitämme polkua γ muodossa γ(t = u(t + iv(t, missä t [0, 1]. Nyt γ(0 = u(0 + iv(0 = a ja γ(1 = u(1 + iv(1 = b, mistä päätelemme, että γ(0 = u(0 = a ja γ(1 = u(1 = b, sillä a ja b ovat reaalilukuja. Edelleen γ (t = u (t 2 + v (t 2 u (t 2 = u (t u (t ja γ(t 2 = u(t 2 + v(t 2 u(t 2. Käyttämällä polun hyperbolisen pituuden määritelmää (7.1, saamme l D (γ = = = = / γ (t 1 γ(t dt 2 0 ( u (t 1 u(t + u (t 1 + u(t 0 u (t 1 u(t dt + 1 log 1 u(t + 0 2u (t 1 u(t dt 2 dt u (t 1 + u(t dt / 1 0 log 1 + u(t.

22 7.1 Hyperbolinen pituus ja etäisyys 22 Sijoittamalla nyt saamme l D (γ log 1 u(1 + log 1 u(0 + log 1 + u(1 log 1 + u(0 = log(1 a log(1 b + log(1 + b log(1 + a = log 1 a 1 b + log 1 + b 1 + a (1 a(1 + b = log (1 b(1 + a ( 1 + b a = log Näin ollen pätee 1 ab 1 b a 1 ab. ( 1 + b a 1 ab l D (γ log, 1 b a 1 ab mistä puolestaan seuraa, kohdan (7.2 nojalla, että myös ( 1 + b a 1 ab h D (a, b = inf l D (γ log. γ 1 b a 1 ab Valitsemme nyt γ(t = a + t(b a, kun t [0, 1], jolloin edellisessä lausekkeessa pätee yhtäsuuruus ( 1 + b a 1 ab h D (a, b = inf l D (γ = log, γ 1 b a 1 ab Näin sen takia, että nyt polku γ(t = u(t määrittelee janan hyperbolisen tason D reaaliakselilta. Näin olemme saaneet näytetyksi kohdan (7.3 väittämän. Osoitamme nyt kohdan (7.4, käyttämällä kohdan (7.3 tietoa hyväksi. Nyt ( 1 + b a 1 ab h D (a, b = log, 1 b a 1 ab ( 1 + c b 1 bc h D (b, c = log 1 c b 1 bc ja ( 1 + c a 1 ac h D (a, c = log 1 c a. 1 ac

23 7.1 Hyperbolinen pituus ja etäisyys 23 Edelleen ( ( 1 + b a 1 ab 1 + c b 1 bc h D (a, b + h D (b, c = log + log 1 b a 1 c b 1 ab 1 bc ( 1 + b a 1 ab = log 1 + c b 1 bc 1 b a 1 c b 1 ab 1 bc ( 1 ab + b a = log 1 ab b + a 1 bc + c b 1 bc c + b ( (1 a + b(1 a (1 b + c(1 b = log (1 + a b(1 + a (1 + b c(1 + b ( (1 a(1 + b (1 b(1 + c = log (1 + a(1 b (1 + b(1 c ( ( (1 a(1 + c 1 + c a ac = log = log (1 + a(1 c 1 c + a ac ( ( 1 ac + (c a 1 + c a 1 ac = log = log 1 ac (c a 1 c a 1 ac = h D (a, c. Olemme näin osoittaneet kohdan (7.4 tuloksen. Tarkemmin sanottuna kohdan tulos kertoo meille, että hyperbolisessa tasossa etäisyys h D on additiivinen, kun pisteet sijaitsevat kiekon D reaaliakselilla, [BM2, s.14]. Saamme edellisten kohtien avulla muotoiltua etäisyyslausekkeen origon ja mielivaltaisen pisteen z D väliselle etäisyydelle, [BM1, s.11]. Voimme olettaa, ettei piste z ole kiekon D reaaliakselilla, muuten lauseke palautuisi kohtaan (7.4.

24 7.1 Hyperbolinen pituus ja etäisyys Lause. Olkoon z mielivaltainen piste kiekossa D. Tällöin ( 1 + z h D (0, z = log 1 z (7.5 Todistus. Olkoon z kiekon D piste. Nyt piste z voidaan esittää polaarimuodossa z = z e iφ, kun φ R. Olkoon γ sellainen sileä polku, joka yhdistää pisteet 0 ja z. Tällöin kuvaus f(γ = e iφ γ vastaavasti yhdistää pisteet 0 ja z. Kuvaus γ e iφ γ siis kääntää pisteitä 0 ja z yhdistävän sileän polun γ pisteisiin 0 ja z yhdistäväksi sileäksi poluksi e iφ γ. Kuvaus f on bijektio ja näin ollen polkujen vastaavuus yksikäsitteinen. Tarkastelemme nyt polkujen e iφ γ ja γ hyperbolisia pituuksia. Kohdan (7.1 nojalla saamme l D (e iφ γ = = = b a b a b a = l D (γ, 2 (e iφ γ (t 1 e iφ γ(t 2 dt 2 e iφ γ (t 1 e iφ γ(t 2 dt 2 γ (t 1 γ(t 2 dt kun t [a, b] ja e iφ = 1. Eli poluilla on yhtä suuri hyperbolinen pituus. Kohdan (7.2 nojalla pätee nyt, että h D (0, z = inf l D (e iφ γ = inf l D(γ = h D (0, z. f(γ γ Piste z on reaaliluku välillä ( 1, 1, tällöin kohdan (7.3 nojalla saamme ( 1 + z 0 ( 1 0 z 1 + z h D (0, z = log = log = h 1 z 0 D (0, z. 1 z 1 0 z Näin ollaan saatu osoitettua lauseen väittämä. Nyt kiekon D mielivaltaisen pisteen z etäisyys origosta voidaan aina palauttaa tapauksen h D (0, z, mikä onnistuu aina edellisen tapaukseen valossa. Lauseesta 7.4 seuraa, myös mielenkiintoinen arvio kiekon D reunan hyperbolisesta etäisyydestä suhteessa muihin kiekon D pisteisiin, [BM2, s.16].

25 7.1 Hyperbolinen pituus ja etäisyys Korollaari. Olkoot z ja w mielivaltaisia pisteitä kiekossa D. Tällöin h D (0, z, kun z 1. ja h D (w, z, kun z 1. Todistus. Lauseen 7.4 nojalla pisteen z etäisyys origosta on ( 1 + z h D (0, z =. 1 z Nyt kun z 1, menee yllä olevan lausekkeen nimittäjä kohti nollaa 1 z 0 ja koko lauseke menee kohti ääretöntä h D (0, z. Toisaalta, jos w on myös mielivaltainen piste kiekossa D, on silloin kolmio epäyhtälön nojalla voimassa, että h D (0, z h D (0, w + h D (w, z. Edelleen, kun z 1, menee kolmioepäyhtälön vasen puoli kohti ääretöntä. Nyt kolmioepäyhtälön oikean puolen termi h D (0, w saa, Lauseen 7.4 nojalla, jonkin kiinteän arvon. Näin ollen, täyty olla voimassa, että h D (w, z, kun z 1. Edellä käytyjen nojalla, voidaan päätellä, että hyperbolisen tason D reuna D on äärettömän kaukana, suhteessa avoimen yksikkökiekon D pisteisiin.

26 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys Tässä luvussa muotoilemme täsmällisen kaavan etäisyydelle h D (z, w, kun z ja w ovat mielivaltaisia lukuja kiekossa D. Edellisissä kohdissa saimme rakennettua täsmällisen kaavan hyperboliselle etäisyydelle h D (0, z. Kyseisen kaavan muotoilussa, käytimme hyväksi tietoa kiekon D reaaliakselin pisteiden välisistä hyperbolisista etäisyyksistä. Vastaavasti käyttämällä tietoa hyperbolisen tason isometrioista ja niin kutsuttua pseudohyperbolista metriikka, saamme muotoiltua kaavan etäisyydelle h D (z, w. 7.6 Määritelmä. Analyyttinen kuvaus f : D D on metriikan λ D (z dz lokaali isometria, jos jokaisella z D pätee, että λ D (f(z f (z = λ D (z. (7.6 Olemme edellä osoittaneet, että differentiaalilauseke dz 1 z 2 säilyy kiekon D konformisten automorfismien kuvauksissa. Differentiaalilauseke eroaa hyperbolisesta metriikasta λ D (z dz = 2 dz 1 z 2 ainoastaan vakiolla 2. Tarkastelemme seuraavaksi, miten kiekon D konformisten automorfismien kuvaukset f A(D suhtautuvat metriikkaan λ D (z dz, [BM1, 1.2.5]. 7.7 Lause. Analyyttinen funktio f : D D on metriikan λ D (z dz lokaali isometria, jos ja vain jos se on kiekon D konforminen automorfismi. Todistus. Olkoon f kiekon D konforminen automorfismi. Tällöin kuvauksella f on, Lauseen 6.1 nojalla, seuraava esitys Nyt f(z = az + c cz + a, kun a, c D ja a 2 c 2 = 1. f (z = a(cz + a (az + cc (cz + a 2 = acz acz + a 2 c 2 (cz + a 2 1 = (cz + a. 2

27 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 27 Edelleen λ D (f(z f (z = 2 f (z 1 f(z = f(z 2 2 (cz+a = 2 1 az+c = 2 cz+a 2 cz + a az + c 2 = (cz + a(cz + a (az + c(az + c 2 = czcz + acz + acz + aa azaz acz acz cc 2 = c 2 z 2 + ( a 2 c 2 a 2 z 2 2 = 1 a 2 z 2 + c 2 z 2 2 = 1 z 2 ( a 2 c 2 = 2 1 z = λ D(z. 2 (cz+a 2 Eli kuvaukset f A(D säilyttävät hyperbolisen metriikan. Osoitamme vielä, että ainoat analyyttiset kuvaukset f : D D, jotka säilyttävät metriikan λ D (z dz, ovat täsmälleen ne kuvaukset, jotka kuuluvat joukkoon A(D. Olkoon nyt f 1 ja f 2 metriikan λ D (z dz lokaaleja isometrioita. Tällöin derivoinnin ketjusäännön nojalla saamme λ D (f 1 f 2 (z (f 1 f 2 (z = λ D (f 1 (f 2 (z f 1(f 2 (zf 2(z = λ D (f 1 (f 2 (z f 1(f 2 (z f 2(z = λ D (f 2 (z f 2(z = λ D (z. Eli isometrioiden kuvausten yhdistetyt kuvaukset ovat myös isometrioita. Jos nyt f : D D on lokaali isometria, niin silloin voimme Lemman 6.3 nojalla valita sellainen kuvauksen g A(D, että g(f(0 = 0. Tällöin λ D ((g f(0 = 2, sillä ja edelleen λ D (g(f(0 = 2 1 g(f(0 = = 2 2 λ D ((g f(0 (g f (0 = λ D (0 = 2,

28 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 28 täytyy siis päteä, että (g f (0 = 1. Schwarzin lemman nojalla, yhdistetty kuvaus g f on nyt kierto origon ympäri ja siis kiekon D konforminen automorfismi. Nyt g f A(D. Tällöin Lauseen 6.2 nojalla pitäisi päteä myös, että f A(D. Olemme näin osoittaneet, että kuvaus f on hyperbolisen metriikan isometria, jos ja vain jos f A(D. 7.8 Määritelmä. Analyyttinen funktio f : D D on etäisyyden h D isometria, jos kaikilla z, w D pätee, että h D (f(z, f(w = h D (z, w (7.7 Tarkastelemme seuraavaksi, miten kiekon D konformisten automorfismien kuvaukset f A(D suhtautuvat hyperbolisen etäisyyteen h D, [BM1, 1.2.7]. 7.9 Lause. Analyyttinen funktio f : D D on etäisyyden h D isometria, jos ja vain jos f on kiekon D konforminen automorfismi. Todistus. Oletetaan aluksi, että f A(D. Kuvaus f on nyt, edellisen lauseen perusteella, hyperbolisen metriikan lokaali isometria. Olkoot γ ja f(γ kiekon D sileitä polkuja siten, että polku γ yhdistää pisteet z, w D ja polku f(γ pisteet f(z, f(w D. Tällöin polkujen hyperbolisille pituuksille pätee seuraava arvio l D (f(γ = λ D (w dw = λ D (f(z f (z dz = λ D (z dz = l D (γ. f(γ γ Nyt, kun otamme polkujen hyperbolisista pituuksista suurimman alarajan, saamme ja edelleen kohdan (7.2 nojalla inf l D(f(γ inf l D(γ f(γ γ h D (f(z, f(w h D (z, w, kaikilla z, w D. Toisaalta f 1 on myös kiekon D konforminen automorfismi, joten vastaavalla päättelyllä saamme h D (f 1 (z, f 1 (w h D (z, w, kaikilla z, w D. Jos nyt merkitsemme f(z = a ja f(w = b, niin silloin saamme h D (f(z, f(w h D (z, w = h D (f 1 (a, f 1 (b h D (a, b = h D (f(z, f(w. γ

29 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 29 Siis h D (f(z, f(w = h D (z, w, kaikilla z, w D, joten f on hyperbolisen etäisyyden h D isometria. Näytämme seuraavaksi, että kuvaukset f A(D ovat ainoat kuvaukset, jotka ovat isometrioita etäisyyden h D suhteen. Osoitamme ensin, että yhdistetyt etäisyyden h D isometriat ovat myös h D isometrioita. Olkoot f 1 ja f 2 h D isometrioita. Tällöin h D ((f 1 f 2 (z, (f 1 f 2 (w = h D (f 1 (f 2 (z, f 1 (f 2 (w = h D (f 2 (z, f 2 (w = h D (z, w. Siis h D isometrioiden yhdistetty kuvaus on myös h D isometria. Jos nyt f : D D on h D isometria ja g A(D, niin silloin yhditetty kuvaus g f on myös h D isometria. Nyt f(0 D ja voimme valita, Lemman 6.3 nojalla, kuvauksen g A(D siten, että g(f(0 = 0. Voimme nyt, isometrian johdosta, lausua h D (0, z = h D (g(f(0, g(f(z = h D (0, g(f(z, jolloin saamme Lauseen 7.4 nojalla, että h D (0, z = log 1 + z 1 z = log1 + g(f(z 1 g(f(z = h D(0, g(f(z. Edelleen log 1 + z 1 z = log1 + g(f(z 1 g(f(z, mistä saamme arvion g(f(z = z. Siis yhdistetty kuvaus g f on, Schwarzin Lemman erikoistapauksen nojalla, kierto origon ympäri, jolloin voimassa on, että g f A(D. Mutta nyt, Lauseen 6.2 nojalla, pätee että f A(D. Olemme siis saaneet näytettyä, että analyyttinen kuvaus f : D D on h D isometria, jos ja vain jos f on kiekon D konforminen automorfismi. Tämän luvun loppuosassa perehdymme niin sanottuun pseudohyperboliseen etäisyyteen, jota lyhyesti merkitsemme ρ D. Pseudohyperbolinen etäisyys määritellään kaavalla, [BM2, s.12] ρ D (z, w = z w, kun z, w D. (7.8 1 zw

30 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 30 Tulemme näkemään, että tällä tavalla määritettynä, ρ D täyttää kaikki etäisyydeltä vaadittavat ehdot. Lisäksi tulemme näyttämään etäisyyksien h D ja ρ D välillä vallitsevaa relaatiota. Sitä ennen asetamme muutamia määritelmiä Määritelmä. [BM1, 1.1.2] Olkoon f kiekon D konforminen automorfismi. Tällöin kuvauksella f on esitys ( z w f(z = e iφ, kun φ R ja z, w D. 1 zw 7.11 Määritelmä. [RHS] Kompleksitason C hyperbolinen sini, hyperbolinen kosini ja hyperbolinen tangentti määritellään kaikilla z C seuraavalla tavalla sinh(z = 1 2 (ez e z cosh(z = 1 2 (ex + e z tanh(z = sinh(z cosh(z = e2z 1 e 2z Lemma. Hyperboliselle tangentille pätee seuraava yhteenlaskukaava kaikilla z, w R tanh(z + w = tanh(z + tanh(w 1 + tanh(z tanh(w, Todistus. Olkoot z ja w kompleksilukuja. Nyt Määritelmän 7.11 nojalla saamme, että mikä osoittaa lemman. + e2w 1 e 2z +1 e 2w 1 e 2w 1 e 2z +1 e 2w 1 tanh(z + w = e2(z+w 1 e2z 1 e 2(z+w + 1 = 1 + e2z 1 = tanh(z + tanh(w 1 + tanh(z tanh(w, Edellä käytyjen tietojen valossa, olemme vihdoinkin valmiita esittämään tarkan kaavan etäisyydelle h D (z, w, kun z, w ovat mielivaltaisia pisteitä hyperbolisessa tasossa D. Kaavan muotoilemisessa, käytämme lähteitä [BM1, 1.2.9] ja [BM2, 2.2].

31 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys Lause. Olkoot z, w mielivaltaisia pisteitä kiekossa D. Tällöin on voimassa, että h D (z, w = log 1 + ρ D(z, w, kaikilla z, w D, missä (7.9 1 ρ D (z, w ρ D (z, w = z w. 1 zw Todistus. Oletetaan, että f on kiekon D konforminen automorfismi. Tällöin Määritelmän 7.10 nojalla kuvauksella f on esitys ( z w f(z = e iφ, jollakin φ R ja z, w D, 1 zw jolloin f(w = 0. Nyt, kun käytämme seuraava päättelyketjua, saamme h D (z, w (1 = h D (w, z (2 = h D (f(w, f(z = h D (0, f(z (3 = h D (0, f(z = h D (0, e iφ z w 1 zw = h D (0, z w 1 zw (4 = h D (0, ρ D (z, w (5 = log 1 + ρ D(z, w 1 ρ D (z, w. Päättelyketjun kohdan (1 yhtäsuuruus seuraa etäisyyden h D ominaisuudesta. Kohdan (2 yhtäsuuruus seuraa Lauseesta 7.9. Kohtien (3,(5 yhtäsuuruudet puolestaan seuraavat Lauseesta 7.4 ja kohta (4 seuraa pseudohyperbolisen etäisyyden määritelmästä.

32 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 32 Etäisyydet h D ja ρ D linkittyvät myös toisellakin tavalla, [BM2, s.14] Lause. Olkoot z, w mielivaltaisia pisteitä kiekossa D. Tällöin on voimassa, että ( 1 ρ D (z, w = tanh 2 h D(z, w. (7.10 Todistus. Edellisen lauseen nojalla pätee nyt, että h D (z, w = log 1 + ρ D(z, w, kaikilla z, w D. 1 ρ D (z, w Sijoittamalla nyt edellinen lauseke kohdan (7.10 saamme ( 1 tanh( 2 h 1 D(z, w = tanh 2 log1 + ρ D(z, w 1 ρ D (z, w ( 1 sinh = ( cosh ( = elog ( e log = = log 1+ρ D(z,w 2 1 ρ D (z,w 1 log 1+ρ D(z,w 2 1 ρ D (z,w 1+ρ D (z,w 1 ρ D (z,w 1+ρ D (z,w 1 ρ D (z,w 1 2 ( 1+ρD (z,w 1 ρ D (z,w ( 1+ρD (z,w 1 ρ D (z,w 1 2 e log ( e log ( ρ D (z,w 1 ρ D (z,w 1 1+ρ D (z,w 1 ρ D (z,w + 1 ( 1 1+ρD (z,w 2 1 ρ D (z,w ( 1+ρD (z,w 1 ρ D (z,w ρ D (z,w 1 ρ D (z,w ρ D (z,w 1 ρ D (z,w 1 2 = 1 + ρ D(z, w 1 + ρ D (z, w 1 + ρ D (z, w + 1 ρ D (z, w = 2ρ D(z, w 2 = ρ D (z, w.

33 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 33 Siis hyperbolinen etäisyys h D ja pseudohyperbolinen etäisyys ρ D kytkeytyvät toisiinsa hyperbolisen tangentin kautta. Lisäksi, jos f on kiekon D konforminen automorfismi, niin silloin pseudohyperbolisille etäisyyksille on voimassa ρ D (f(z, f(w = ρ D (z, w, (7.11 sillä Lauseen 7.14 nojalla pätee, että 1 1 ρ D (f(z, f(w = tanh( 2 h D(f(z, f(w = tanh( 2 h D(z, w = ρ D (z, w. Eli kiekon D konformiset automorfismit ovat myös pseudohyperbolisen etäisyyden ρ D isometrioita. Näytämme seuraavaksi, että pseudohyperbolinen etäisyys todellakin määrittelee etäisyysfunktion ρ D, [BM2, s.14]. Lauseen 7.14 nojalla pätee, että 1 ρ D (z, w = tanh( 2 h D(z, w (7.12 = e 1 2 h D(z,w e 1 2 h D(z,w e 1 2 h D(z,w + e 1 2 h D(z,w, (7.13 jolloin päättelemme, että e 1 2 h D(z,w e 1 2 h D(z,w, kaikilla z, w D, sillä, h D (z, w 0 ja edelleen 1 2 h D(z, w 0, kaikilla z, w D. Edellisistä kohdista seuraa nyt, että ρ D (z, w 0 kaikilla z, w D. Toisaalta, jos 1 ρ D (z, w = tanh( 2 h D(z, w = 0, niin, silloin täytyy olla voimassa, että 1 2 h D(z, w = 0, mikä pätee, jos ja vain jos z = w. Etäisyys ρ D on myös vaihdannainen. Etäisyyden ρ D vaihdannaisuus seuraa etäisyyden h D vaihdannaisuudesta, sillä 1 1 ρ D (z, w = tanh( 2 h D(z, w = tanh( 2 h D(w, z = ρ D (w, z. Pseudohyperbolinen etäisyys ρ D toteutaa kolmioepäyhtälön. Olkoot z, w D.

34 7.2 Hyperbolisen tason isometriat ja pseudohyperbolinen etäisyys 34 Tällöin lauseen 7.14 avulla, saamme rakennettua seuraavan päättelyketjun 1 ρ D (z, w = tanh( 2 h D(z, w (1 1 tanh( 2 (h D(z, v + h D (v, w (2 = tanh( 1h 2 D(z, v + tanh( 1h 2 D(v, w 1 + tanh( 1h 2 D(z, vtanh( 1h 2 D(v, w (3 < tanh( 1 2 h D(z, v = ρ D (z, v + ρ D (v, w. 1 + tanh( 2 h D(v, w Päättelyketjun kohdan (1 epäyhtälö seuraa siitä, että etäisyys h D toteuttaa kolmioepäyhtälön. Kohdan (2 yhtäsuuruus puolestaan seuraa hyperbolisen tangentin summakaavasta. Arvioimalla hyperbolisen tangentin summakaavaa ylöspäin, saamme kohdasta (3 aidon epäyhtälön. Näin olemme näyttäneet, että ρ D toteuttaa kolmioepäyhtälön. Erityisesti kolmioepäyhtälössä pätee aina aito epäyhtälö. Tämä tarkoittaa, ettei pseudohyperbolinen etäisyys koskaan ole additiivinen kiekon D pisteissä, toisin kuin etäisyys h D, joka on additiivinen kiekon D reaaliakselin pisteissä.

35 8 Hyperboliset geodeesit 35 8 Hyperboliset geodeesit Tässä luvussa tarkastellaan hyperbolisen tason D geodeeseja. Geodeesit ovat tarkasteltavan avaruuden metriikan huomioon ottaen lyhyimpiä polkuja avaruuden pisteiden välillä. Euklidisen metriikan mielessä geodeesit siis vastaavat suorien janoja. [BM1, s.16]. 8.1 Määritelmä. Olkoot z ja w mielivaltaisia pisteitä kiekossa D. Tällöin pisteiden z ja w välinen hyperbolinen geodeesi sijaitsee kiekon D origon kautta kulkevalla suoralla tai kaarella C D, missä C on se yksikäsitteinen euklidinen ympyrä, joka kulkee pisteiden z ja w kautta ja kohtaa kiekon D reunan kohtisuorasti. Merkitsemme pisteiden z ja w välistä hyperbolista geodeesia joukoksi < z, w >. Hyperbolisen tason D metriikan näkökulmassa ympyrän kaari voi siis olla samassa asemassa, kuin suora euklidisessa tasossa. Tämän takia Eukleiden paralleeliaksiooma (Kuva 1 ei ole voimassa hyperbolisen tason D geometriassa. Kuva 1 Kuvasta 1 nähdään, miksei hyperbolisen tason D geometriassa voi olla voimassa paralleeliaksiooma: löydämme aina lukemattomia origon kautta kulkevia hyperbolisen tason D suoria, jotka ovat yhdensuuntaisia pisteiden z ja w kautta kulkevan ympyrä kaaren kanssa.

36 8 Hyperboliset geodeesit Määritelmä. Olkoon γ z w mikä tahansa sileä polku, joka yhdistää pisteet z, w D kiekossa D. Tällöin polun γ z w hyperbolinen pituus l D (γ z w on yhtä suuri, kuin hyperbolinen etäisyys h D (z, w, jos ja vain jos γ z w =< z, w >, missä γ z w on polun jälki. Osoitimme Lauseessa 7.3, että etäisyys h D on additiivinen kiekon D reaaliakselin pisteissä. Edellinen olisi nyt, Määritelmän 8.1 ja Määritelmän 8.2 valossa, helppoa ymmärtää, sillä yksikkökiekon D reaaliakseli kulkee origon kautta ja näin ollen sen janat ovat geodeeseja hyperbolisessa tasossa D. Yleistämme tämän ja näytämme, että etäisyys h D on additiivinen minkä tahansa hyperbolisen tason D geodeesin pitkin, [BM1, ]. 8.3 Lause. Olkoot z ja w kiekon D erillisiä pisteitä. Tällöin on voimassa h D (z, w = h D (z, v + h D (v, w, jos ja vain jos piste v D on pisteiden z ja w välisellä geodeesillä < z, w >. Todistus. Olkoon γ z v : [a, b] D sellainen kiekon D sileä polku, joka yhdistää pisteet z ja v ja jonka jälki γ z v yhtyy geodeesiin < z, w >. Lisäksi olkoon γ v w : [a, b] D toinen kiekon D sileä polku, joka yhdistää pisteet v ja w ja jonka jälki γ v w myös yhtyy geodeesiin < v, w >. Nyt tulopolku γ z v γ v w on hyvin määritelty ja yhdistää pisteet z ja w. Tällöin Määritelmän 8.2 ja tulopolun Määritelmän 2.12 nojalla saamme l D (γ z v γ v w = l D (γ z v + l D (γ v w = h D (z, v + h D (v, w, jos ja vain jos Siis jos ja vain jos γ z v γ v w =< z, w >. h D (z, w = h D (z, v + h D (v, w, h D (z, w = l D (γ z v γ v w, mutta nyt Määritelmän 8.2 mukaan näin on, jos ja vain jos ja siis v < z, w >. < z, w >= γ z w

37 9 Schwarzin-Pickin lemma 37 9 Schwarzin-Pickin lemma Annamme tässä luvussa hyperbolinen version Schwarzin lemmasta. Tämä versio, jota yleensä kutsutaan Schwarzin-Pikcin lemmaksi, osoittaa meille, että muotoa f : D D olevat analyyttiset kuvaukset joko kutistavat hyperbolista etäisyyttä h D tai ne ovat etäisyyden h D isometrioita. Käytämme lemman muotoilemiseksi lähdettä [BM1, 1.4.1]. 9.1 Lause (Schwarzin-Pickin lemma. Oletetaan, että f : D D on analyyttinen kuvaus. Tällöin kuvauksella f on voimassa seuraavat ehdot i f on hyperbolinen kutistus, tämä tarkoittaa sitä, että kaikilla z w D pätee h D (f(z, f(w < h D (z, w ja λ D (f(z f (z < λ D (z, tai ii f on hyperbolinen isometria, tämä tarkoittaa sitä, että kaikilla z, w D pätee h D (f(z, f(w = h D (z, w ja λ D (f(z f (z = λ D (z. Todistus. Lauseen 7.9 nojalla kohdan ii ensimmäinen osa on voimassa, jos ja vain jos f on kiekon D konforminen automorfismi. Toisaalta, jos kohdan ii ensimmäinen osa on voimassa, jolloin f on kiekon D konforminen automorfismi, niin silloin täytyy, Lauseen 7.7 nojalla, olla myös kohdan ii toinenkin osa voimassa. Siis kohdan ii tulokset ovat voimassa, jos ja vain jos f on kiekon D konforminen automorfismi. Oletamme nyt, että f ei ole hyperbolinen isometria. Olkoon w D kiinnitetty ja asetamme funktion F (z = f(z f(w 1 f(wf(z z w, kun z w z D, 1 wz

38 9 Schwarzin-Pickin lemma 38 ja f(z f(w F (w = lim F (z = lim z w z w z w = f (w ( 1 w 2 1 f(w 2 1 wz 1 f(wf(z. Nyt kuvaus F : D D on analyyttinen, kun z w ja jatkuva pisteessä w D, joten F on analyyttinen koko määrittelyjoukossaan, [KA, s.86, s.92]. Määritelmän 7.10 nojalla funktion F osoittaja ja nimittäjä f(z f(w 1 f(wf(z, z w 1 wz ovat kuvauksia, jotka kuvaavat yksikkökiekon D itselleen. Tällöin f(z f(w 1 f(wf(z 1 ja jatkuvuuden nojalla lim z D z w = 1. 1 wz Edelleen lim sup F (z = lim sup z 1 z 1 f(z f(w 1 f(wf(z z w 1 wz 1 lim sup z 1 z w = 1 1 = 1. 1 wz Nyt, Lauseen 4.2 (Maksimiperiaate nojalla, on voimassa F (z 1 kaikilla z D. Siis kaikilla z w D pätee f(z f(w 1 f(wf(z z w. 1 wz Mutta nyt edellinen lauseke on yhtäpitävä pseudohyperbolisen etäisyyden määritelmän kohdan (7.8 kanssa, sillä f(z f(w ρ D (f(z, f(w = 1 f(wf(z z w = ρ D (z, w. 1 wz

39 9 Schwarzin-Pickin lemma 39 Siis F (z 1 kaikilla z D, jos ja vain jos ρ D (f(z, f(w ρ D (z, w, kun z w. Jos nyt jollakin z D pätee, että F (z = 1, niin silloin, Lauseen 4.2 (Maksimiperiaate nojalla, F on vakiofunktio, jonka moduli on 1. Tällöin F (z = 1 kaikilla z D, mistä puolestaan seuraa, että ρ D (f(z, f(w = ρ D (z, w. Toisaalta edellisellä lausekkeella on myös, Lauseen 7.14 nojalla, seuraava esitys ( 1 ( 1 tanh 2 h D(f(z, f(w = tanh 2 h D(z, w, mikä taas tarkoittaa, hyperbolisen tangentin aidon kasvavuuden nojalla, että myös h D (f(z, f(w = h D (z, w, kaikilla z, w D. Nyt kuitenkin, Lauseen 7.9 nojalla, f olisi kiekon D konforminen automorfismi. Tämä puolestaan on vastoin oletustamme, että f ei ole kiekon D konforminen automorfismi. Täytyy siis olla F (z < 1 kaikilla z D, jolloin myös ρ D (f(z, f(w < ρ D (z, w, kaikilla z, w D ja z w D. Edelleen hyperbolisen tangentin aidon kasvavuuden nojalla on myös silloin voimassa, että h D (f(z, f(w < h D (z, w, kaikilla z, w D ja z w D. Koska olimme vapaasti valinneet luvun w D, niin edellinen tulos on voimassa kaikille yksikkökiekon itselleen kuvaaville analyyttisille kuvauksille, jotka eivät ole yksikkökiekon D konformisia automorfismeja. Näin olemme saaneet osoitettua kohdan i ensimmäisen osan. Osoitamme nyt kohdan i toisen osan kiinnittämällä edelleen luvun w D. Nyt kohdan ensimmäisen osan nojalla on voimassa F (z < 1, kaikilla z D.

40 9 Schwarzin-Pickin lemma 40 Erityisesti nyt pätee myös, että F (w < 1, jolloin edelleen josta F (w = f 1 w 2 (w 1 f(w < 1, f(w 2 f (w < 2 1 f(w 2 f (w < 1 1 w 2, 2 1 w 2. Siis λ D (f(w f (w < λ D (w. Koska olimme vapaasti valinneet luvun w D, niin edellinen tulos on voimassa kaikille yksikkökiekon itselleen kuvaaville analyyttisille kuvauksille, jotka eivät ole yksikkökiekon D konformisia automorfismeja. Näin olemme saaneet osoitettua kohdan i toisenkin osan.

41 10 Schwarzin-Pickin lemman laajennus Schwarzin-Pickin lemman laajennus Tässä luvussa käsittelemme tutkielmamme pääaiheen: Kolmen pisteen Schwarzin-Pickin lemma. Kolmen pisteen Schwarzin-Pickin lemma antaa meille selvästi enemmän tietoa analyyttisten kuvausten f : D D käyttäytymisestä avoimessa yksikkökiekossa D, kuin Luvussa 9 käsittelemämme klassista kahden pisteen Schwarzin-Pickin lemma. Lisäksi saamme kolmen pisteen Schwarzin-Pickin lemman avulla johdettua hyödyllisiä lausekkeita hyperbolisille derivaatoille. Ennen varsinaisen aiheen etenemistä, tarvitsemme tietoa Blaschken tulon kuvauksista ja hyperbolisesta erotusosamäärästä Määritelmä. [BM2, s.19] Oletetaan, että F ei ole vakiofunktio. Tällöin funktio F : D D on (äärellinen Blaschken tulo, jos F on analyyttinen avoimessa yksikkökiekossa D, jatkuva sen sulkeumassa D ja F (z = 1 aina, kun z D. Lisäksi, jos g on kiekon D konforminen automorfismi ja z D, niin silloin yhdistetyt kuvaukset (F g(z ja (g F (z ovat myös Blaschken tuloja Lemma. Funktio F on Blaschken tulo, jos ja vain jos F on kiekon D konformisten automorfismien äärellinen tulo. Todistus. Väitteen toinen suunta on selvä, sillä Määritelmän 10.1 nojalla kiekon D konformiset automorfismit ovat Blaschken tuloja, joten jos F on kiekon D konformisten automorfismien äärellinen tulo, niin silloin F on myös Blaschken tulo. Osoitamme nyt, että jos F on Blaschken tulo, niin silloin se on myös kiekon D konformisten automorfismien äärellinen tulo. Oletetaan, että F ei ole vakiofunktio kiekossa D. Nyt funktiolla F täytyy olla ainakin yksi nollakohta kiekossa D, sillä jos funktiolla F ei ole yhtään nollakohtaa kiekossa D, niin silloin funktion 1 F modulilla olisi lokaali maksimi kiekossa D, jolloin 1 F olisi maksimiperiaatteen nojalla vakiofunktio. Mutta silloin F olisi myös vakiofunktio ja se olisi ristiriidassa oletuksemme F ei ole vakiofunktio kanssa. Siis funktiolla F on ainakin yksi nollakohta kiekossa D. Toisaalta, funktion F nollakohtien lukumäärä kiekossa D täytyy olla äärellinen, sillä jos nollakohtien lukumäärä olisi ääretön, niin silloin nollakohtien joukon kasaantumispiste c olisi kiekon D reunalla c D, [KA, 9.21]. Edellinen puolestaan tarkoittaisi sitä, että F (c = 0, joka taas olisi ristiriidassa Määritelmän 10.1 kanssa. Siis funktion F nollakohtien lukumäärä on äärellinen. Merkitsemme funktion F nollakohtia kiekossa D a 1,..., a m, missä a j D ja j = 1,..., m N. Nyt kuvaus F 0 (z = F (z k m=1 ( z am 1 a mz

42 10 Schwarzin-Pickin lemman laajennus 42 on Blaschken tulo, jolla ei ole nollakohtia kiekossa D, [BM2, s.19]. Edellä pääteltyjen nojalla funktio F 0 (z on vakio kiekossa D. Erityisesti F 0 (z = b jollakin b D. Nyt Koska ( z a m 1 a mz F (z = b k m=1 ( z am. 1 a m z A(D kaikilla z D, niin täytyy Blaschken tulon F (z olla kiekon D konformisten automorfismien äärellinen tulo. Sanomme myös, että F on astetta k oleva Blaschken tulo, jos funktiolla F (z on täsmälleen k epätriviaalia tekijää kiekossa D. Seuraavaksi määrittelemme kiekossa D eräänlaisen suunnatun etäisyyden, joka hyperbolisesta etäisyydestä poiketen saa myös kompleksisia arvoja. Voimme ymmärtää tätä suunnattua etäisyyttä ajattelemalla, että se vastaa kiekon D pisteiden erotusta, kun hyperbolinen etäisyys vastaisi kiekon D pisteiden erotuksen itseisarvoa Määritelmä. Pisteiden z, w D välinen kompleksinen pseudohyperbolinen etäisyys on [z, w] = z w, kun z, w D. ( wz Kompleksisen pseudohyperbolisen etäisyyden moduli [z, w] puolestaan määrittelee etäisyyden ρ D (z, w. Muotoilemme seuraavaksi hyperbolisen erotusosamäärän, kompleksisen pseudohyperbolisen etäisyyden avulla, [BM2, 4.2] Määritelmä. Olkoon f : D D analyyttinen kuvaus ja oletetaan, että z, w D ovat erillisiä pisteitä. Tällöin hyperbolinen erotusosamäärä on f (z, w = [f(z, f(w] [z, w] = f(z f(w 1 f(wf(z z w. ( wz Hyperbolinen erotusosamäärä (z, w f (z, w on kahden muuttujan funktio. Kuitenkin kiinnittämällä piste w D, saamme tehtyä hyperbolisesta erotusosamäärästä yhden muuttujan z f (z, w funktion. Seuraava lause antaa meille lisää tietoa hyperbolisesta erotusosamäärästä, [BM2, 4.3].

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA

HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA Markus Glader Pro gradu -tutkielma Syyskuu 2011 MATEMATIIKAN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan laitos GLADER, MARKUS: Hyperbolinen ja kvasihyperbolinen

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 1. Möbius-kuvauksista 13. Konformikuvauksista 13.1. Johdantoa. Seuraavassa α ja β ovat annettuja kompleksilukuja ja k ja t 0 ovat reaalisia vakioita.

Lisätiedot

1 Analyyttiset funktiot

1 Analyyttiset funktiot Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Poincarén kiekko ja Schwarzin-Pickin lemma

Poincarén kiekko ja Schwarzin-Pickin lemma Poincarén kiekko ja Schwarzin-Pickin lemma Pro gradu -tutkielma Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Huhtikuu 2013 Lauri Ajanki Ohjaaja:

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 3. Kompleksinen derivointi 3.1. Määritelmä. Olkoon G kompleksitason C epätyjä osajoukko. Olkoon z 0 joukon G sisäpiste. Funktio f : G C on kompleksisesti

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

Epäeuklidista geometriaa

Epäeuklidista geometriaa Epäeuklidista geometriaa 7. toukokuuta 2006 Sisältö 1 Johdanto 1 1.1 Euklidinen geometria....................... 1 1.2 Epäeuklidinen geometria..................... 2 2 Poincarén kiekko 2 3 Epäeuklidiset

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

6 Eksponentti- ja logaritmifunktio

6 Eksponentti- ja logaritmifunktio ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

L p -keskiarvoalueista

L p -keskiarvoalueista L p -keskiarvoalueista Jenni Alamehtä Matematiikan pro gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos Kesäkuu 4 HELSINGIN YLIOPISTO HELSINGFOS UNIVESITET UNIVESITY OF HELSINKI TiedekuntaOsasto

Lisätiedot

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Reaalimuuttujan kompleksiarvoisen funktion integraali

Reaalimuuttujan kompleksiarvoisen funktion integraali Reaalimuuttujan kompleksiarvoisen funktion integraali Määritelmä 1 Olkoon f(t) = u(t) + jv(t) jatkuva funktio välillä [a, b]. Tällöin (1) b b b f(t)dt = u(t)dt + j v(t)dt. a a a Jatkossa oletetaan, että

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

KVASIKONVEKSISUUS TASOSSA. 1. Johdanto

KVASIKONVEKSISUUS TASOSSA. 1. Johdanto KVASIKONVEKSISUUS TASOSSA MATTI-PETTERI RAJAHONKA Tiivistelmä. Kvasikonveksit alueet osoitetaan Jordan-käyrä-alueiksi. Kvasikonvekseille alueille, joilla on äärellinen määrä reunan komponentteja, saadaan

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot