Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen."

Transkriptio

1 Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta kuinka z z 0 ) on olemassa. f(z) f(z 0 ) lim, merk f (z 0 ) = df z z 0 z z 0 dz (z 0) Esimerkki 1: Laske funktion f(z) = z 2 derivaatta f (z). Esimerkki 2: f(z) = z ei ole derivoituva.

2 Analyyttinen funktio Määritelmä Jos f on derivoituva jokaisessa pisteessä z 0 A, sanotaan että f on analyyttinen A:ssa. f on analyyttinen pisteessä z 0, jos f on analyyttinen jossakin z 0 :n ympäristössä (kiekossa) U(z 0,r) = {z C : z z 0 < r}. Lause 1 Jos f (z 0 ) on olemassa, niin f on jatkuva z 0 :ssa.

3 Ominaisuuksia Lause 2 Olkoot f ja g analyyttisiä A:ssa. Silloin (i) af + bg on analyyttinen A:ssa, a, b C (ii) fg on analyyttinen A:ssa, (fg) = f g + fg (af + bg) = af + bg, kaikilla (iii) jokainen polynomi P(z) = a 0 + a 1 z + +a n z n on analyyttinen C:ssä ja P (z) = a 1 + 2a 2 z + +na n z n 1 (iv) jos g(z) 0 kaikilla z A, niin f g on analyyttinen A:ssa ja ( ) f (z) = f (z)g(z) g (z)f(z) g [g(z)] 2 (v) Rationaalifunktio P(z) Q(z) = a0+a1z+ +anzn b 0+b 1z+ +b mz m on analyyttinen joukossa B = {z C : Q(z) 0}.

4 Ketjusääntö Lause 3 (Ketjusääntö) Olkoot f : A C ja g : B C analyyttisiä ja oletetaan että f(a) B. Tällöin g(f(z)) on analyyttinen A:ssa ja dg(f(z)) dz = g (f(z))f (z). Huom. Vaikka kompleksisella derivaatalla on paljon samanlaisia ominaisuuksia kuin tavallisella reaalifunktion derivaatalla, on myös eroja. jos f on olemassa, niin myös f :n kaikkien kertalukujen derivaatat ovat olemassa! (osoitetaan myöhemmin). Lisäksi, jos f (z 0 ) 0, niin arg f (z 0 ) ilmoittaa kuvauksen z f(z) kiertokulman ja f (z 0 ) venytyksen paikallisesti pisteessä z 0 (perustelu myöhemmin).

5 Konformikuvaus Käyrän tangentti Jos käyrä c : [a, b] C, c(t) = (x(t), y(t)) = x(t)+jy(t), on derivoituva, niin c (t) = (x (t), y (t)) = x (t)+jy (t), on käyrän tangentti pisteessä (x(t), y(t)) mikäli c (t) 0. Määritelmä Kuvaus (funktio) f : A C on konforminen pisteessä z 0 jos on olemassa sellaiset θ [0, 2π) ja r > 0 että jokaiselle käyrälle c(t) A jolle c(0) = z 0 ja c (0) 0, käyrä d(t) = f(c(t)) on derivoituva pisteessä t = 0 ja d (0) = r c (0), arg d (0) = arg c (0)+θ mod 2π. Kuvaus on konformikuvaus, jos se on konforminen jokaisessa pisteessä.

6 Konformisuus Konformikuvaus säilyttää toisiaan leikkaavien käyrien väliset kulmat (=tangenttien väliset kulmat), sillä arg d 1(0) arg d 2(0) = arg c 1(0) arg c 2(0).

7 Derivaatan geometrinen merkitys Lause 4 Jos f : A C on analyyttinen ja f (z 0 ) 0, niin f on konforminen pisteessä z 0 ja θ = arg f (z 0 ) sekä r = f (z 0 ). Todistus: d(t) = f(c(t)), d (t) = f (c(t))c (t) d (0) = f (z 0 )c (0), d (0) = f (z 0 ) c (0) r = f (z 0 ), arg d (0) = arg c (0)+arg f (z 0 ) Esimerkki 3 Tutki kuvauksen z f(z) = z paikallista käyttäytymistä pisteessä z 0 = j. Esimerkki 4 Missä pisteissä f(z) = y jx on derivoituva ja mikä on derivaatta f (z)? Onko f(z) = y + jx derivoituva?

8 Cauchy-Riemannin yhtälöt Olkoon f(z) = u(x, y)+jv(x, y), z = x + jy, ja f määritelty avoimessa joukossa A C. Lause 5 Jos f (z 0 ) on olemassa, niin Cauchy-Riemannin yhtälöt u x = v y, u y = v x ovat voimassa ja f (z 0 ) = u x + j v x = v y j u y. Jos osittaisderivaatat u x, u y, v x, v y ovat olemassa ja jatkuvia A:ssa sekä toteuttavat Cauchy - Riemannin yhtälöt, niin f on analyyttinen A:ssa.

9 Cauchy ja Riemann ja

10 Todistus f (z 0 ) = lim z z0 f(z) f(z 0 ) z z 0, z 0 = x 0 + jy 0. Erikoisesti, kun z = x + jy 0 z 0 (eli x x 0 ), niin f(z) f(z 0 ) z z 0 = u(x,y 0)+jv(x,y 0 ) u(x 0,y 0 ) jv(x 0,y 0 ) x x 0 = u(x,y 0) u(x 0,y 0 ) x x 0 + j v(x,y 0) v(x 0,y 0 ) x x 0 u x (x 0,y 0 )+j v x (x 0,y 0 ), kun x x 0 f (z 0 ) = u x + j v x.

11 Tod. jatkuu Vastaavasti, kun z = x 0 + jy z 0 (eli y y 0 ), niin f(z) f(z 0 ) = u(x 0,y)+jv(x 0,y) u(x 0,y 0 ) jv(x 0,y 0 ) z z 0 j(y y 0 ) = u(x 0,y) u(x 0,y 0 ) + v(x 0,y) v(x 0,y 0 ) j(y y 0 ) y y 0 1 u j y + v y = v y j u y, kun y y 0 f (z 0 ) = v y j u y u x = v y ja u y = v x. Loppuosan todistus sivuutetaan.

12 Eksponenttifunktion analyyttisyys Lause 6 f(z) = e z on analyyttinen ja konforminen koko C:ssä ja d dz ez = e z Huom. Jos f (z) = 0, niin f ei ole välttämättä konforminen. Esimerkiksi kuvaus z z 2 = f(z) kaksinkertaistaa kulmat pisteessä z = 0. Huom. Jos konformikuvauksessa kulman merkki ei muutu, niin kuvaus on suoraan konforminen. Jos kuvauksessa kulman merkki muuttuu mutta suuruus säilyy, niin kuvaus on kääntäen konforminen - kuten esimerkiksi f(z) = z.

13 Napakoordinaattimuunnos ja analyyttisyys: z = a+re jϕ a C kiinteä x = a 1 + r cosϕ, y = a 2 + r sinϕ f(z) = u(x,y) + jv(x,y) = ũ(r,ϕ)+jṽ(r,ϕ), z = x + jy ũ r = u x cosϕ+u y sinϕ, ũ ϕ = u x r sinϕ+u y r cosϕ ṽ r = v x cosϕ+v y sinϕ, ṽ ϕ = v x r sinϕ+v y r cosϕ

14 C-R yhtälön napaesitys { u x = v y u y = v x { ũ ϕ = v y r sinϕ v x r cosϕ = rṽ r ũ r = v y cosϕ v x sinϕ = 1 r ṽϕ { ũ r = 1 r ṽϕ ũ ϕ = rṽ r Esimerkki 5 f(z) = ln z a +j Arg(z a) = Log(z a) = ln r + jϕ, 0 < ϕ < 2π = ũ + jṽ { ũ r = 1 r = 1 r ṽϕ ũ ϕ = 0 = rṽ r f(z) = Log(z a) on analyyttinen

15 Käänteisfunktion analyyttisyys Napakoordinaattimuunnoksessa r = x 2 + y 2, ϕ = arg(x + jy) rajoitutaan (C - R yhtälöiden ja analyyttisyystarkastelujen yhteydessä) arvoihin r > 0 ja 0 < ϕ < 2π (tai muuhun 2π:n pituiseen avoimeen väliin). Lause 7 Olkoon f analyyttinen avoimessa joukossa U ja f : U V sekä f (z) 0 kun z U. Oletetaan, että f 1 : V U on olemassa ja jatkuva. Tällöin f 1 on analyyttinen ja d dw f 1 (w) = 1 f (z), z = f 1 (w)

16 Logaritmin analyyttisyys Lause 8 Kun niin Log w = ln w +j Arg w, w 0, 0 < Arg w < 2π, d dw Log w = 1 w. Todistus: w = f(z) = e z on analyyttinen avoimessa joukossa U = C\{x + jy : x 0, y = 0} ja f (z) = e z 0 sekä f 1 (w) = Log w on jatkuva, joten d dw Log w = 1 d = 1 dz ez e z = 1 w. Kun log w:n haara on kiinnitetty ja epäjatkuvuuskohta poistettu, on vastaavasti d dw log w = 1 w.

17 Harmoninen funktio Funktio u = u(x, y) on harmoninen, jos u = 0 eli jos 2 u x u y 2 = 0, ja jos u:n 2. kertaluvun osittaisderivaatat ovat jatkuvia. Lause 9 Analyyttisen funktion f = u + jv reaali- ja imaginaariosat ovat harmonisia. Kun f = u + jv ja f on analyyttinen, sanotaan että v on u:n konjugaattiharmoninen funktio. Esimerkki 6: Etsi kaikki analyyttiset funktiot f(z), joille Ref = x 3 3xy 2 + 2y.

18 Kohtisuorat käyräparvet Olkoon f = u + jv analyyttinen ja f (z) 0. Tasa-arvokäyrät u(x, y) = c v(x, y) = d. Tasa-arvokäyrien normaalit ( u u = x, u ) y ( v v = x, v ). y Analyyttisyydestä seuraa, että u v = 0, ts. käyrät leikkaavat kohtisuoraan.

19 Fysikaalinen tulkinta Esimerkki 7: Määrää funktion f(z) = log z reaaliosan tasa-arvokäyrät ja imaginaariosan tasa-arvokäyrät. Ratkaisun fysikaalinen tulkinta: Varaus q origossa luo sähkökentän, jota kuvaa kompleksinen potentiali f(z) = log z. Ref(z) = 1 2 log(x2 + y 2 ) on elektrostaattinen potentiaali. Imf(z) = arctan y x on virtausfunktio. Ulkoinen varaus liikkuu pitkin virtaviivaa eli virtausfunktion tasa-arvokäyrää pitkin.

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

MATEMATIIKAN JAOS Kompleksianalyysi

MATEMATIIKAN JAOS Kompleksianalyysi MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Kompleksianalyysi Funktiot

Kompleksianalyysi Funktiot Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Reaalimuuttujan kompleksiarvoisen funktion integraali

Reaalimuuttujan kompleksiarvoisen funktion integraali Reaalimuuttujan kompleksiarvoisen funktion integraali Määritelmä 1 Olkoon f(t) = u(t) + jv(t) jatkuva funktio välillä [a, b]. Tällöin (1) b b b f(t)dt = u(t)dt + j v(t)dt. a a a Jatkossa oletetaan, että

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x i sin x

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x i sin x 2 1. Trigonometriset ja hyperboliset funktiot Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on reaaliluku, niin e ix = cos x + i sin x, e ix = cos x i sin x Jos

Lisätiedot

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun. 17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Mat-1.1331 Matematiikan pk KP3-i - kertaus

Mat-1.1331 Matematiikan pk KP3-i - kertaus Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali

Lisätiedot

Kompleksitermiset jonot ja sarjat

Kompleksitermiset jonot ja sarjat Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

Harmoniset funktiot kompleksialueessa ja konformikuvaukset

Harmoniset funktiot kompleksialueessa ja konformikuvaukset Harmoniset funktiot kompleksialueessa ja konformikuvaukset Hanna-Kaisa Karttunen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2014 Tiivistelmä: Hanna-Kaisa Karttunen,

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Oulussa, kesäkuussa 2016 Jukka Kemppainen. The shortest route between two truths in the real domain passes through the complex domain

Oulussa, kesäkuussa 2016 Jukka Kemppainen. The shortest route between two truths in the real domain passes through the complex domain Kompleksianalyysin luentorunko Oulun yliopisto Tekniikan matematiikka 8. lokakuuta 206 Kuva : Funktion f (z) = z reaaliosa Kuva 2: Funktion f (z) = ez reaaliosa Tämä luentomoniste on tehty emeritusprofessori

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

1 Analyyttiset funktiot

1 Analyyttiset funktiot Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.

Lisätiedot

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia Mat-1.1331 Matematiikan peruskurssi KP3-i A.Rasila J.v.Pfaler TKK27 19. lokakuuta 27 A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 27 1 / 353 A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

14. Pyörteettömät ja lähteettömät vektorikentät; potentiaali

14. Pyörteettömät ja lähteettömät vektorikentät; potentiaali 4. Pyörteettömät ja lähteettömät vektorikentät; potentiaali 4.. Lähdekenttä ja pyörrekenttä 407. Vektorikenttä määritellään lieriökoordinaateissa asettamalla u(ρ,ϕ,z) = z 2 + (ρ ) 2 e ϕ. Kuvaile, millainen

Lisätiedot

Kompleksianalyysi. Tero Kilpeläinen

Kompleksianalyysi. Tero Kilpeläinen Kompleksianalyysi Tero Kilpeläinen Luentomuistiinpanoja keväälle 2005 26. huhtikuuta 2006 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja kompleksianalyysin laudatur-kurssille. Toivoakseni kirjoitus

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (

Lisätiedot

Johdatus yliopistomatematiikkaan, 2. viikko (2 op)

Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Jukka Kemppainen Mathematics Division Yhtälöt ja epäyhtälöt Jokainen osaa ratkaista ensimmäisen asteen yhtälön ax + by + c = 0. Millä parametrien a, b

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

Hyvä uusi opiskelija!

Hyvä uusi opiskelija! Hyvä uusi opiskelija! Tässä tulee tärkeää tietoa heti syksyn alussa pidettävästä laskutaitotestistä. Tekniikan kieli on matematiikka. Matematiikka tarjoaa perustan tekniikan opiskelulle ja soveltamiselle

Lisätiedot

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3 2. Reaaliarvoiset funktiot 2.1. Jatkuvuus 23. Tutki funktion f (x,y) = xy x 2 + y 2 raja-arvoa, kun piste (x,y) lähestyy origoa pitkin seuraavia xy-tason käyriä: a) y = ax, b) y = ax 2, c) y 2 = ax. Onko

Lisätiedot

Matematiikan peruskurssi KP3 I OSA 3: Analyyttisten funktioiden geometriaa: konformikuvaukset

Matematiikan peruskurssi KP3 I OSA 3: Analyyttisten funktioiden geometriaa: konformikuvaukset Matematiikan peruskurssi KP3 I OSA 3: Analyyttisten funktioiden geometriaa: konformikuvaukset J.v.Pfaler (modif) () KP3 Kompleksiluvut 1 / 30 Gerardus Mercator (Gerard Kremer) 5.3.1512 2.12.1594 ja Mercatorin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2. Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Kompleksilukujen historia alkoi yhtälönratkaisusta. Lineaarisella yhtälöllä on aina yksi ratkaisu, mutta jo toisen asteen yhtälön

Kompleksilukujen historia alkoi yhtälönratkaisusta. Lineaarisella yhtälöllä on aina yksi ratkaisu, mutta jo toisen asteen yhtälön Kompleksiluvut Aalto MS-C1300, 2015, v1.1, Kari Eloranta Kompleksilukujen historia alkoi yhtälönratkaisusta. Lineaarisella yhtälöllä on aina yksi ratkaisu, mutta jo toisen asteen yhtälön ax 2 +bx +c =

Lisätiedot

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

Derivaatta: Johdanto. Jatkuvan funktion arvojen muuttumisnopeutta voidaan mitata tangentin kulmakertoimella eli derivaatan arvolla (jos olemassa).

Derivaatta: Johdanto. Jatkuvan funktion arvojen muuttumisnopeutta voidaan mitata tangentin kulmakertoimella eli derivaatan arvolla (jos olemassa). Derivaatta: Johdanto Kuva: Tangentteja. Jatkuvan funktion arvojen muuttumisnopeutta voidaan mitata tangentin kulmakertoimella eli derivaatan arvolla (jos olemassa). Derivaatta: Määritelmä (1/2) Sekantin

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Kompleksianalyysi 1. Tero Kilpeläinen

Kompleksianalyysi 1. Tero Kilpeläinen Kompleksianalyysi 1 Tero Kilpeläinen Luentomuistiinpanoja keväälle 2015 6. maaliskuuta 2015 Alkusanat Seuraavilla sivuilla on luentomuistiinpanoja Kompleksianalyysi 1 -kurssille. Nämä on muokattu kompleksianalyysin

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Funktioteoria I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Kari Astalan muistiinpanoista (2005) muokannut Pekka Nieminen Kuvat: Martti Nikunen Funktioteorian eli kompleksianalyysin

Lisätiedot

Konformikuvauksista. Lotta Jokiniemi Ohjaaja: Jouni Parkkonen. Sivuainetutkielma

Konformikuvauksista. Lotta Jokiniemi Ohjaaja: Jouni Parkkonen. Sivuainetutkielma Konformikuvauksista Lotta Jokiniemi 23.5.2016 Ohjaaja: Jouni Parkkonen f z 0 B D 0 Sivuainetutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 i Tiivistelmä Jokiniemi, Lotta

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot Funktion raja-arvo 1/6 Sisältö Esimerkki funktion raja-arvosta Lauseke f() = 1 cos määrittelee reaauuttujan reaaliarvoisen funktion f, jonka lähtöjoukko muodostuu nollasta eroavista reaaliluvuista. Periaatteessa

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b,

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b, Kompleksiluvut c Pekka Alestalo 013 Tämä moniste sisältää perusasiat kompleksiluvuista. Tähdellä merkityt kohdat ovat lähinnä oheislukemistoksi tarkoitettua materiaalia. 1 Lukujoukot Uuden tyyppisten lukujen

Lisätiedot

KATRI KOPONEN VIRTAUSTEN MALLINTAMINEN KONFORMIKUVAUKSEN AVULLA. Diplomityö

KATRI KOPONEN VIRTAUSTEN MALLINTAMINEN KONFORMIKUVAUKSEN AVULLA. Diplomityö KATRI KOPONEN VIRTAUSTEN MALLINTAMINEN KONFORMIKUVAUKSEN AVULLA Diplomityö Tarkastaja: Seppo Pohjolainen Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekuntaneuvoston kokouksessa 12.08.2015 I TIIVISTELMÄ

Lisätiedot

Analyyttinen jatke ja Riemannin pinnat

Analyyttinen jatke ja Riemannin pinnat Analyyttinen jatke ja Riemannin pinnat Eero Hakavuori Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä: Eero Hakavuori, Analyyttinen jatke ja Riemannin

Lisätiedot

Derivaatta Maarit Järvenpää Puhtaaksikirjoitus Markus Harju

Derivaatta Maarit Järvenpää Puhtaaksikirjoitus Markus Harju Derivaatta Maarit Järvenpää Putaaksikirjoitus Markus Harju Sisältö Derivaatan määritelmä 2 Derivoimissääntöjä 7 3 Dierentiaalilaskennan peruslauseita 3 4 Funktion ääriarvot 20 Derivaatan määritelmä Olkoon

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Diskreetin LTI-systeemin stabiilisuus

Diskreetin LTI-systeemin stabiilisuus Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

Phragmén-Lindelön lauseista

Phragmén-Lindelön lauseista Phragmén-Lindelön lauseista Pro gradu -tutkielma Tuomas Saarelainen 249684 Itä-Suomen yliopisto 28. toukokuuta 2017 Sisältö 1 Johdanto 1 2 Kompleksiarvoisten funktioiden ominaisuuksia 2 2.1 Kompleksitason

Lisätiedot

Matemaattiset menetelmät II

Matemaattiset menetelmät II Matemaattiset menetelmät II 5. helmikuuta 214 Esipuhe Tämä on 1. versio Matemaattiset menetelmät II-kurssin opetusmonisteesta, joka perustuu Vaasan yliopistossa luennoimaani vastaavan nimiseen kurssiin.

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Derivaatta, interpolointi, L6

Derivaatta, interpolointi, L6 , interpolointi, L6 1 Wikipeia: (http://fi.wikipeia.org/wiki/ ) Etälukio: (http://193.166.43.18/etalukio/ pitka_matematiikka/kurssi7/maa7_teoria10.html ) Maths online: (http://www.univie.ac.at/future.meia/

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89. 5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.

Lisätiedot

Julian joukot. Henna-Liisa Kivinen. Matematiikan pro gradu

Julian joukot. Henna-Liisa Kivinen. Matematiikan pro gradu Julian joukot Henna-Liisa Kivinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2013 Tiivistelmä: Henna-Liisa Kivinen Julian joukot, matematiikan pro gradu -tutkielma,

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Harnack-funktiot ja Picardin lause

Harnack-funktiot ja Picardin lause Harnack-funktiot ja Picardin lause Arja Rautiainen Matematiikan Pro Gradu Tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Talvi 8 Esipuhe Pro Gradu- tutkielmassani syvennetään kompleksianalyysin

Lisätiedot

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi. Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Funktion derivaatta. Derivaatan määritelmä. Johdanto derivaatan määritelmään

Funktion derivaatta. Derivaatan määritelmä. Johdanto derivaatan määritelmään Funktion derivaatta Derivaatan määritelmä Johdanto derivaatan määritelmään Kstään, mikä on kärän sin origoon piirretn tangentin htälö Möhemmin, kun olemme käsitelleet derivaatat, saisimme tämän helpommin,

Lisätiedot

Residylause ja sen sovelluksia

Residylause ja sen sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Henry Joutsijoki Residylause ja sen sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 7 Tampereen yliopisto Matematiikan, tilastotieteen

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Kompleksianalyysi ja integraalimuunnokset. Seppo Hassi

Kompleksianalyysi ja integraalimuunnokset. Seppo Hassi Kompleksianalyysi ja integraalimuunnokset Seppo Hassi Syksy 6 iii Esipuhe Tämä on Kompleksianalyysi ja integraalimuunnokset -kurssille laadittu opetusmoniste, jonka sisältö perustuu Vaasan yliopistossa

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

3 TOISEN KERTALUVUN LINEAARISET DY:T

3 TOISEN KERTALUVUN LINEAARISET DY:T 3 TOISEN KERTALUVUN LINEAARISET DY:T Huomautus epälineaarisista. kertaluvun differentiaaliyhtälöistä Epälineaarisen DY:n ratkaisemiseen ei ole yleismenetelmää. Seuraavat erikoistapaukset voidaan ratkaista

Lisätiedot

= 0 y oleva yhtälö. Vastaavasti yhtälö. x, u

= 0 y oleva yhtälö. Vastaavasti yhtälö. x, u 1. Määritelmiä Ensimmäisen ja toisen kertaluvun ratkaisemattomassa muodossa olevat tavalliset differentiaaliyhtälöt ovat tuntemattomalle funktiolle y = y(x) muotoa F (x, y, y ) = 0 ja G(x, y, y, y ) =

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

3. Reaalifunktioiden määräämätön integraali

3. Reaalifunktioiden määräämätön integraali 50 3. Reaalifunktioiden määräämätön integraali Integraalifunktio Derivoinnin käänteistoimituksena on vastata kysymykseen "Mikä on se funktio, jonka derivaatta on f?" Koska vakion derivaatta 0, havaitaan

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

Kompleksinen Laplace-muunnos

Kompleksinen Laplace-muunnos TAMPEREEN YLIOPISTO Pro gradu -tutkielma Päivikki Mäki Kompleksinen Laplace-muunnos Informaatiotieteiden yksikkö Matematiikka Kesäkuu 212 Tampereen yliopisto Informaatiotieteiden yksikkö MÄKI, PÄIVIKKI:

Lisätiedot