Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta"

Transkriptio

1 Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

2 Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion muutosnopeudesta Kuinka nopeasti lainapääoma kasvaa ajan suhteen? Mikä on kysynnän herkkyys muutoksille nykyisestä hintatasosta? Kuinka nopeasti yksikkötuotantokustannus pienenee tuotannon koon kasvaessa? Tällä luennolla tarkastelemme funktion muutosnopeutta eli derivaattaa Derivaatta liittyy läheisesti edellisellä luennolla käsiteltyihin asioihin: Derivaatta määritellään raja-arvona Derivaatan olemassaolo edellyttää funktion jatkuvuutta Funktion hahmottaminen yhdistettynä funktiona helpottaa usein derivointia 2

3 Funktion arvojen muutosnopeus Esim. Luomuturnipsin tuottajat aikovat tehdä kartellin. Tuottajat tietävät, että turnipsin kysyntä f kilohinnan x funktiona on f x = 15.9x Kun tuotantokustannus on 5 /kg, voittoa/tappiota kuvaava funktio (k ) on v x = f x x 5 = 15.9x x 4051 Mikä on voiton/tappion muutosnopeus kilohinnan suhteen hinnan ollessa 20 /kg? Eli kuinka paljon jokainen kilohintaan lisätty euro vaikuttaa voittoon / tappioon lähtöhinnan ollessa 20 /kg? 3

4 Funktion arvojen muutosnopeus pisteessä x 0 Voittofunktion muutosnopeutta ( /kg) kilohinnan ollessa x 0 = 20 voidaan likimääräisesti kuvata laskemalla voiton suuruuden eroja, kun hinta kasvaa h /kg: Arvio muutosnopeudelle: Jos kilohinta 20 /kg 25 /kg, voitto kasvaa v 25 v 20 = 871 k, eli muutosnopeus on arviolta 871 k /5= k kutakin kilohintaan lisättyä euroa kohden Tarkempi arvio muutosnopeudelle: Jos kilohinta 20 /kg 21 /kg, voitto kasvaa v 21 v 20 = k, eli muutosnopeus on arviolta k kutakin kilohintaan lisättyä euroa kohden Vielä tarkempi arvio muutosnopeudelle: Jos kilohinta 20 /kg /kg, voitto kasvaa v v 20 = k, eli muutosnopeus on arviolta k /0.05= k kutakin kilohintaan lisättyä euroa kohden 4

5 Derivaatta pisteessä x 0 Funktion f muutosnopeutta pisteessä x 0 voidaan siis arvioida erotusosamäärällä: Funktion arvon muutos, kun x 0 x 0 + h (x 0 + h, f(x 0 +h)) f x 0 + h f(x 0 ) = f x 0 + h f(x 0 ) x 0 + h x 0 h (x 0, f(x 0 )) = h = f x 0 + h f(x 0 ) x:n muutos x 0 x 0 + h Tämä erotusosamäärä vastaa pisteiden (x 0, f(x 0 )) ja (x 0 + h, f(x 0 +h)) kautta kulkevan suoran kulmakerrointa 5

6 Derivaatta pisteessä x 0 Erotusosamäärän f x 0 + h f(x 0 ) h antamaa arviota funktion muutosnopeudesta pisteessä x 0 voidaan tarkentaa pienentämällä muutostermiä h (x 0, f(x 0 )) = h (x 0 + h, f(x 0 +h)) = f x 0 + h f(x 0 ) 6

7 Derivaatta pisteessä x 0 Täsmällinen muutosnopeus eli funktion derivaatta f x 0 pisteessä x 0 saadaan, kun muutostermi h kutistuu nollaan f x 0 = lim h 0 f x 0 + h f(x 0 ) h (x 0, f(x 0 )) y = f(x 0 ) + f x 0 (x x 0 ) Derivaatta f x 0 vastaa funktion tangentin kulmakerrointa pisteessä x 0 7

8 Derivaatta pisteessä x 0 Esim. Voittofunktion v x = 15.9x x 4051 muutosnopeus pisteessä x = 20 on v 20 = lim h 0 v 20 + h v(20) h = lim h h h h = lim h h h h = lim h h = Kilohinnan ollessa 20 voitto kasvaa k jokaista kilohintaan lisättyä euroa kohden 8

9 Derivoituvuus pisteessä x 0 ja välillä (a,b) Jos erotusosamäärällä f x 0 = lim h 0 f x 0 + h f(x 0 ) h on äärellinen raja-arvo (eli funktiolla on derivaatta) pisteessä x 0, sanotaan että funktio on derivoituva pisteessä x 0. Jatkuvuus pisteessä x 0 on välttämätön edellytys derivoituvuudelle pisteessä x 0 Pisteessä x 0 jatkuva funktio ei kuitenkaan välttämättä ole derivoituva tässä pisteessä Esim. Funktio f x = x on jatkuva muttei derivoituva pisteessä x = 0. f h f(0) lim = lim h 0+ h h 0+ f h f(0) lim = lim h 0 h h 0 h 0 h h 0 h = 1, = 1, Funktio on derivoituva välillä (a, b), jos se on derivoituva kaikissa pisteissä x (a, b) f h f(0) f h f(0) lim lim h 0+ h h 0 h Raja-arvoa ei ole olemassa. 9

10 Derivaattafunktio Funktion f(x) muutosnopeus on usein erisuuri eri pisteissä x Esimerkiksi turnipsituottajien voitto Kasvaa ensin voimakkaasti kilohinnan kasvaessa, mutta kasvu hidastuu kunnes voiton maksimoivan kilohinnan x /kg jälkeen voitto alkaa vähentyä ensin hitaasti ja sitten voimakkaasti. Tarvitaan sääntö (eli funktio), jolla funktion muutosnopeus voidaan laskea missä tahansa pisteessä x 10

11 Derivaattafunktio Derivaattafunktion avulla voidaan lausua f:n muutosnopeus x:n funktiona f x = lim h 0 f x + h f(x) h Esim. f: R R, f x = x 2 : f (x + h) 2 x 2 x = lim h 0 h = lim h 0 2x + h = 2x = lim h 0 x 2 + 2xh + h 2 x 2 h Derivaattafunktiosta käytetään f x :n lisäksi myös merkintöjä Df x, df(x), dy, y, dx dx x y x, y 11

12 Derivaatta ja funktion kasvavuus / vähenevyys Derivaattafunktion f x perusteella voidaan tehdä päätelmiä funktion f x kasvavuudesta / vähenevyydestä Jos f x < 0, funktion tangentti pisteessä x on laskeva suora funktio vähenee Jos f x > 0, funktion tangentti pisteessä x on nouseva suora funktio kasvaa Jos f x = 0, kyseessä on joko funktion (lokaali) ääriarvo tai nk. satulapiste Esim. funktio f(x) = x 2 on Vähenevä, kun x < 0, sillä tällöin f x = 2x < 0 Kasvava, kun x > 0, sillä tällöin f x = 2x > 0 Saavuttaa miniminsä, kun x = 0, sillä tällöin f 0 = 2 0 = 0 Esim. funktio f(x) = x 3 on Kasvava, kun x 0, sillä tällöin f x = 3x 2 > 0 Saavuttaa satulapisteensä, kun x = 0, sillä tällöin f 0 = = 0 12

13 k /( /kg) Derivaatta ja funktion kasvavuus / vähenevyys Luomuturnipsin tuotannosta koituvan voiton muutosnopeutta hinnan suhteen kuvaa derivaattafunktio v (x) = 31.8x Voittofunktio v x = 15.9x x 4051 on Kasvava, kun v x > 0 eli x < = Vähenevä, kun v x < 0 eli x > Saavuttaa ääriarvonsa/satulapisteen, kun v x = 0 eli x = Kuvan perusteella pisteessä x = on ääriarvo, tarkemmin maksimi. Voittofunktion maksimiarvo on M 13

14 Derivaatan nollakohta ja funktion ääriarvo Yleinen totuus onkin, että Derivoituva funktio f saavuttaa lokaalin ääriarvonsa derivaatan nollakohdassa x 0 : f x 0 =

15 Presemo-kysymys Derivaattafunktion f kuvaaja on kuvassa A. Mikä kuvista 1-3 on funktion f kuvaaja? Kuva A Kuva 1 Kuva 2 Kuva 3 Laitoksen nimi 15

16 Presemo-kysymys Derivaattafunktion f kuvaaja on kuvassa A. Missä pisteessä/pisteissä funktio f saavuttaa lokaalit ääriarvonsa? ja ja

17 Derivointisääntöjä Minkä tahansa derivoituvan funktion derivaattafunktio voidaan muodostaa erotusosamäärän raja-arvon kautta f x = lim h 0 f x + h f(x) h Usein on kuitenkin kätevämpää hyödyntää eri funktiotyypeille johdettuja derivointisääntöjä 17

18 Derivointisääntöjä D1: Vakiofunktion derivaatta Olkoon f: R R, f x = a (vakio). Tällöin f x = D(a) = 0. Perustelu: Vakiofunktio ei kasva eikä vähene, eli sen muutosnopeus on nolla kaikilla x. Täsmällinen todistus erotusosamäärän raja-arvolla: f f x+h f(x) x = lim h 0 h aa = lim = 0. h 0 h 18

19 Derivointisääntöjä D2: Yksinkertaisen polynomifuktion derivaatta Olkoon f: R R, f x = x n, n N. Tällöin f x = D x n = nx n1 Todistus erotusosamäärän kautta (kuten kalvolla 11) Esim. f x = x 4 f (x) = 4x 3 f x = x 6 f (x) = 6x 5 19

20 Derivointisääntöjä D3: Vakiolla kerrotun funktion derivaatta Olkoon f(x):n derivaattafunktio f x. Tällöin funktion a f x derivaatta D a f x = a f x Funktion f arvot a- kertaistetaan Funktion f muutosnopeus a-kertaistuu Todistus: D a f x a f x+h a f(x) = lim h 0 h f x+h f x = a lim h 0 h = af (x). 20

21 Derivointisääntöjä D4: Summan derivointi Jos funktiot f ja g ovat derivoituvia pisteessä x, niin D f x + g x = Df x + Dg x = f x + g (x) Kokonaismuutosnopeus = Osamuutosnopeuksien summa 21

22 k /( /kg) Derivointisääntöjä Sääntöjen D1-D4 perusteella saadaan kaikkien polynomifunktioiden f: R R, f x = a 0 + a 1 x + a 2 x a n x n derivaatat. Esim. Luomuturnipsista saatavan voiton ja kilohinnan yhteyttä kuvaa funktio v: R + R v x = 15.9x x 4051 Säännöillä D1-D4 saadaan voiton muutosnopeuden ja kilohinnan yhteyttä kuvaava funktio v (x) = D 15.9x x 4051 = D 15.9x 2 ) + D(889.7x) + D(4051 = 15.9D x 2 ) D(x) + D(4051 = x = 31.8x Nyt esim. muutosnopeus hintatasolla 20 /kg saadaan helposti: v (20) = = k /( /kg) 22

23 Presemo-kysymys Määritä funktion f x = 4x 3 + x x + 1 derivaattafunktio 1. f x = 4x 2 + x f x = 12x 2 + 2x f x = 12x 2 + 2x

24 k /( /kg) Toinen derivaatta Luomuturnipsista saatavan voiton tasoa yksikköhinnalla x kuvaa funktio v x = 15.9x x 4051 Voiton muutosnopeutta kuvaa derivaattafunktio v (x) = 31.8x , jonka perusteella Voittofunktio kasvaa nopeimmin (889.7 k kutakin lisättyä kilohintaeuroa kohden), kun kilohinta x=0 Kasvu hidastuu tasaisesti kilohinnan kasvaessa (31.8 k / lisätty kilohintaeuro / lisätty kilohintaeuro) Kasvu kääntyy vähenemiseksi ääriarvokohdassa x = /kg Tämän jälkeen väheneminen kiihtyy tasaisesti kilohinnan kasvaessa (31.8 k / lisätty kilohintaeuro / lisätty kilohintaeuro) Funktion kiihtyvyyttä eri x:n arvoilla kuvaa sen toinen derivaatta v (x), joka saadaan derivoimalla derivaattaa v (x): v x = D 31.8x = 31.8 Tässä esimerkissä voiton kiihtyvyys (tai oikeammin hidastuvuus) kilohinnan suhteen on vakio Laitoksen nimi 24

25 Toinen derivaatta ja ääriarvon laatu Aiemmin nähtiin, että voittoa kuvaavalla funktiolla v on maksimi, kun x = /kg Tässä maksimipisteessä Derivaatta (muutosnopeus) v = 0 Derivaatan arvot muuttuvat positiivisista negatiivisiksi Voiton kiihtyvyys on negatiivinen: v = 31.8 < 0 Laitoksen nimi 25

26 Toinen derivaatta ja ääriarvon laatu Yleisesti: Piste x 0 on funktion f lokaali ääriarvopiste, jos 1. f x 0 = 0 ja 2. Derivaatan f merkki muuttuu x 0 :n ohi mentäessä o Jos derivaatan merkki ei muutu, x 0 on funktion satulapiste Ääriarvopiste x 0 on lokaali minimi, jos f muuttuu negatiivisesta positiiviseksi, Eli väheneminen muuttuu kasvuksi, Eli kiihtyvyys f x 0 > 0. Ääriarvopiste x 0 on lokaali maksimi, jos f muuttuu positiivisesta negatiiviseksi, Eli kasvu muuttuu vähenemiseksi, Eli kiihtyvyys f x 0 < 0. Esim. Funktiolla f x = x 3 + 3x on kaksi lokaalia ääriarvopistettä: f x = 3x 2 + 6x = 0 3x x + 2 = 0 x = 0 x = 2 Funktion toinen derivaatta on f x = 6x + 6. Piste x = 2 on lokaali maksimi, sillä f 2 = 6 (2) + 6 = 6 < 0. Piste x = 0 on lokaali minimi, sillä f 0 = = 6 > 0. 26

27 Presemo-kysymys Mikä on funktion f x = 3x 2 + 2x + 4 maksimiarvo?

28 (Rajoittamattoman) ääriarvotehtävän ratkaisun perusperiaatteet Mikä on funktion f x minimi- / maksimiarvo? 1. Etsi mahdolliset ääriarvokohdat x 0 derivaatan nollakohdista o Esim. edellä f (x) = 6x + 2 = 0 mahdollinen ääriarvokohta x 0 = Tarkista mahdollisten ääriarvokohtien laatu toisen derivaatan avulla: o Esim. edellä f x = 6 < 0 ääriarvokohta x 0 = 1 on maksimi 3 3. Laske funktion arvo ääriarvokohdissa o Esim. edellä f 1 3 = = funktion maksimiarvo on

29 Toinen derivaatta ja ääriarvon laatu Joissakin tapauksissa funktion f muutos on niin hidasta ääriarvopisteessä x 0, ettei 2. derivaatta f reagoi siihen, vaan f x 0 = 0 Esim. Funktio f: R R +, f x = x 4 saavuttaa miniminsä pisteessä x = 0, mutta f x = 12x 2 f 0 = 0. Tällaisissa tapauksessa ääriarvon laatua ei voi päätellä toisen derivaatan etumerkistä Toisella derivaatalla on kuitenkin tärkeä merkitys usean muuttujan ääriarvotehtävissä (tähän palataan myöhemmin kurssilla) 29

30 Harjoittele verkossa! Calculus Derivatives Power rule (Beginner-taso)

31 Yhteenveto derivoinnista Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden muutosnopeutta eli kiihtyvyyttä Derivointisäännöt joillekin tavallisille funktiotyypeille Vakiofunktio: D(a) = 0 Yksinkertainen polynomifunktio: D x n = nx n1 Yleisiä sääntöjä funktioiden yhdistelmien käsittelyyn Vakiolla kerrotun funktion derivaatta on derivaatta kerrottuna vakiolla: D a f x = a f x Summan derivaatta on derivaattojen summa: D f x + g x = f x + g (x) 31

32 Yhteenveto derivoinnista Funktio on Kasvava, kun f x > 0 Vähenevä, kun f x < 0 Piste x 0 on funktion f lokaali ääriarvopiste, jos 1. f x 0 = 0 (eli x 0 on derivaatan nollakohta) ja 2. Derivaatan f merkki muuttuu x 0 :n ohi mentäessä muuten x 0 on satulapiste Ääriarvopiste x 0 on Lokaali minimi, jos f x 0 > 0 (eli väheneminen muuttuu kasvuksi) Lokaali maksimi, jos f x 0 < 0 (eli kasvu muuttuu vähenemiseksi) 32

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion derivointi Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion derivointi Viime luennolla Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio

Lisätiedot

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00

Lisätiedot

Matematiikkaa kauppatieteilijöille

Matematiikkaa kauppatieteilijöille Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely Talousmatematiikan perusteet: Luento 17 Osittaisintegrointi Sijoitusmenettely Motivointi Viime luennolla käsittelimme integroinnin perussääntöjä: Vakiolla kerrotun funktion integrointi: af x dx = a f x

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Analyysi I (sivuaineopiskelijoille)

Analyysi I (sivuaineopiskelijoille) Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

Funktion suurin ja pienin arvo DERIVAATTA,

Funktion suurin ja pienin arvo DERIVAATTA, Funktion suurin ja pienin arvo DERIVAATTA, MAA6 1. Suurin ja pienin arvo suljetulla välillä Lause, jatkuvan funktion ääriarvolause: Suljetulla välillä a, b jatkuva funktio f saa aina pienimmän ja suurimman

Lisätiedot

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta

Talousmatematiikan perusteet: Luento 15. Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Talousmatematiikan perusteet: Luento 15 Rajoitettu optimointi Lagrangen menetelmä Lagrangen kerroin ja varjohinta Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia:

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Matriisit ja optimointi kauppatieteilijöille

Matriisit ja optimointi kauppatieteilijöille Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012 763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

3 Derivoituvan funktion ominaisuuksia

3 Derivoituvan funktion ominaisuuksia ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö-

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Matematiikka B1 - TUDI

Matematiikka B1 - TUDI Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin

Lisätiedot

Talousmatematiikan perusteet: Luento 3

Talousmatematiikan perusteet: Luento 3 Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen ja paloittain lineaarinen funktio Lineaarinen interpolointi Toisen ja korkeamman asteen polynomifunktiot s(n) p e m K(t) Tähän mennessä Olemme

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

4 Polynomifunktion kulku

4 Polynomifunktion kulku 4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!)

Yhdistetty funktio. Älä sekoita arvo- eli kuvajoukkoa maalijoukkoon! (wikipedian ongelma!) Yhdistetty unktio TRIGONOMETRISET FUNKTIOT, MAA7 Määritelmä, yhdistetty unktio: Funktioiden ja g yhdistetty unktio g (luetaan g pallo ) määritellään yhtälöllä g g. Funktio g on ns. ulkounktio ja sisäunktio.

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8..08 KERTAUS KERTAUSTEHTÄVIÄ K. a) Keskimääräinen muutosnopeus välillä [0, ] saadaan laskemalla kohtia x = 0 ja x = vastaavien kuvaajan

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25

Sisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25 Funktiot 12. syyskuuta 2005 sivu 1 / 25 Sisältö 1 Funktiot 2 1.1 Määritelmä ja peruskäsitteitä 2 1.2 Bijektiivisyys 3 1.3 Käänteisfunktio f 1 4 1.4 Funktioiden monotonisuus 5 1.5 Funktioiden laskutoimitukset

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Yleisiä integroimissääntöjä

Yleisiä integroimissääntöjä INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

4 FUNKTION ANALYSOINTIA

4 FUNKTION ANALYSOINTIA Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 1.1.018 4 FUNKTION ANALYSOINTIA POHDITTAVAA 1. Appletin avulla huomataan, että suorakulmion pinta-ala on mahdollisimman suuri, kun kaikki

Lisätiedot

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot