Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto"

Transkriptio

1 Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

2 Viime luennolla Funktion Derivaatta f (x) kuvaa funktion muutosnopeutta Toinen derivaatta f x = D f x kuvaa muutosnopeuden muutosnopeutta eli kiihtyvyyttä Funktio on Kasvava, kun f x > 0 Vähenevä, kun f x < 0 Derivointisääntöjä Vakiofunktio: D(a) = 0 Yksinkertainen polynomifunktio: D x n = nx n1 2

3 Tällä luennolla Lisää derivointisääntöjä Potenssifunktio Eksponenttifunktio Logaritmifunktio Yhdistetyn funktion derivointi Tulon ja osamäärän derivointi Ja derivaatan kauppatieteellisiä sovelluksia Suhteellinen muutosnopeus Jousto 3

4 Lisää derivointisääntöjä D5: Potenssifunktion derivaatta Olkoon f: R R, f x = x n, n R. Tällöin f x = D x n = nx n1 Sääntö toimii siis aivan kuten yksinkertaisen polynomifunktion tapauksessa Esim. f x = x 3 x = x 4 3 f x = x1 3 = 3 x. f x = x 0.75 f (x) = 0.75x

5 Potenssifunktion derivointi Esim. Kultakalakaviaarin kysynnän ja tarjonnan (kg) riippuvuutta yksikköhinnasta x ( /kg) kuvaavat funktiot: Kysyntä f: R ++ R +, f x = 13262x 1.14 Tarjonta g: R ++ R +, g x = 1.16x 1.52 Kuvaajan perusteella näyttää siltä, että yksikköhinnan kasvaessa Tarjonta kasvaa, jolloin muutosnopeus g x > 0 Kasvu on kiihtyvää, jolloin kiihtyvyys g x > 0 Päätelmä voidaan vahvistaa derivoimalla g x = D 1.16x 1.52 = x = x 0.52 > 0 g x = D x 0.52 = x = x 0.48 > 0 5

6 Potenssifunktion derivointi (Jatkuu) Kultakalakaviaarin kysynnän ja tarjonnan (kg) riippuvuutta yksikköhinnasta x ( /kg) kuvaavat funktiot: Kysyntä f: R ++ R +, f x = 13262x 1.14 Tarjonta g: R ++ R +, g x = 1.16x 1.52 Kuvaajan perusteella näyttää siltä, että yksikköhinnan kasvaessa Kysyntä vähenee, jolloin muutosnopeus f x < 0 Väheneminen hidastuu, eli muutosnopeus kasvaa (tulee vähemmän negatiiviseksi), jolloin kiihtyvyys f x > 0 (!) Päätelmä voidaan vahvistaa derivoimalla f x = D 13262x 1.14 = x = x 2.14 < 0 f x = D x 2.14 = (2.14)x = 32354x 3.14 > 0 6

7 Lisää derivointisääntöjä D6: Eksponenttifunktion derivaatta Olkoon f: R R, f x = a x. Tällöin f x = D a x = a x ln a Erityisesti f x = D e x = e x Todistus kalvolla 35 (jos kiinnostaa) 7

8 Lisää derivointisääntöjä D7: Logaritmifunktion derivaatta Olkoon f: R R, f x = log a x. Tällöin f x = D log a x = 1 x ln a Erityisesti f x = D ln x = 1 x Todistus kalvolla 36 (jos kiinnostaa) 8

9 Derivointisääntöjä Säännöt D1, D2, D5, D6 ja D7 esittivät, kuinka eräistä tärkeistä perusfunktioista f saadaan niiden muutosnopeutta kuvaavat derivaattafunktiot f D1: Vakiofunktion derivointi D5: Potenssifunktion (sis. D2 yksinkertaisen polynomifunktion) derivointi D6: Eksponenttifunktion derivointi D7: Logaritmifunktion derivointi Säännöt D3 ja D4 ovat yleisiä funktioiden yhdistelmien käsittelysääntöjä (vakiolla kerrotun funktion / funktoiden summan derivointi), kuten myös seuraavaksi esiteltävät säännöt D8: Yhdistetyn funktion derivointi D9: Tulon derivointi D10: Osamäärän derivointi 9

10 Yhdistetyn funktion derivointi Esim. Tarkastellaan funktiota t: R R, t x = x 2 + 2x + 3 = (x 2 + 2x + 3) 1 2 Funktio ei ole mitään perustyyppiä eikä sille ole valmista derivointisääntöä. Se voidaan kuitenkin hahmottaa yhdistettynä funktiona t x = g f Sisäfunktiona on polynomifunktio f: R R, f x = x 2 + 2x + 3 x, kun Ulkofunktio on potenssifunktio g: R R, g y = y

11 Yhdistetyn funktion derivointi D8: Yhdistetyn funktion derivointi Olkoon g f x yhdistetty funktio siten, että Sisäfunktio f: A B on derivoituva pisteessä x Ulkofunktio g: V f C on derivoituva pisteessä y = f(x) Tällöin yhdistetyn funktion derivaatta on D g f x = g f x f x = g y f (x) Ulkofunktion muutosnopeus sisäfunktion suhteen Sisäfunktion muutosnopeus x:n suhteen 11

12 Yhdistetyn funktion derivointi Esim. t x = g f x = x 2 + 2x + 3, missä Sisäfunktio f x = x 2 + 2x + 3 Ulkofunktio g y = y 1 2 Tällöin f (x) = 2x + 2 g y = 1 2 y1 2 t (x) = g f x f x = 1 2 (x2 + 2x + 3) 1 2 2x + 2 = 2x+2 2 x 2 +2x+3 12

13 Presemo-kysymys Mikä on funktion f x = ln(1 + x 2 ) derivaatta? x 1 1+x 2 2x 1+x 2 13

14 Tulon derivointi Esim. Härvelitehtaan tuotannon määrän ja yksikköhinnan kehitystä ajan x suhteen kuvaavat funktiot Määrä: f: R + R +, f x = (x + 1) 0.54 (potenssifunktio) Yksikköhinta: g: R + R +, g x = x (eksponenttifunktio) Tuotannon arvoa kuvaa tällöin funktio v: R + R +, v x = f x g x = (x + 1) x Funktio v on funktioiden f ja g tulo. 14

15 Tulon derivointi D9: Tulon derivointi Jos funktiot f ja g ovat derivoituvia pisteessä x, niin f:n muutosnopeus g:n muutosnopeus D f x g(x) = f x g x + g (x)f x Kokonaismuutosnopeus g x -kertaisena f x -kertaisena 15

16 Tulon derivointi Esim. Tuotannon arvoa ajan suhteen kuvaa funktio v x = f x g x = x x Tuotannon arvon muutosnopeutta kuvaa funktio v x = D f x g x = f x g x + g x f x = D (x + 1) x + D x (x + 1) 0.54 = (x + 1) x x ln (x + 1) 0.54 = (x + 1) x x (x + 1) 0.54 = 1.08 x ( x x ) 16

17 Osamäärän derivointi Esim. Kehitysmaassa arvioidaan, että BKT (M ) ja väkiluku (milj. ihmistä) riippuvat ajasta (v) seuraavalla tavalla BKT: f: R + R +, f x = 5860 x Väkiluku: g: R + R +, g x = x BKT:n arvoa asukasta kohden kuvaa näiden osamäärä s: R + R +, s x = f x g x = 5860 x x 17

18 Osamäärän derivointi D10: Osamäärän derivointi Jos funktiot f ja g ovat derivoituvia pisteessä x ja g x 0, niin D f(x) g(x) = f x g x g (x)f x g(x) 2 18

19 Osamäärän derivointi BKT:n arvoa asukasta kohden kuvaa funktio s: R + R +, s x = f x g x = 5860 x x Asukasta kohden lasketun BKT:n muutosnopeutta kuvaa funktio s x = f x g x g x f x g x 2 = x x x ln x x 2 x x = ln x x x x = x x

20 Yhteenveto derivoinntisäännöistä Derivointisäännöt joillekin tavallisille funktiotyypeille Potenssifunktio: D x n = nx n1 Eksponenttifunktio: D a x = a x ln a, D e x = e x Logaritmifunktio: D log a x = 1 x ln a, D ln x = 1 x Yleisiä sääntöjä funktioiden yhdistelmien käsittelyyn Yhdistetyn funktion derivaatta: D g f x = g f x f x Tulon derivaatta: D f x g(x) = f x g x + g (x)f x Osamäärän derivaatta: D f(x) = f x g x g (x)f x g(x) g(x) 2 20

21 Suhteellinen muutosnopeus Esim. Härvelitehtaan tuotannon määrän kehitystä ajan x (v) suhteen kuvaa funktio f: R + R +, f x = (x + 1) 0.54 Esim. Vuonna x=5 tuotannon taso on f kpl. Tuotannon määrän absoluuttista muutosnopeutta ajan suhteen kuvaa derivaattafunktio f : R + R, f x = x = x Esim. Vuodesta 5 vuoteen 6 tuotanto kasvaa likimäärin f 5 = = kpl/v. Kuinka paljon tuotanto kasvaa prosentuaalisesti vuodesta 5 vuoteen 6? Eli mikä on tuotannon suhteellinen muutosnopeus? Suhteellinen muutosnopeus vuonna 5: f (5) f(5) = = 0.09 = 9% 21

22 Suhteellinen muutosnopeus Funktion f x suhteellinen muutosnopeus arvon x kohdalla saadaan siis kaavalla f:n absoluuttinen muutosnopeus Suhteessa f:n tasoon f (x) f(x) Esim. Härvelitehtaan tuotannon määrän suhteellinen muutosnopeus on f (x) f(x) x = = (x + 1) 0.54 x + 1 Laitoksen nimi 22

23 Suhteellinen muutosnopeus Huomaa, että f:n suhteellinen muutosnopeus = f:n logaritmin absoluuttinen muutosnopeus D(ln f x ) = f (x) f(x) Perustelu yhdistetyn funktion g f x = ln f x derivaatan kautta: Sisäfunktio f(x), derivaatta f (x) Ulkofunktio g y = ln y, derivaatta g y = 1 y Yhdistetyn funktion derivaatta D g f x = g f x f x = 1 f x f (x) Miksi kiinnostavaa? Joskus D(ln f x ) on paljon helmpompi laskea kuin f (x) f(x). 23

24 Suhteellinen muutosnopeus Härvelitehtaan tuotteiden yksikköhinnan kehitystä ajan x (v) suhteen kuvaa funktio g: R + R +, g x = x Yksikköhinnan absoluuttista muutosnopeutta kuvaa derivaattafunktio g : R + R +, g x = 3.47 ln x Yksikköhinnan suhteellista muutosnopeutta kuvaa funktio g x g x 3.47 ln x = x = ln % Sama tulos saadaan myös huomaamalla, että ln g x = ln x ln 1.08, jolloin suhteellinen muutosnopeus on Laitoksen nimi D ln g x = ln % 24

25 Tulon suhteellinen muutosnopeus Härvelitehtaan tuotannon arvo v x ajan funktiona saatiin tuotantomäärän f x ja yksikköhinnan g x tulona: f x v: R + R +, v x = f x g x = (x + 1) x Tuotannon arvon suhteellinen muutosnopeus saadaan tällöin g x D ln v x = D ln(f x g x ) = D ln f x + ln g x = D ln f x + D ln g x = = (x+1) x ln 1.08 = ln (x+1) x x+1 f x f x g x + g x Tuotantomäärän muutosnopeus Yksikköhinnan muutosnopeus Tulofunktion (tuotannon arvo) suhteellinen muutosnopeus on sen tekijöiden (tuotantomäärän ja yksikköhinnan) suhteellisten muutosnopeuksien summa! 25

26 Tulon suhteellinen muutosnopeus Tuotannon määrän ja yksikköhinnan vaikutus näkyy paljon selvemmin tuotannon arvon suhteellisessa kuin absoluuttisessa muutosnopeudessa: Alussa D ln v 0 = % + ln 1.08 = 54% + 7.7% = 5 vuoden kuluttua D ln v 5 = ln 1.08 = 9% + 7.7% = 16.7% 10 vuoden kuluttua D ln v 10 = % + 7.7% = 12.6% 6 + ln 1.08 = D ln v x = ln 1.08 x + 1 Alussa tuotannon arvon suhteellista muutosnopeutta ruokkii voimakkaammin tuotannon määrän muutos, myöhemmin taas yksikköhinnan muutospyrkimys 26

27 Osamäärän suhteellinen muutosnopeus BKT:n asukaskohtainen arvo s x ajan funktiona saatiin BKT:n arvon f x ja asukasmäärän g x osamääränä: s: R + R +, s x = f x g x = 5860 x x BKT:n asukaskohtaisen arvon suhteellinen muutosnopeus saadaan tällöin f x D ln s x = D ln g x = D ln f x ln g x = D ln f x D ln g x = f (x) f x g x g x = (x+1) x ln 1.06 = 0.36 ln x x x+1 BKT:n muutosnopeus Asukasmäärän muutosnopeus Osamääräfunktion (BKT:n asukaskohtainen arvo) suhteellinen muutosnopeus on sen tekijöiden (BKT:n ja asukasmäärän) suhteellisten muutosnopeuksien erotus! 27

28 Osamäärän suhteellinen muutosnopeus BKT:n ja asukasmäärän vaikutus näkyy paljon selvemmin asukaskohtaisen BKT:n suhteellisessa kuin absoluuttisessa muutosnopeudessa: Alussa D ln s 0 = % ln 1.06 = 36% 5.8% = 5 vuoden kuluttua D ln s 5 = 0.36 ln 1.06 = 6% 5.8% = 0.2% 10 vuoden kuluttua D ln s 10 = % 5.8% = 2.5% 6 ln 1.06 = D ln s x = 0.36 ln 1.06 x + 1 Alussa BKT:n voimakas kasvu ruokkii asukaskohtaisen BKT:n kasvua, mutta myöhemmin väestön voimakas kasvu voittaa hiipuvan BKT:n kasvun ja asukaskohtainen BKT pienenee. 28

29 Jousto Derivaattafunktio f (x) antaa likimääräisen vastauksen kysymykseen: Kuinka suuri on f:n arvon absoluuttinen muutos, jos x x + 1 (pieni absoluuttinen muutos)? Suhteellinen muutosnopeus D ln f x = f (x) f x taas vastaa kysymykseen: Kuinka suuri on f:n arvon suhteellinen muutos, jos x x + 1 (pieni, absoluuttinen muutos)? Joskus kiinnostaa tietää, kuinka suuri on f:n arvon suhteellinen muutos, kun x kasvaa 1% (pieni, suhteellinen muutos). Tähän kysymykseen vastaa (likimäärin) funktion f jousto 29

30 Jousto Funktion f derivaatta f x pisteessä x on funktion arvon ja x:n arvon absoluuttisten muutosten suhteen raja-arvo: f f x + h f(x) f x + h f(x) x = lim = lim h 0 x + h x h 0 h Funktion f jousto Ef(x) pisteessä x on vastaavien suhteellisten muutosten raja-arvo: Ef(x) = lim h 0 f x + h f(x) f(x) x + h x x = lim h 0 f x + h f(x) h x f(x) = lim h 0 f x + h f(x) h x f x Ef(x) = f x f x x f x 30

31 Jousto Esim. Kultakalakaviaarin kysynnän (kg) riippuvuutta yksikköhinnasta x ( /kg) kuvaa funktio f: R ++ R +, f x = 13262x Kuinka monta prosenttia kysyntä pienenee, kun hinta nousee prosentin? Ratkaisu: Kysynnän hintajousto on Ef x = f x f x x2.14 x = x = 1.14 x 13262x 1.14 x = 1.14 (vakio!) Hinnan lähtötasosta x riippumatta 1% hinnankorotus pienentää kysyntää 1.14% 31

32 Jousto Yleisimmin tarkasteltu jousto on kysynnän hintajousto Kuinka muutos hyödykkeen hinnassa vaikuttaa kysyntään? Muita tavallisia joustoja: Hyödykkeen kysynnän tulojousto: Kuinka muutos tulotasossa vaikuttaa hyödykkeen kysyntään? Kulutuksen tulojousto: Kuinka muutos tulotasossa vaikuttaa kulutukseen? Kahden hyödykkeen kysynnän ristijousto: Kuinka muutos hyödykkeen 1 kysynnässä vaikuttaa hyödykkeen 2 kysyntään? Hyödykkeen tarjonnan hintajousto: Kuinka muutos hyödykkeen hinnassa vaikuttaa tarjontaan? 32

33 Yhteenveto suhteellisesta muutosnopeudesta ja joustosta Derivaatta eli absoluuttinen muutosnopeus f x Mikä on funktion arvon absoluuttinen muutos, kun x x + 1? Esim. Kuinka monta kpl hyödykkeen kysyntä vähenee, kun hinta nousee euron? Suhteellinen muutosnopeus f (x) f(x) = D(ln f(x)) Mikä on funktion arvon suhteellinen muutos, kun x x + 1? Esim. Kuinka monta prosenttia hyödykkeen kysyntä vähenee, kun hinta nousee euron? Jousto Ef x = f (x) f(x) x Mikä on funktion arvon suhteellinen muutos, kun x 1.01x? Esim. Kuinka monta prosenttia hyödykkeen kysyntä vähenee, kun hinta nousee prosentin? 33

34 Presemo-kysymys Lääkeen valmistuksessa käytettävän bakteerikannan suuruutta B (kpl) ajan x (h) suhteen kuvaa funktio f: R R +, B = f x = x. Mikä funktio g x kuvaa bakteerikannan suuruuden suhteellista muutosnopeutta? 1. g x = ln 2 2. g x = x ln 2 3. g x = ln x 34

35 Todistuksia aiheesta kiinnostuneille: D6 Olkoon f: R R, f x = e x. Tällöin f x = D e x = e x. Todistus: D e x = lim h 0 e x+h e x h = lim h 0 e x (1 + h 2 + h2 6 + ) ex e x (e h 1) e x (1 + h + = lim = lim h 0 h h 0 h h3 6 1) h e x h (h + 2 = lim h 0 h 2 + h3 6 ) Olkoon f: R R, f x = a x. Tällöin f x = D a x = a x ln a Todistus: Merkitään f x = h g x = a x = e ln ax = e x ln a, missä sisäfunktio g x = x ln a ja ulkofunktio h y = e y. Tällöin g (x) = ln a ja h y = e y. Yhdistetyn funktion derivointisäännöstä seuraa f x = h f x g x = e x ln a ln a = a x ln a 35

36 Todistuksia aiheesta kiinnostuneille: D7 Olkoon f: R R, f x = ln x. Tällöin f x = D ln x = 1 x. Todistus: D ln x = lim lim k ln x 1 k ln(x+h)ln(x) h 0 h k ln e 1 x 1 x. = lim h 0 ln( x+h x ) h = lim h 0 ln 1 + h x 1 h = Olkoon f: R R, f x = log a x. Tällöin f x = D ln x = 1 x ln a Todistus: log a x = 1 ln x, jolloin D log ln a a x = 1 1 D ln x = ln a x ln a 36

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko

Lisätiedot

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus

Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b , interpolointi, jousto, rajatuotto, L4b Funktioita Potenssifunktio: x (axn ) = nax n 1 Eksponentin n ei tarvitse olla kokonaisluku, vaan se voi olla murtoluku tai esimaaliluku! Neliöjuuri: ax = x x (

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 3 Derivaatta. a) Vastaus: Merenpinta nousee aikavälillä 00:00-06:00 ja :30-7:30. Merenpinta laskee aikavälillä 06:00-:30 ja 7:30-3:00. b) Merenpinta nousi 0,35 cm ( 0,) cm = 0,55 cm tuona aikana. Merenpinta

Lisätiedot

5 Usean muuttujan differentiaalilaskentaa

5 Usean muuttujan differentiaalilaskentaa 5 Usean muuttujan differentiaalilaskentaa Edellä on jo käsitelty monia funktioita, joissa lähtö- (ja/tai) maalijoukko on useampi- kuin 1-ulotteinen: Esim. A-, B- ja C-raaka-ainemäärien yhdistelmien x =

Lisätiedot

Funktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat.

Funktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat. Funktiot, L4 eksponentti-funktio Funktio (Käytännöllinen määritelmä) 1 Linkkejä kurssi2 / Etälukio (edu.fi) kurssi8, / Etälukio (edu.fi) kurssi8, logaritmifunktio / Etälukio (edu.fi) Funktio (Käytännöllinen

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Derivaatta, interpolointi, L6

Derivaatta, interpolointi, L6 , interpolointi, L6 1 Wikipeia: (http://fi.wikipeia.org/wiki/ ) Etälukio: (http://193.166.43.18/etalukio/ pitka_matematiikka/kurssi7/maa7_teoria10.html ) Maths online: (http://www.univie.ac.at/future.meia/

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Numeerinen analyysi Harjoitus 1 / Kevät 2017

Numeerinen analyysi Harjoitus 1 / Kevät 2017 Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 Differentiaalikehitelmä Funktion f erivaatta pisteessä x 0 eli f (x 0 ) on erotusosamäärän rajaarvo: f (x) f (x 0 ). x x 0 x x 0 Tämä voiaan esittää hieman eri muoossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin. MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa. Ohjeita Lukuvuoden 2015-2016 talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2. Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 1. (a) Anna likiarvo lineaarisen approksimaation avulla sille mitä on T (100.5), kun T (100) = 45 ja T (100) = 10. (b) Käyttäen lineaarista

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Esimerkkejä derivoinnin ketjusäännöstä

Esimerkkejä derivoinnin ketjusäännöstä Esimerkkejä derivoinnin ketjusäännöstä (5.9.008 versio 1.0) Esimerkki 1 Määritä funktion f(x) = (x 5) derivaattafunktio. Funktio voidaan tulkita yhdistettynä funktiona, jonka ulko- ja sisäfunktiot ovat

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Derivaatta II. Derivaatta II -kurssi. 1 Analyysin työkalu. Tapio Hansson

Derivaatta II. Derivaatta II -kurssi. 1 Analyysin työkalu. Tapio Hansson Derivaatta II Tapio Hansson Derivaatta II -kurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän kurssin Derivaatta II oppimateriaaliksi. Kurssilla kerrataan ja syvennetään valtakunnallisten

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Matematiikkaa kauppatieteilijöille P

Matematiikkaa kauppatieteilijöille P Matematiikkaa kauppatieteilijöille 802158P Luentomoniste Kari Myllylä Niina Korteslahti Topi Törmä Oulun yliopisto Matemaattisten tieteiden laitos Syksy 2017 Sisältö 1 Perusteita 4 1.1 Lukujoukot..............................

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 11. Kurssikerta Petrus Mikkola 29.11.2016 Tämän kerran asiat Eksponenttifunktio Eksponenttifunktion määritelmä Eksponenttifunktion ominaisuuksia Luonnolinen logaritmi

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikkaa kauppatieteilijöille P

Matematiikkaa kauppatieteilijöille P Matematiikkaa kauppatieteilijöille 802158P Luentomoniste Kari Myllylä Niina Korteslahti Topi Törmä Oulun yliopisto Matemaattisten tieteiden laitos Syksy 2016 Sisältö 1 1 Perusteita 1.1 Lukujoukot Luonnollisten

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen

Lisätiedot

Taylorin sarja ja Taylorin polynomi

Taylorin sarja ja Taylorin polynomi Taylorin sarja ja 1 Potenssisarja c k (x a) k = f (x) määrittelee x:n funktion. Seuraavaksi toteamme mikä yhteys potenssisarjalla on sen määrittelemän funktion derivaattoihin f (a),f (a),f (a),f (3) (a),...

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17 Talousmatematiikan perusteet: Luento 18 Kertaus luennoista 11-17 Luennon sisältö Kertausluennolla käydään lyhyesti läpi kunkin 2. välikoealueeseen kuuluvan luennon ydinsisältö Täydellinen valmistautuminen

Lisätiedot

MATEMATIIKAN ALKEET I (YE19A) HUOM. Osa monisteen virheistä on korjattu ja korjatut kohdat on merkitty marginaaleihin.

MATEMATIIKAN ALKEET I (YE19A) HUOM. Osa monisteen virheistä on korjattu ja korjatut kohdat on merkitty marginaaleihin. 13. lokakuuta 011 MATEMATIIKAN ALKEET I (YE19A) HUOM. Osa monisteen virheistä on korjattu ja korjatut kohdat on merkitty marginaaleihin. Sisältö 1. Yhden muuttujan funktiot 1.1. Johdantoa 1.. Laskusääntöjä

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että: Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

4 Integrointimenetelmiä

4 Integrointimenetelmiä 4 Integrointimenetelmiä 4. Määräämätön integraali Määritelmä 4.. Olkoon funktio f jatkuva välillä I. Tällöin funktion f integraalifunktioiden (välillä I) joukkoa sanotaan funktion f määräämättömäksi integraaliksi

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot