Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta"

Transkriptio

1 Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

2 Viime luennolla Tarkastelimme usean muuttujan funktioiden rajoittamatonta optimointia: max/min f(x 1,, x n ) Totesimme, että funktion ääriarvo löytyy gradientin nollakohdasta: f x 1,, x n Ääriarvo on Minimi, jos funktion Hessen matriisi on siinä positiividefiniitti Maksimi, jos funktion Hessen matriisi on siinä negatiividefiniitti Definiittisyys voitiin määrittää matriisin ominaisarvoista (ominaisarvot neg./pos. matriisi neg./pos-definiitti) Kahden muuttujan tapauksessa myös: o Jos det H x > ja 2 f 2 >, H on positiividefiniitti pisteessä x o Jos det H x > ja 2 f 2 <, H on negatiividefiniitti pisteessä x 2

3 Tällä luennolla Tarkastelemme usean muuttujan funktioiden yhtälörajoitettua optimointia max/min f(x 1,, x n ) siten, että g 1 x 1,, x n g m x 1,, x n m kpl yhtälörajoituksia 3

4 Rajoitettu optimointi: Yksi yhtälörajoitus Esim. Synteettisen kalanrehun tuotannossa käytetään kemikaaleja A (x kg/t) ja B (y kg/t). Tuotantoprosessissa rehuun jää lievästi myrkyllistä ainetta, jonka määrän (g/t) riippuvuutta kemikaalimääristä x ja y kuvaa funktio f: R + R + R +, f x, y 17.8x y 2 89.x 32.4y Millä A:n ja B:n määrillä myrkyn määrä on pienin mahdollinen, kun kemikaaleja tarvitaan yhteensä 7 kg/t? 4

5 Rajoitettu optimointi: Yksi yhtälörajoitus Kyseessä on kahden muuttujan rajoitettu optimointitehtävä, jossa on yksi yhtälörajoitus: min f(x, y) siten, että g x, y, missä f x, y 17.8x y 2 89.x 32.4y g x, y x + y 7 Tällainen tehtävä voidaan ratkaista Lagrangen menetelmällä 5

6 Lagrangen mentelemä Tehtävän min/max f(x 1,, x n ), g x 1,, x n L: R n+1 R Lagrangen funktio on L x 1,, x n, v f x 1,, x n + vg x 1,, x n Alkuperäinen kohdefunktio f + Lagrangen kerroin v Yhtälörajoitusfunktio g Pätee: (x 1,, x n, v ) on tehtävän min/max L x 1,, x n, v optimiratkaisu (x 1,, x n ) on tehtävän min/max f(x 1,, x n ), g x 1,, x n optimiratkaisu 6

7 Lagrangen menetelmä Rajoitetun optimointitehtävän min/max f(x 1,, x n ), g x 1,, x n ratkaisu saadaan siis ratkaisemalla rajoittamaton optimointitehtävä min/max L x 1,, x n, v Rajoittamattoman funktion L x 1,, x n, v ääriarvo löytyy gradientin nollakohdasta (x 1,, x n, v ) : L x 1,, x n, v Funktion L ääriarvokohdan (x 1,, x n, v ) laatu (minimi/maksimi) voidaan päätellä reunustetusta Hessen matriisista: ഥH v, x 1,, x n v 2 v x n v v 2 x n v x n x n x n 2 x n 2 x n x n x n x n 2 7

8 Lagrangen menetelmä Reunustettu Hessen matriisi on aina indefiniitti, eli ei tässä kerro ääriarvon laadusta Gradientin nollakohdassa on funktion lokaali maksimi, jos ഥH 1 <, ഥH 2 >, ഥH 3 <, ഥH 4 >, missä ഥH 1 2, ഥH 2 x 2 2 x 2 x 2 x 2 2 x 2 jne. Gradientin nollakohdassa on funktion lokaali minimi, jos ഥH 1 <, ഥH 2 <, ഥH 3 <, ഥH 4 <,

9 Lagrangen menetelmä Ehto ഥH 1 2 < toteutuu aina, joten Kahden muuttujan ja yhden yhtälörajoitteen tehtävässä gradientin v, x 1, x 2 nollakohdassa on lokaali Minimi, kun det ഥH v, x 1, x 2 < Maksimi, kun det ഥH v, x 1, x 2 >

10 Lagrangen menetelmä Esim. On minimoitava myrkyn määrää, kun A:ta ja B:tä on yhteensä 7 kg: min f x, y 17.8x y 2 89.x 32.4y s. e. g x, y x + y 7 Lagrangen funktio: L: R 3 R, L x, y, v 17.8x y 2 89.x 32.4y v x + y 7 Gradientin nollakohta: L x, y, v D x (L x, y, v ) D y (L x, y, v ) D v (L x, y, v ) 35.6x v 142.4y v x + y 7 x y v

11 Lagrangen menetelmä Reunustettu Hessen matriisi: ഥH v, x, y x y x x 2 y x y x y y D x (35.6x v) D y (35.6x v) 1 D x (142.4y v) D y (142.4y v) ഥH det ഥH < (esim. Excelissä) Rajoitettu funktio f x, y saavuttaa pisteessä x, y (4.3, 2.7) minimiarvonsa f 4.3, g/t Vrt. Viime luennolla laskettu rajoittamaton minimi: f 2.5, g/t 11

12 Lagrangen menetelmä Esim. Tuotannon arvon riippuvuutta työvoimasta x 1 (M ) ja fyysisestä pääomasta x 2 (M ) kuvaa Cobb- Douglas-tuotantofunktio f: f: R + R + R +, f x 1, x x 1.38 x 2.62 Miten 3 M kannattaa jakaa työvoiman ja pääoman kesken, jotta tuotannon arvo maksimoituisi? 12

13 Lagrangen menetelmä Maksimoidaan siis funktiota f x 1, x 2 g x 1, x 2 x 1 + x x 1.38 x 2.62 siten, että Lagrangen funktio: L x 1, x 2, v 2.28x 1.38 x v(x 1 + x 2 3) Gradientin nollakohta: L x 1, x 2, v D x1 (L x 1, x 2, v ) D x2 (L x 1, x 2, v ) D v (L x 1, x 2, v ) x 1.62 x v x 1.38 x v x 1 + x

14 Lagrangen menetelmä Kahdesta ensimmäisestä yhtälöstä: x 1.62 x x 1.38 x 2.38 x x 1 Sijoitetaan kolmanteen yhtälöön: x x 1 3 x Tällöin x ja v Lagrangen funktion gradientin nollakohta on siis pisteessä x 1, x 2, v 11.4, 18.6, Mahdollinen ääriarvokohta funktiolle f x 1, x 2 on x 1, x ,

15 Lagrangen menetelmä Muodostetaan reunustettu Hessen matriisi: ഥH v, x 1, x 2 x 2 2 x 2 x 2 x 2 2 x D x1 (.8664x.62 1 x v) D x2 (.8664x.62 1 x v ) 1 D x1 (1.4136x 1.38 x v ) D x2 (1.4136x 1.38 x v ) ഥH v, x 1, x x x x x x 1.62 x x 1.38 x det ഥH v, x 1, x > maksimi Pisteessä x 1, x , 18.6 saavutetaan tuotannon maksimiarvo f x 1, x M 15

16 Presemo-kysymys Määritä funktion f x, y x 2 + y 2 2xy ääriarvokohta, kun x + y x, y,2 2. x, y 1,1 3. x, y 2,

17 Presemo-kysymys Määritä funktion f x, y x 2 + y 2 2xy reunustettu Hessen matriisi, kun x + y ഥH v, x, y 2. ഥH v, x, y 3. ഥH v, x, y Laske reunustetun Hessen matriisin determinantti (esim. Excelin MDETERMfunktiolla). Onko ääriarvokohdassa (1,1) funktion minimi vai maksimi?

18 Lagrangen funktion ja alkuperäisen funktion optimiarvot Huomaa, että ehto D v L x 1,, x n, v varmistaa rajoitteen g x 1,, x n toteutumisen: D v L x 1,, x n, v D v f x 1,, x n + vg x 1,, x n g x 1,, x n Ensimmäisessä esimerkissä: D v L x, y, v D v 17.8x y 2 89.x 32.4y v x + y 7 x + y 7. Toisessa esimerkissä: D v L x 1., x 2, v D v 2.28x.38 1 x v x 1 + x 2 3 x 1 + x 2 3. Tästä syystä alkuperäisen funktion ja Lagrangen funktion optimiarvot ovat samat: L x 1,, x n, v f x 1,, x n + v g x 1,, x n f x 1,, x n

19 Lagrangen kerroin ja varjohinta Usein yhtälörajoitteen voi kirjoittaa muotoon: g x 1,, x n g x 1,, x n c, missä c on jokin vakio Ensimmäisessä esimerkissä g x, y x + y 7 g x, y 7 missä g x, y x + y Toisessa esimerkissä g x 1, x 2 x 1 + x 2 3 g x 1, x 2 3, missä g x 1, x 2 x 1 + x 2 Tällöin L x 1,, x n, v f x 1,, x n + v( g x 1,, x n c), jolloin L c v Lagrangen kertoimen optimiarvon vastaluku v kuvaa siis Lagrangen funktion muutosnopeutta rajoitteen side-ehdon c suhteen Kuinka paljon funktion optimiarvo muuttuu, jos c c + 1? Lagrangen kertoimen vastaluku v on toisin sanoen rajoitteen g x 1,, x n c varjohinta 19

20 Lagrangen kerroin ja varjohinta Ensimmäisen esimerkin tapauksessa tehtävä oli minimoida myrkyn määrää, kun A:ta ja B:tä oli yhteensä 7 kg: min f x, y 17.8x y 2 89.x 32.4y s. e. g x, y x + y 7 Optimissa x, y, v (4.3, 2.7, 64.8) Varjohinta v 64.8: Myrkyn määrä kasvaa 64.8 g/t, kun side-ehto (A:n ja B:n yhteismäärä) muuttuu 7 kg/t 8 kg/t 2

21 Lagrangen kerroin ja varjohinta Toisen esimerkin tapauksessa tehtävänä oli maksimoida tuoton arvoa, kun työvoimaan ja pääomaan investoitiin yhteensä 3 M max f x 1, x x 1.38 x 2.62 s. e. g x 1, x 2 x 1 + x 2 3 Optimissa x 1, x 2, v 11.4, 18.6, 1.17 Varjohinta v 1.17: Tuotannon arvo kasvaa 1.17 M, kun kokonaisinvestointi kasvaa 3 M 31 M 21

22 Rajoitettu optimointi: Monta yhtälörajoitusta Esim. Tutkimuksen perusteella virvoitusjuoman kysynnän riippuvuutta sokerin x (kg/l), sitruunamehun y (mg/l) ja aromivahventeen z (g/l) määristä kuvaa funktio f: R 3 R, f x, y, z 4x 2 y 2 z 2 +.1xy.2xz +.22x y z Mitkä määrät sokeria, sitruunamehua ja aromivahvennetta maksimoivat kysynnän, kun 1. Sokeria ja aromivahvennetta tulee olla yhteensä 15 g/l ja 2. Sitruunamehua ja aromivahvennetta tulee olla yhteensä 6 mg/l? Optimointitehtävä: max f x, y, z 4x 2 y 2 z 2 +.1xy.2xz +.22x y z s.e. g 1 x, y, z 1x + z 15 g 2 x, y, z y + 1z 6 22

23 Lagrangen mentelemä Tehtävän min/max f(x 1,, x n ), g i x 1,, x n funktio L: R n+m R on i 1,, m Lagrangen L x 1,, x n, v 1,, v m f x 1,, x n + v i g i x 1,, x n m i1 Pätee: (x 1,, x n, v 1,, v m ) on tehtävän min/max L x 1,, x n, v 1,, v m optimiratkaisu (x 1,, x n ) on tehtävän min/max f(x 1,, x n ), g i x 1,, x n i 1,, m optimiratkaisu 23

24 Lagrangen menetelmä Esimerkkimme Lagrangen funktio L: R 5 R: L x, y, z, v 1, v 2 4x 2 y 2 z 2 +.1xy.2xz +.22x y z + +v 1 1x + z 15 + v 2 (y + 1z 6) Gradientin nollakohta (yhtälöryhmän ratkaisu jollakin ohjelmistolla): L x, y, z, v 1, v 2 8x +.1y.2z v 1 2y +.1x v 2 2z.2x v 1 + 1v 2 1x + z 15 y + 1z 6 x y z v 1 v Mahdollinen ääriarvokohta funktiolle f x, y, z on x, y, z.1494,7.474,

25 Lagrangen menetelmä Funktion L ääriarvokohdan (x 1,, x n, v 1,, v m ) laatu (minimi/maksimi) funktion f näkökulmasta voitaisiin päätellä reunustetusta Hessen matriisista: ഥH x 1,, x n ; v 1,, v m 1 m 1 m x n x n 1 1 x n m m x n 2 x n x n x 2 1 x n Tämä aihe jätetään kuitenkin tällä kurssilla käsittelemättä 25

26 Lagrangen menetelmä Virvoitusjuomaesimerkin funktion voidaan todeta saavuttavan ääriarvokohdassa maksiminsa sillä perusteella, että funktio on kunkin muuttujansa suhteen alaspäin aukeava paraabeli f x, y, z 4x 2 y 2 z 2 +.1xy.2xz +.22x y z Pisteessä x, y, z.1494,7.474,.5926 saavutetaan siis kysynnän maksimiarvo f x, y, z miljoonaa litraa/päivä Rajoittamaton optimi Rajoitettu optimi Sokeri (g/l) Sitruunamehu (mg/l) Aromivahvenne (mg/l) Kysyntä (Ml/päivä) Rajoitusten hinta: 1 litraa/päivä 26

27 Lagrangen funktion ja alkuperäisen funktion optimiarvot Huomaa, että ehdot D vi L x 1,, x n, v 1,, v m g i x 1,, x n toteutumisen: i varmistavat rajoitteiden D vi L x 1,, x n, v 1,, v m D vi f x 1,, x n + v i g i x 1,, x n g i x 1,, x n m i1 Tästä syystä alkuperäisen funktion ja Lagrangen funktion optimiarvot ovat samat: L x 1,, x n, v 1,, v m f x 1,, x n + v i g x 1,, x n m i1 f x 1,, x n 27

28 Lagrangen kerroin ja varjohinta Usein yhtälörajoitteet voi kirjoittaa muotoon: g i x 1,, x n g i x 1,, x n c i, missä c i on jokin vakio Esimerkin 1. rajoite: g 1 x, y, z 1x + z 15 g 1 x, y, z 15 missä g 1 x, y, z 1x + z Esimerkin 2. rajoite: g 2 x, y, z y + 1z 6 g 2 x, y, z 6, missä g 2 x, y, z y + 1z Tällöin L x 1,, x n, v 1,, v m f x 1,, x n + σ m i1 v i ( g i x 1,, x n c i ), jolloin L c i v i Lagrangen kertoimen optimiarvon vastaluku v i kuvaa siis Lagrangen funktion muutosnopeutta i. rajoitteen side-ehdon c i suhteen Kuinka paljon funktion optimiarvo muuttuu, jos c i c i + 1? Lagrangen kertoimen vastaluku v i on toisin sanoen rajoitteen g i x 1,, x n c i varjohinta 28

29 Lagrangen kerroin ja varjohinta Esimerkin tapauksessa tehtävänä oli maksimoida kysyntää, kun 1. Sokeria ja aromivahvennetta tuli olla yhteensä 15 g/l ja 2. Sitruunamehua ja aromivahvennetta tuli olla yhteensä 6 mg/l. max f x, y, z 4x 2 y 2 z 2 +.1xy.2xz +.22x y z s.e. g 1 x, y, z 1x + z 15 g 2 x, y, z y + 1z 6 Optimissa x, y, z, v 1, v , 7.474,.5926, , Varjohinta v : Päiväkysyntä vähenee 353 l, kun sokerin ja aromivahventeen yhteismäärä kasvaa 15 g/l 151 g/l Varjohinta v : Päiväkysyntä kasvaa 94.7 l, kun sitruunamehun ja aromivahventeen yhteismäärä kasvaa 6 mg/l 61 mg/l 29

30 Yhteenveto Kahden muuttujan ja yhden yhtälörajoitteen optimointitehtävä min/max f(x 1, x 2 ), g x 1, x 2 ratkaistaan 1. Muodostamalla Lagrangen funktio L x 1, x 2, v f x 1, x 2 + vg x 1, x 2 2. Määrittämällä Lagrangen funktion gradientin nollakohta x 1, x 2, v : L x 1, x 2, v 3. Muodostamalla reunustettu Hessen matriisi ഥH v, x 1, x 2 x 2 x2 1 x 2 x 2 x 2 x Tarkistamalla ääriarvon laatu reunustetun Hessen matriisin determinantin avulla: o Jos det ഥH v, x 1, x 2 >, funktio f saavuttaa maksiminsa pisteessä x 1, x 2 o Jos det ഥH v, x 1, x 2 <, funktio f saavuttaa miniminsä pisteessä x 1, x 2 Lagrangen kertoimen vastaluku v on rajoitteen varjohinta: kuinka paljon kohdefunktion arvo muuttuu, jos rajoitteen side-ehtoa kasvatetaan 1 yksiköllä?

31 Yhteenveto Yhtälörajoitteinen optimointitehtävä min/max f(x 1,, x n ), g i x 1,, x n i 1,, m ratkaistaan 1. Muodostamalla Lagrangen funktio L x 1,, x n, v 1,, v m f x 1,, x n + σ m i1 v i g i x 1,, x n 2. Ratkaisemalla Lagrangen funktion gradientin nollakohta L x 1,, x n, v 1,, v m 3. Tarkistamalla f:n mahdollisen ääriarvokohdan x 1,, x n laatu reunustetun Hessen matriisin avulla (ei käsitelty tarkasti) Lagrangen kertoimen vastaluku v i on i. rajoitteen varjohinta: kuinka paljon kohdefunktion arvo muuttuu, jos i. rajoitteen side-ehtoa kasvatetaan 1 yksiköllä? Usean rajoitteen tehtävää ei välikokeessa/tentissä tarvitse osata ratkaista, mutta periaatteet tulee ymmärtää 31

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

5 Usean muuttujan differentiaalilaskentaa

5 Usean muuttujan differentiaalilaskentaa 5 Usean muuttujan differentiaalilaskentaa Edellä on jo käsitelty monia funktioita, joissa lähtö- (ja/tai) maalijoukko on useampi- kuin 1-ulotteinen: Esim. A-, B- ja C-raaka-ainemäärien yhdistelmien x =

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17

Talousmatematiikan perusteet: Luento 18. Kertaus luennoista 11-17 Talousmatematiikan perusteet: Luento 18 Kertaus luennoista 11-17 Luennon sisältö Kertausluennolla käydään lyhyesti läpi kunkin 2. välikoealueeseen kuuluvan luennon ydinsisältö Täydellinen valmistautuminen

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto

Talousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia

Lisätiedot

Matriisit ja optimointi kauppatieteilijöille P

Matriisit ja optimointi kauppatieteilijöille P Matriisit ja optimointi kauppatieteilijöille 802160P Luentomoniste Kari Myllylä Niina Korteslahti Topi Törmä Oulun yliopisto Matemaattisten tieteiden laitos Kevät 2017 Sisältö 1 Matriisialgebra 3 11 Määritelmä

Lisätiedot

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100 HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Matematiikkaa kauppatieteilijöille

Matematiikkaa kauppatieteilijöille Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Funktion suurin ja pienin arvo DERIVAATTA,

Funktion suurin ja pienin arvo DERIVAATTA, Funktion suurin ja pienin arvo DERIVAATTA, MAA6 1. Suurin ja pienin arvo suljetulla välillä Lause, jatkuvan funktion ääriarvolause: Suljetulla välillä a, b jatkuva funktio f saa aina pienimmän ja suurimman

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R, Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A = Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

x = (1 t)x 1 + tx 2 x 1 x 2

x = (1 t)x 1 + tx 2 x 1 x 2 4 Konveksisuus ja ääriarvot Palautan mieliin, että R:n välillä I derivoituvaa funktiota sanottiin konveksiksi (alaspäin kuperaksi), jos käyrä y = f(x) on välillä I jokaisen tangenttisuoransa yläpuolella

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Harjoitus 5 ( )

Harjoitus 5 ( ) Harjoitus 5 (24.4.2014) Tehtävä 1 Kuva 1: Tehtävän 1 sallittu joukko S. Optimointitehtävän sallittu alue S on pisteiden (0, 0), (0, 7), (4, 3), (9, 8) ja (9, 0) määräämä viisikulmio. Kyseinen alue saadaan

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Valintakoe

Valintakoe Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot