Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
|
|
- Lotta Manninen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit). Loppuviikon tehtävät (3 kpl) tulee olla ratkaistu loppuviikon harjoitusten alkuun mennessä. Nämä tehtävät käydään läpi taululla ja tehdyt tehtävät merkitään nimilistaan, josta valitaan opiskelijoita esittämään ratkaisujaan. Loppuviikon harjoitusten loppuaika käytetään palautettavien tehtävien (3 kpl) neuvomiseen. Palautettavat tehtävät palautetaan kirjallisesti seuraavan viikon tiistaina klo 16. mennessä huonetta Y192 vastapäätä olevaan palautuskaappiin. Jokaisella ryhmällä on oma lokero. Lisäksi MyCoursesissa on 2 STACK-tehtävää, joihin vastataan verkossa ma 9.1. klo mennessä. Alkuviikon tehtävät Tehtävä 1 Olkoon F = (x 4 y 2 ) ja olkoon c xy-tason käyrä pisteestä A = ( 1, 1) pisteeseen B = (2, 3) siten, että c koostuu janasta AO ja janasta OB, missä O on origo. Laske c F dr kahdella eri tavalla: a) Parametrisoi c ja laske integraali. b) Käytä vektorikentän potentiaalia. Ratkaisu 1 a) F = (x 4 y 2 ) = 4x 3 y 2 i + 2x 4 yj Olkoon reitti c 1 : A O ja reitti c 2 : O B. Reitin c 1 voi parametrisoida esimerkiksi x(t) = t ja y(t) = t, kun t [-1,]. Tällä reitillä F c1 = 4t 3 t 2 i + 2t 4 tj = 4t 5 i + 2t 5 j. Tehdään samoin reitille c 2. Parametrisointi on x(t) = t ja y(t) = 3 t, kun t [,2]. Tällä 2 reitillä F c2 = 4t 3 ( 3 2 t)2 i + 2t 4 3tj = 2 95 i + 3t 5 j. Parametrisoitu vektori on r(t) = x(t)i + y(t)j, ja ketjusäännöllä saadaan dr = r (t)dt, joten dr 1 = (i + j)dt kun t [-1,] ja dr 2 = (i + 3 j)dt kun t [,2]. 2 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 1/11
2 MS-A35 Differentiaali- ja integraalilaskenta 3 Nyt pystytään laskemaan integraali: F dr = c F 1 dr 1 + c 1 F 2 dr 2 c 2 = = 1 1 (4t 5 i + 2t 5 j) (i + j)dt + (4t 5 + 2t 5 )dt + = t = ( 1) (9t t5 )dt 1 6 t6 b 1 (2 ) = = (9 5 i + 3t 5 j) (i j)dt b) Vektorikentän potentiaali on Φ = x 4 y 2. F dr = Φ(2, 3) Φ( 1, 1) = ( 1) 4 ( 1) 2 = = 143 c Tehtävä 2 Parametrisoi seuraavat pinnat, eli esitä ne muodossa kun (u, v) D R 2 sopivalla D. a) taso 2x + 3y + z = 6, r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, b) tason 2x + 3y + z = 6 se osa, jossa x, y, z, c) yz-tason etupuolella oleva osa elliptistä paraboloidia x = 5y 2 + 2z 2 1, d) ellipsoidi x2 2 + y2 3 + z2 4 = 1. Ratkaisu 2 a) Ratkaistaan tason yhtälöstä z: z = 6 2x 3y, jolloin tasolle saadaan parametrisaatio r(u, v) = ui + vj + (6 2u 3v)k, (u, v) R 2. b) Parametrisaatio on muuten sama, mutta käytetään annettua ehtoa. Tämän avulla saadaan r(u, v) = ui + vj + (6 2u 3v)k, (u, v) [, 3] [, u]. Tiedostoa viimeksi muokattu: 21. lokakuuta 217 2/11
3 MS-A35 Differentiaali- ja integraalilaskenta 3 c) yz-tason etupuolella x = 5y 2 + 2z 2 1 > x + 1 = y2 + z2 > 1. Käytetään y- ja z-koordinaatteihin ellipsin parametrisaatioa ja muodostetaan tästä x-koordinaatin parametrisointi: r(u, v) = u 2 cos v j + u 5 sin v k + (5 2 u 2 cos 2 v u 2 sin 2 v 1) i = u 2 cos v j + u 5 sin v k + 1(u 2 1) i, (u, v) [1, ) [, 2π) d) ( ) x 2 2 ( ) y2 3 + z2 x y ( z ) 2 4 = = Tästä saadaan yksikköpallon parametrisointia hyödyntämällä parametrisointi r(u, v) = 2 cos u sin v i + 3 sin u sin v j + 2 cos v k, (u, v) [, 2π) [, π]. Tehtävä 3 Laske pintaintegraali P (y + z) ds, missä pinta P on tason 3x + y z = 1 sylinterin x 2 + y 2 = 4 sisäpuolelle jäävä osa. Ratkaisu 3 Ratkaisemalla tason yhtälöstä z voidaan pinnalle kirjoittaa parametrisointi Tälle pinnalle saadaan normaalivektori r(x, y) = xi + yj + (3x + y 1)k. n = r x r y = i j k = 3i j + k. Nyt pintaintegraali voidaan kirjoittaa muodossa (y + z) ds = (3x + 2y 1) n dx dy = 11 S x 2 +y 2 4 Siirtymällä napakoordinaatteihin saadaan 11 2π 2 = 11 = 11 = 11 r(3r cos ϕ + 2r sin ϕ 1) dr dϕ 2π / 2 2π / 2π (r 3 cos ϕ + 23 r3 sin ϕ 12 r2 ) ( 8 cos ϕ + 16 ) 3 sin ϕ 2 ( 8 sin ϕ 16 cos ϕ 2ϕ 3 dϕ ) x 2 +y 2 4 dϕ dϕ = 4π 11. (3x + 2y 1) dx dy. Tiedostoa viimeksi muokattu: 21. lokakuuta 217 3/11
4 MS-A35 Differentiaali- ja integraalilaskenta 3 Loppuviikon tehtävät Tehtävä 4 Laske vektorikentän F(x, y, z) = 3yi + 2xj + 4zk tekemä työ kuljettaessa origosta pisteeseen (1, 1, 1) pitkin a) suoraa, b) käyrää r(t) = ti + t 2 j + t 4 k, t [, 1]. Ratkaisu 4 Vektorikentän F(x, y, z) = 3yi + 2xj + 4zk tekemä työ saadaan kaavasta W = t1 t F(r(t)) dr dt dt. a) Suoran parametrisaation on esimerkiksi r(t) = t(i + j + k), missä t [, 1]. Saadaan joten F(r(t)) dr dt Kentän tekemä työ on dr dt = i + j + k, = (3ti + 2tj + 4tk) (i + j + k) = 3t + 2t + 4t = 9t. W = 1 9t dt = t2 = 9 2. b) Tällä kertaa r(t) = ti + t 2 j + t 4 k, missä t [, 1]. Lasketaan kuten edellä. dr dt = i + 2tj + 4t3 k F(r(t)) dr dt = (3t2 i + 2tj + 4t 4 k) (i + 2tj + 4t 3 k) = 3t 2 + 4t t 7 = 7t t 7. Kentän tekemä työ on W = 1 (7t t 7 ) dt = 1 [ ] 7 3 t3 + 2t 8 = = Tehtävä 5 Määrää käyrän r(t) = a cos 3 t i + b sin 3 t j, t 2π, rajoittaman alueen pinta-ala laskemalla integraali xj dr. C Tiedostoa viimeksi muokattu: 21. lokakuuta 217 4/11
5 MS-A35 Differentiaali- ja integraalilaskenta 3 Ratkaisu 5 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 5/11
6 MS-A35 Differentiaali- ja integraalilaskenta 3 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 6/11
7 MS-A35 Differentiaali- ja integraalilaskenta 3 Tehtävä 6 Toruksella T on parametrisointi r(φ, θ) = (R + r cos θ) cos φ i + (R + r cos θ) sin φ j + r sin θ k, (φ, θ) [, 2π) [, 2π), jossa < r < R. Laske toruksen T pinta-ala pintaintegraalin avulla. Ratkaisu 6 Lasketaan pinnan parametrisaatiosta r(φ, θ) pinnan normaalivektori r φ r θ = n : r φ r θ jolloin pinta-alaksi saadaan Palautettavat tehtävät r = sin φ(r + r cos θ)i + cos φ(r + r cos θ)j + k φ r = r cos φ sin θi r sin φ sin θj + r cos θk θ = r cos θ cos φ(r + r cos θ)i + r cos θ sin φ(r + r cos θ)j + (r sin 2 φ sin θ(r + r cos θ) + r cos 2 φ sin θ(r + r cos θ)) k }{{} =r sin θ(r+r cos θ) n = rr + r 2 cos θ, A = Tehtävä 7 Osoita että kenttä 2π 2π 2π = 2π ( = 2π on konservatiivinen. Laske G dr, missä C rr + r 2 cos θ dφ dθ rr + r 2 cos θdθ 2πrR + r 2 / 2π sin θ ) = 4π 2 rr. F(x, y, z) = (x + y)i + (x z)j + (z y)k G(x, y, z) = xi + (2x z)j + (z y)k ja r(t) = cos t i+sin t j+(2πt t 2 )k, t 2π, hyödyntäen kenttien G ja F samankaltaisuutta. Ratkaisu 7 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 7/11
8 MS-A35 Differentiaali- ja integraalilaskenta 3 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 8/11
9 MS-A35 Differentiaali- ja integraalilaskenta 3 Tehtävä 8 Määrää sykloidin r(t) = a(t sin t)i + a(1 cos t)j, t 2π, ja x-akselin rajoittaman alueen pinta-ala laskemalla viivaintegraali yi dr. C Ratkaisu 8 Perustellaan tehtävänannossa annettu kaava Greenin lauseen avulla hyödyntäen Vektorikenttää F(x, y) = yi + j sekä sykloidin reunakäyrää C = C 1 + C 2, missä C = C 1 = r 1 (t) = a(t sin t)i + a(1 cos t)j, t 2π ja C 2 = r 2 (t) = (2πa at)i + j, t 2π: ( ) F 2 F dr = x F 1 da = ( + 1)dA = A y Toisaalta: C C F dr = F dr 1 + F dr 2 = C 1 C 2 D C D yi dr + dr 2 = C 2 C yi dr = A Tiedostoa viimeksi muokattu: 21. lokakuuta 217 9/11
10 MS-A35 Differentiaali- ja integraalilaskenta 3 Tiedostoa viimeksi muokattu: 21. lokakuuta 217 1/11
11 MS-A35 Differentiaali- ja integraalilaskenta 3 Tehtävä 9 Määritä pinnan P = {(x, y, z) R 3 : x 2, y 1, z = 2xy} massa, kun sen massatiheys on ρ(x, y, z) = 2z (grammaa pinta-alayksikköä kohden). Ratkaisu 9 Pinta voidaan parametrisoida muodossa r(x, y) = xi + yj + 2xyk. Tälle saadaan normaalivektori n = r x r i j k y = 1 2y 2 2y 2x xy = 1 2x 2 xy i 2 xy j + k. Nyt massa voidaan laskea pintaintegraalin avulla. Pinnalla tiheys on σ(x, y) = 2 2xy. m = = 2 = 2 σ(x, y) ds = S / 2 2 xy y 2xy (x + y)2 dx dy = 2 1 ( ) 1 2 x2 + xy dy = 2 1 2x + x + 1 dx dy 2y 2 (x + y) dx dy (2y + 2) = 2 / 1 ( y 2 + 2y ) = 6 Tiedostoa viimeksi muokattu: 21. lokakuuta /11
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 /
M-A3x ifferentiaali- ja integraalilaskenta 3, IV/217 ifferentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 / 2. 24.3. Harjoitustehtäviä 1 6 lasketaan alkuviikon harjoituksessa. Harjoituksessa laskematta
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
LisätiedotMat Matematiikan peruskurssi S2
Mat-1.122 Matematiikan peruskurssi S2 Ratkaisuehdotuksia Harjoitus 12 alkuviikko Tehtävä 1 Hahmottele annetut vektorikentät sekä niiden kenttäviivat tapauksissa. a)f(x, y) xi + yj b)f(x, y) e x i + e -x
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotMat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 6: Vektorikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 6: Vektorikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 27 Esimerkki: funktion
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotJYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Lisätiedotx (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotFr ( ) Fxyz (,, ), täytyy integroida:
15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
Lisätiedotx n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
LisätiedotDifferentiaali- ja integraalilaskenta 3
ifferentiaali- ja integraalilaskenta 3 Riikka Kangaslampi May 24, 217 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 3 luentomoniste.
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotOletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
LisätiedotPintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten
.4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell
LisätiedotDifferentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L
Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Lisätiedot= ( F dx F dy F dz).
17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 3A (Vastaukset) Alkuviikolla
LisätiedotTällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
LisätiedotDifferentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Harjoitustehtävät 11-13 lasketaan alkuviikon harjoituksissa, 15-17 loppuviikon harjoituksissa. Kotitehtävä 14 palautetaan MyCourses-sivulle
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotDifferentiaali- ja integraalilaskenta 3
ifferentiaali- ja integraalilaskenta 3 Riikka Kangaslampi Marh 22, 216 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 3 luentomoniste.
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan
LisätiedotViivaintegraali ja Greenin lause
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Markus Vaajala Viivaintegraali ja Greenin lause Informaatiotieteiden yksikkö Matematiikka Tammikuu 213 Tampereen yliopisto Informaatiotieteiden yksikkö Vaajala,
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotLaskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Lisätiedotedition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:
Lisätiedot4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
LisätiedotMuutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotDifferentiaali- ja integraalilaskenta 2
ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Syksy 214 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi
LisätiedotSisältö Sisältö 14.Useamman muuttujan funktioiden integrointi
Sisältö Sisältö 1 9.1 Lukujono.............................. 3 9.1 Suppeneminen ja raja-arvo................... 6 9.2 Sarjat................................ 9 9.3 Suppenemistestejä........................
LisätiedotMS-A0103 / Syksy 2015 Harjoitus 2 / viikko 38 / Ennakot
Harjoitus 2 / viikko 38 / Ennakot Sekä tiistain 15.9. että torstain 17.9. luentoja pohjustavat ennakkotehtävät löytyvät MyCoursesin Tehtävät-osiosta. Lisätietoja itse tehtävissä. Tiedostoa viimeksi muokattu:
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja
LisätiedotSijoitus integraaliin
1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi
LisätiedotVektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin.
Luennot 03.10. - 05.10.2018 1 / 66 Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien vaihto 2 / 66 Mitta Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien
Lisätiedotf(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].
Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotVektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotLuennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2017 Luennoitsija: Jukka Maalampi Luennot: 63 35, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 15 (pääsiäisviikko) Harjoitusassistentit: Petri Kuusela ja Tapani
LisätiedotDYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
LisätiedotDifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
Lisätiedot3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
LisätiedotDifferentiaali- ja integraalilaskenta 2
ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Versio 2. 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotDIFFERENTIAALIYHTÄLÖN NUMEERISESTA RATKAISEMISESTA 2 1,5 0,5 -0,5 -1,5-2
Differentiaaliyhtälön numeerisesta ratkaisemisesta Olkoot D R 2 alue ja r, f, g : D R jatkuvia funktioita. Differentiaaliyhtälön y r(x, y) suuntaelementtikenttä on kuvaus D R 2, (x, y) (, r(x, y)). Suuntaelementtikenttä
Lisätiedot12. Derivointioperaattoreista geometrisissa avaruuksissa
12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
LisätiedotLUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2
LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotDifferentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40
Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin
LisätiedotTehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
Lisätiedot2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =
BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu
Lisätiedot(d) f (x,y,z) = x2 y. (d)
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 2, Kevät 2017 Tässä harjoituksessa ja tulevissakin merkitään punaisella tähdellä sellaisia tehtäviä joiden tyyppisten osaamattomuus tentissä/välikokeessa
LisätiedotPotentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
LisätiedotDifferentiaalimuodot
LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
Lisätiedotkaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
Lisätiedot