LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT

Koko: px
Aloita esitys sivulta:

Download "LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT"

Transkriptio

1 Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 10 HÖYRY- JA YHDISTETYT KIERTOPROSESSIT Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tavoitteet Arvioidaan sellaisten kaasukiertoprosessien toimintaa, joissa työväliaine säilyy kaasuna koko prosessin ajan. Analysoidaan höyrykiertoprosesseja, joissa työväliaine on joko höyrynä tai kondensoituneena nesteeksi. Analysoidaan voiman yhteistuotantoa, jossa energian tuotto on yhdistetty lämpöenergian tuottamiseen. Tutkitaan mahdollisuuksia nostaa perus-rankine höyrykiertoprosessin termistä hyötysuhdetta. Analysoidaan tulistuksen ja regeneroinnin vaikutuksia höyrykiertoprosesseihin. Analysoidaan kieroprosesseja, joissa on yhdistetty kaksi erillistä kiertoprosessia, joita nimitetään yhdistetyiksi kiertoprosesseiksi tai binäärikiertoprosesseiksi. 2 1

2 CARNOT-höyrykiertoprosessi Carnot-kiertoprosessi on tehokkain kiertoprosessi, joka toimii kahden tunnetun lämpötilan välillä, mutta ei ole sopiva malli voimantuottokiertoprosesseille. Koska: Prosessi 1-2 Rajoittuminen lämmönsiirtoprosesseissa kaksifaassysteemeihin pienentää kiertoprosessissa käytettävissä olevaa maksimilämpötilaa (374 C vedellä) Prosessi 2-3 Turbiinit eivät voi toimia korkeassa kosteuspitoisuudessa, koska vesipisaroiden iskut turbiinin siipiin aiheutavat eroosiota ja kulumista. Prosessi 4-1 Käytännössä ei ole mahdollista suunitella kompressoria, joka toimii kaksifaasi väliaineella. Kiertoprosessi (b) ei ole käypä, koska se vaatii isentrooppisen puristuksen äärimmäisen korkeaan paineeseen ja isotermisen lämmönsiirron paineen muuttuessa. 1-2 isoterminen lämmöntuonti kattilassa 2-3 isentrooppinen paisunta turbiinissa 3-4 isoterminen lämmönluovutus lauhdutimessa 4-1 isentrooppinen puristus kompressorissa Carnot-kiertoprosessin T-s kaavio. 3 RANKINE-KIERTOPROSESSI: IDEAALINEN KIERTOPROSESSI HÖYRYKIERTOPROSESSEILLE Monet Carnot-kiertoprosessin haitoista voidaan eliminoida tulistamalla höyry kattilassa lauhduttamalla se täysin lauhduttimesssa. Kiertoprosessiksi jää Rankine-prosessi, joka on ideaalinen kiertoprosessi höyryvoimalaitoksille. Ideaalisessa Rankine-kiertoprosessissa ei ole palautumattomuuksia. 1-2 Isentrooppinen puristus pumpussa 2-3 Lämmöntuonti vakio paineessa kattilassa 3-4 Isentrooppinen paisunta turbiinissa 4-1 Lämmönluovutus vakio paineessa lauhduttimessa Yksinkertainen ideaalinen Rankine-kiertoprosessi. 4 2

3 Ideaalisen Rankine-prosessin energia-analyysi Jatkuvuustilan energiayhtälö equation Voimalaitosten hyötysuhde US:ssa ilmaistaan usein lämpösuhteen, joka on tuodun lämmönmäärä Btu ina, joka tuottaa 1 kwh sähköä. Terminen hyötysuhde voidaan tulkita T-skaavion kiertoprosessin pinta-alan suhteena lämmöntuontiprosessin pintaalaan. 5 TODELLISEN HÖYRYKIERTOPROSESSIN POIKKEAMAT IDEAALISESTA PROSESSISTA Todellisen höyryprosessin erot ideaalisesta Rankine-kiertoprosessista johtuvat palautumattomuuksista eri komponenteissa. Nestekitka ja lämpöhäviöt ympäristöön ovat yleisimmät syyt palautumattomuuksiin. Isentrooppiset hyötysuhteet (a) Todellisen höyryprosessin erot ideaalisesta Rankine-kiertoprosessista. (b) Pumpun ja turbiinin palautumattomuuksien vaikutukset ideaaliseen Rankine-kiertoprosessiin. 6 3

4 MITEN RANKINE KIERTOPROSESSIN HYÖTYSUHDETTA VOIDAAN NOSTAA? Perusideat kiertoprosessin hyötysuhteen nostamiseen ovat kaikille kiertoprosesseille samat: Kohota lämmöntuonnin keskilämpötilaa työväliaineeseen kattilassa tai laske lämmönluovutuksen keskilämpötilaa lauhduttimessa. Lauhduttimen paineen alentaminen (alentaa T low,avg ) Hyödyntääkseen alhaisen lauhdutuspaineen tuomaa hyötysuhteen paranemista, höyryvoimalaitosten lauhduttimet toimivat yleensä ilman painetta alhaisemmassa paineessa. Tälle paineelle on olemassa alaraja, joka riippuu jäähdytävän väliaineen lämpötilasta Sivuvaikutukset: Lauhdutinpaineen alentaminen johtaa turbiinin loppuvyöhykkeiden kosteuspitoisuudeen kasvuun. Lauhdutin paineen alentamisn vaikutus ideaaliseen Rankine-prosessiin. 7 Höyryn tulistaminen korkeaan lämpötilaan (Iisää T high,avg ) Sekä nettotyö että lämmöntuonti kasvavat höyryn korkeampaan lämpötilaan tulistamisen seurauksena. Kokonaisvaikutuksena terminen hyötysuhde kasvaa, koska lämmöntuonnin keskilämpötila kasvaa. Höyryn tulistuksen vaikutus ideaaliseen Rankine-prosessiin. Tulistus laskee myös höyryn kosteuspitoisuutta turbiinin ulostulossa, mikä on toivottavaa. Lämpötilaa rajoittaa metallurgiset syyt. Tällä hetkellä korkein höyryn lämpötila turbiinin sisäänmenossa on noin 620 C. 8 4

5 Kattilan paineen nostaminen (kasvattaa T high,avg ) Jos turbiinin sisäänmenolämpötila pidetään vakiona, kiertoprosessi siirtyy vasemmalle ja höyryn kosteuspitoisuus turbiinin lopussa kasvaa. Tämä sivuvaikutus voidaan korjata välitulistamalla höyry. Nykyään monet modernit höyryvoimalaitokset toimivat ylikriittisillä paineilla (P > MPa) ja niiden terminen hyötysuhde noin 40% fossiilisiä polttoaineita käytettäessä ja 34% ydinvoimalaitoksille. Kattilan paineen noston vaikutus ideaaliseen Rankine-kiertoprosessiin. Ylikriittinen Rankine-kiertoprosessi. 9 IDEAALINEN VÄLITULISTETTU RANKINE-PROSESSI Miten voimme hyötyä korkeammasta kattilan paineesta kasvattamatta turbiinin loppuvyöhykkeiden kosteuspitoisuutta ylimäärin? 1. Tulista höyry mahdollisimman korkeaan lämpötilaan. Rajoituksena metallurgiset syyt. 2. Anna höyryn paisua turbiinissa kahdessa vaiheessa ja välitulista höyry niiden välillä Ideaalinen välitulistettu Rankine-prosessi. 10 5

6 Yksi välitulistus modernissa voimalaitoksessa parantaa hyötysuhdetta 4-5% nostamalla lämmöntuonnin keskilämpötilaa. Keskimääräistä lämpötilaa välitulistuksessa voidaan nostaa lisäämällä paisuntojen ja välitulistusten lukumäärää. Kun vyöhykkeiden lukumäärää kasvatetaan, paisunta- ja välitulistusprosessit lähestyvät isotermistä prosessia maksimilämpötilassa. Useamman kuin kahden välitulistusjakson käyttäminen ei ole käytännöllistä. Hyötysuhteen teoreettinen paraneminen toisen välitulistuksen seurauksena on noin puolet yhden välitulistuksen hyödystä. Välitulistuslämpötilat ovat hyvin lähellä tai yhtäsuuria kuin turbiinin sisäänmenolämpötila. Optimaalinen välitulistuspaine on noin neljäsosa kiertoprosessin maksimipaineesta. Lämmönsiirron keskilämpötila kasvaa välitulistuksessa kun välitulistusjaksojen lukumäärää kasvatetaan. 11 IDEAALINEN REGENERATIIVINEN RANKINE-PROSESSI Lämmöntuonnin alkuosa kattilassa tapahtuu melko alhaisessa lämpötilassa. Lämpöä siirretään työväliaineeseen 2-2 prosessissa melko alhaisessa lämpötilassa. Tämä alentaa lämmön tuonnin keskimääräistä lämpötilaa ja siten myös prosessin hyötysuhdetta. Höyryvoimalaitoksissa, höyryä poistetaan turbiinista eri kohdissa. Tämä höyry, joka olisi voinut tuottaa lisää työtä paisuessaan turbiinissa, käytetään lämmittämään sen sijaan syöttövettä. Laitetta, jossa syöttövesi lämmitetään regeneraatiolla, kutsutaan regeneraattoriksi tai syöttöveden esilämmittimeksi. Syöttövedenlämmitin on lämmönsiirrin, jossa lämpöä siirretään höyrystä syöttöveteen, joko sekoittamalla kaksi nestevirtaa (avoin syöttövedenlämmitin) tai sekoittamatta (suljettu syöttöveden lämmitin). 12 6

7 Avoimet syöttöveden lämmittimet Avoin (tai suora kontakti) syöttöveden lämmitin on periaatteessa sekoituskammio, jossa turbiinista otettu höyry sekoittuu pumpulle johdettuun syöttöveteen. Ideaali tapauksessa, seos lähtee lämmittimestä kylläisenä nesteenä lämmittimen paineessa. Ideaalinen regeneratiivinen Rankine-prosessi avoimella syöttöveden lämmittimellä. 13 Suljetut syöttövedenlämmittimet Toinen usein käytetty syöttövedenlämmitin tyyppi on suljettu syöttövedenlämmitin, jossa lämpö siirretään höyrystä sekoittamatta nestevirtoja keskenään. Nyt kaksi nestevirtaa voivat olla eri paineissa, koska ne eivät sekoitu keskenään. Ideaalinen regeneratiivinen Rankine-prosessi, jossa on suljettu syöttöveden lämmitin. 14 7

8 Suljetut syöttöveden lämmönsiirtimet ovat monimutkaisempia rakenteeltaan, koska niissä on sisäinen kanavisto ja ovat siksi kalliimpia. Lämmönsiirtyminen on heikompaa suljetussa syöttöveden lämmittimessä, koska kahden nestevirtauksien ei sallita olla suorassa kosketuksessa. Toisaalta, suljetut syöttöveden lämmittimet eivät vaadi erillistä pumppua joka lämmönsiirtimelle, koska höyry ja syöttövesi voivat olla eri paineissa. Höyryvoimalaitos, josa on yksi avoin ja kolme suljettua syöttöveden lämmönsiirrintä. Avoimet syöttövedenlämmittimet ovat yksinkertaisia ja halpoja ja niillä on hyvät lämmönsiirtoominaisuudet. Jokaiselle lämmönsiirtimelle tarvitaan kuitenkin pumppu syöttöveden paineistamiseen. Useimmissa höyryvoimalaitoksissa on avoimien ja suljettujen syöttöveden lämmönsiirtimien yhdistelmiä. 15 HÖYRYPROSESSIEN TOISEN PÄÄSÄÄNNÖN MUKAINEN ANALYYSI Eksergian väheneminen vakiovirtaustilassa olevalle systeemille Systeemin rajapinnalla Jatkuvuustila, yksi sisääntulo, yksi ulosmeno Eksergian väheneminen kiertoprosessissa Kiertoprosessille, jossa lämmönsiirtoon on vain lähde ja nielu Virtauseksergia Höyryprosessin toisen päsäännön mukainen analyysi paljastaa missä suurimmat palautumattomuudet ovat ja mistä aloittaa prosessin parannukset. 16 8

9 Yhdistetty voiman tuotanto Monet teollisuuden prosesit vaativat energian tuontia lämmön muodossa, jota kutsutaan prosessilämmöksi. Prosessilämpö näissä prosesseissa tuotetaan höyrynä 5-7 bar ja C. Höyryn kehitetään polttamalla hiiltä, öljyä, maakaasua tai jotain muuta polttoainetta. Yksinkertainen prosessilämpölaitos. Prosessit, jotka käyttävät suuria määriä prosessilämpöä, käyttävät myös suuria määriä sähkövoimaa. On järkevää käyttää olemassa olevaa työpotentiaalian tehoa voimantuotantoon sen sijaan, että se menisi hukkaan. Lopputuloksena on laitos joka tuottaa sähköä samalla kun se tuottaa prosessin lämmöntarpeen tietyissä teollisissa prosesseissa (yhdistetty voimantuotanto) Yhdistetty voiman tuotanto: Useamman kuin yhden hyödyllisen energiamuodon tuottaminen (kuten prosessilämmön ja sähkön) samasta energialähtestä. 17 Käyttösuhde Ideaalinen yhdistetty laitos. Ideaalisen yhdistetyn höyry-turbiini laitoksen käyttösuhde on 100%. Todellisten yhdistettyjen laitosten käyttösuhteet ovat jopa 80%. Muutamat viime aikoina rakennetut yhdistetyt laitokset omaavat jopa korkeampia rakennusasteita. 18 9

10 Yhdistetty laitos, jossa on säädettävä kuormitus. Suuren prosessilämmöntarpeen aikana, kaikki höyry johdetaan prosessin lämmittämisyksiköihin ja ei mitään lauhduttimeen (m 7 = 0). Hukkaan menevä lämpö on tässä tapauksessa nolla. Jos tämä ei riitä, osa kattilasta lähtevästä höyrystä kuristetaan paisunnan väliotosta tai paineen alennusventtiilissä paineeseen P 5 ja johdetaan prosessin lämmitysyksikköön. Maksimi prosessilämmitys saavutetaan, kun kaikki höyry johdetaan paineenalennusventtiilin läpi (m 5 = m 4 ). Tässä moodissa ei tuoteta sähköä. Kun prosessissa ei tarvita lämpöä, kaikki höyry johdetaan turbiinin läpi lauhduttimeen (m 5 =m 6 =0) ja yhdistetty laitos toimii tavallisena höyryvoimalaitoksena

11 Esimerkki 10-8 Tarkastellaan kuvan yhdistettyä voimalitosta. Höyryn massavirta on 15 kg/s. Jättämällä kaikki painehäviöt huomiotta ja olettamalla, että turbiini ja pumppu toimivat isentrooppisesti laske: a) Prosessilämmön maksimi teho, b) Tuotetteu sähköteho ja käyttösuhde, kun prosessilämpöä ei tuoteta, c) Prosessin lämmön teho kun 10% höyrystä kuristetaan suoraan ja 70% välioton jälkeen. 21 YHDISTETYT KAASU HÖYRYKIERTOPROSESSIT Termisten hyötysuhteiden jatkuva kasvatustarve on johtanut innovatiivisiin muutoksiin tavanomaisissa höyryvoimalaitoksissa. Suosittu parannus on lisätä kaasuprosessi höyryprosessin eteen, jota kutsutaan yhdistetyksi kaasu höyrykiertoprosessiksi, tai vain yhdistetyksi prosessiksi. Kiinnostavin yhdistetty prosessi on kaasu-turbiini (Brayton) kiertoprosessi lisättynä höyryturbiini (Rankine) kiertoprosessiin, jolla on korkeampi terminen hyötysuhde kuin kummallakaan kiertoprosessilla yksistään. On järkevää hyödyntää kaasu-turbiiniprosessin korkeanlämpötilan hyvät ominaisuudet ja käyttää korkean lämpötilan pakokaasut energian lähteenä höyryprosessissa. Lopputuloksena on yhdistetty kaasu-höyryprosessi. Kaasuturbiinien viimeaikainen kehitys on tehnyt yhdistetyn kaasuhöyryprosessin taloudellisesti hyvin kiinnostavaksi. Yhdistetty prosessi lisää hyötysuhdetta lisäämättä hankintakustannuksia oleellisesti. Siksi monet uudet voimalaitokset toimivat yhdistetyillä prosesseilla ja monia muita olemassa olevia höyry- tai kaasuvoimalaitoksia on muutettu yhdistetyn kiertoprosessin voimalaitoksiksi. Yli 50% termisiä hyötysuhteita on saavutettu

12 Yhdistetty kaasu höyryvoimalaitos. 23 Yhteenveto Carnot-höyrykiertoprosessi Rankine-kiertoprosessi: Höyryprosessien ideaalinen kiertoprosessi Ideaalisen Rankine-prosessin energia-analyysi Todellisten höyryprosessien eroavuudet ideaalisista Miten Rankine prosessin hyötysuhdetta voidaan nostaa? Alentamalla lauhduttimen painetta (alentaa T low,avg ) Höyryn tulistus korkeampaan lämpötilaan (nostaa T high,avg ) Kattilapaineen nostaminen (kasvattaa T high,avg ) Ideaalinen välitulistettu Rankine-prosessi Ideaalinen regeneratiivinen Rankine -prosessi Avoimet syöttövedenlämmittimet Suljetut syöttövedenlämmittimet Höyrykiertoprosessien toisen pääsäännön mukainen analyysi Yhdistetty prosessi Yhdistetyt kaasu höyryprosessit 24 12

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT

Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 9 KAASU(VOIMALAITOS )- KIERTOPROSESSIT Copyright TUT&The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Luku 11 JÄÄHDYTYSPROSESSIT

Luku 11 JÄÄHDYTYSPROSESSIT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 11 JÄÄHDYTYSPROSESSIT Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA

Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 7 ENTROPIA Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

Luku 13 KAASUSEOKSET

Luku 13 KAASUSEOKSET Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2010 Luku 13 KAASUSEOKSET Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

Lisätiedot

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ

Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 6 TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Pentti Saarenrinne Copyright TUT and The McGraw-Hill Companies,

Lisätiedot

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1): 1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus

Lisätiedot

Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI

Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 5 KONTROLLI- TILAVUUKSIEN MASSA- JA ENERGIA-ANALYYSI Copyright The McGraw-Hill Companies,

Lisätiedot

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö Lämpöopin pääsäännöt 0. pääsääntö Jos systeemit A ja C sekä B ja C ovat termisessä tasapainossa, niin silloin myös A ja B ovat tasapainossa. Eristetyssä systeemissä eri lämpöiset kappaleet asettuvat lopulta

Lisätiedot

1 Johdanto... 1 2 Yhteistuotantovoimalaitokseen liittyviä määritelmiä... 1 3 Keravan biovoimalaitos... 4 4 Tehtävänanto... 5 Kirjallisuutta...

1 Johdanto... 1 2 Yhteistuotantovoimalaitokseen liittyviä määritelmiä... 1 3 Keravan biovoimalaitos... 4 4 Tehtävänanto... 5 Kirjallisuutta... ENE-C3001 Energiasysteemit 2.9.2015 Kari Alanne Oppimistehtävä 2: Keravan biovoimalaitos Sisällysluettelo 1 Johdanto... 1 2 Yhteistuotantovoimalaitokseen liittyviä määritelmiä... 1 3 Keravan biovoimalaitos...

Lisätiedot

1 Johdanto Yhteistuotantovoimalaitokseen liittyviä määritelmiä Keravan biovoimalaitos Tehtävänanto... 5 Kirjallisuutta...

1 Johdanto Yhteistuotantovoimalaitokseen liittyviä määritelmiä Keravan biovoimalaitos Tehtävänanto... 5 Kirjallisuutta... ENE-C3001 Energiasysteemit 2.9.2016 Kari Alanne Oppimistehtävä 2a: Yhteistuotantovoimalaitos Sisällysluettelo 1 Johdanto... 1 2 Yhteistuotantovoimalaitokseen liittyviä määritelmiä... 1 3 Keravan biovoimalaitos...

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KATTILAN VESIHÖYRYPIIRIN SUUNNITTELU Höyrykattilan on tuotettava höyryä seuraavilla arvoilla.

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

Termodynaamiset syklit Todelliset tehosyklit

Termodynaamiset syklit Todelliset tehosyklit ermodynaamiset syklit odelliset tehosyklit Luennointi: k Kati Miettunen Esitysmateriaali: k Mikko Mikkola HYS-A00 ermodynamiikka (FM) 09..05 Syklien tyypit Sisältö Kaasusyklit s. höyrysyklit Suljetut syklit

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / 14.11.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Vielä vähän entropiasta... Termodynamiikan 2. pääsääntö Entropian rooli 2. pääsäännön yhteydessä

Lisätiedot

Voimalaitos prosessit. Kaukolämpölaitokset 1, Tuomo Pimiä

Voimalaitos prosessit. Kaukolämpölaitokset 1, Tuomo Pimiä Voimalaitos prosessit Kaukolämpölaitokset 1, 2015. Tuomo Pimiä Sisältö Kaukolämpölaitokset Johdanto Tuntivaihtelu käyrä Peruskuormalaitos Huippukuormalaitos Laitoskoon optimointi Pysyvyyskäyrä Kokonaiskustannus

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

f) p, v -piirros 2. V3likoe klo

f) p, v -piirros 2. V3likoe klo i L TKK / Energia- ja ympiiristotekniikan osasto 040301000 /040302000 TEKNILLINEN TERMODYNAMIIKKA, prof. Pert ti Sarkomaa 2. V3likoe 11.12.2002 klo 16.15-19.15 TEORIAOSA (yht. max 42 pistett3) Teoriakysymyksiin

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Luento 4. Voimalaitosteknologiat

Luento 4. Voimalaitosteknologiat Luento 4. Voimalaitosteknologiat Voimalaitoksen rakenne Eri voimalaitostyypit: Lauhde (vain sähköä) CHP (=yhdistetty sähkön- ja lämmöntuotanto) Moottori kaasuturbiini Älykäs sähköverkko, Wärtsilä www.smartpowergeneration.com

Lisätiedot

Tuulienergialla tuotetun sähköntuotannon lisäys Saksassa vuosina Ohjaaja Henrik Holmberg

Tuulienergialla tuotetun sähköntuotannon lisäys Saksassa vuosina Ohjaaja Henrik Holmberg IGCC-voimlaitosten toimintaperiaate ja nykytilanne Ohjaaja Henrik Holmberg IGCC-voimlaitoksissa (Integrated Gasification Combined Cycle) on integroitu kiinteän polttoaineen kaasutus sekä Brayton- että

Lisätiedot

Viikinmäen jätevedenpuhdistamon Energiantuotannon tehostaminen

Viikinmäen jätevedenpuhdistamon Energiantuotannon tehostaminen Viikinmäen jätevedenpuhdistamon Energiantuotannon tehostaminen Kaasumoottorikannan uusiminen ja ORC-hanke Helsingin seudun ympäristöpalvelut Riikka Korhonen Viikinmäen jätevedenpuhdistamo Otettiin käyttöön

Lisätiedot

YDINVOIMALAITOKSEN SEKUNDÄÄRIPIIRIN LÄMPÖTEKNISEN KUNNONVALVONNAN UUDISTAMINEN

YDINVOIMALAITOKSEN SEKUNDÄÄRIPIIRIN LÄMPÖTEKNISEN KUNNONVALVONNAN UUDISTAMINEN Lappeenranta University of Technology LUT School of Energy Systems Energiatekniikan koulutusohjelma Mika Roitto YDINVOIMALAITOKSEN SEKUNDÄÄRIPIIRIN LÄMPÖTEKNISEN KUNNONVALVONNAN UUDISTAMINEN Lappeenrannassa

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään

Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään Varaavan tulisijan liittäminen rakennuksen energiajärjestelmään DI, TkT Sisältö Puulla lämmittäminen Suomessa Tulisijatyypit Tulisijan ja rakennuksessa Lämmön talteenottopiiput Veden lämmittäminen varaavalla

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Luku 15 KEMIALLISET REAKTIOT

Luku 15 KEMIALLISET REAKTIOT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 15 KEMIALLISET REAKTIOT Copyright The McGraw-Hill Companies, Inc. Permission required for

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

BIOENERGIAHANKE 3.11.2011

BIOENERGIAHANKE 3.11.2011 FOREST POWER BIOENERGIAHANKE 3.11.2011 Toholammin Energia Oy Projektipäällikkö Juhani Asiainen TOHOLAMPI TÄNÄÄN Asukasluku: k 3 480 (1.1.2011) 1 Verotus: 20,00 Työttömyys: 49 4,9 % Palvelut: Hyvät peruspalvelut

Lisätiedot

Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI

Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 14 KAASU HÖYRY SEOKSET JA ILMASTOINTI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista.

Jäähdytysjärjestelmän tehtävä on poistaa lämpöä jäähdytyskohteista. Taloudellista ja vihreää energiaa Scancool-teollisuuslämpöpumput Teollisuuslämpöpumpulla 80 % säästöt energiakustannuksista! Scancoolin teollisuuslämpöpumppu ottaa tehokkaasti talteen teollisissa prosesseissa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 14.11. ja tiistai 15.11. Kurssin aiheet 1. Lämpötila ja lämpö

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

Kaukolämmitys. Karhunpään Rotaryklubi 910.9.2015

Kaukolämmitys. Karhunpään Rotaryklubi 910.9.2015 Kaukolämmitys Karhunpään Rotaryklubi 910.9.2015 Lämmityksen markkinaosuudet Asuin- ja palvelurakennukset Lämpöpumppu: sisältää myös lämpöpumppujen käyttämän sähkön Sähkö: sisältää myös sähkökiukaat ja

Lisätiedot

YLEISTIETOA LÄMPÖPUMPUISTA

YLEISTIETOA LÄMPÖPUMPUISTA YLEISTIETOA LÄMPÖPUMPUISTA Eksergia.fi Olennainen tieto energiatehokkaasta rakentamisesta Päivitetty 12.1.2015 SISÄLTÖ Yleistä lämpöpumpuista Lämpöpumppujen toimintaperiaate Lämpökerroin ja vuosilämpökerroin

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

[TBK] Tunturikeskuksen Bioenergian Käyttö

[TBK] Tunturikeskuksen Bioenergian Käyttö [TBK] Tunturikeskuksen Bioenergian Käyttö Yleiset bioenergia CHP voimalaitoskonseptit DI Jenni Kotakorpi, Myynti-insinööri, Hansapower Oy Taustaa Vuonna 1989 perustettu yhtiö Laitetoimittaja öljy-, kaasuja

Lisätiedot

Energian talteenotto liikkuvassa raskaassa työkoneessa. 20.01.2010 Heinikainen Olli

Energian talteenotto liikkuvassa raskaassa työkoneessa. 20.01.2010 Heinikainen Olli Energian talteenotto liikkuvassa raskaassa työkoneessa 20.01.2010 Heinikainen Olli Esityksen sisältö Yleistä Olemassa olevat sovellukset Kineettisen energian palauttaminen Potentiaalienergian palauttaminen

Lisätiedot

1 Clausiuksen epäyhtälö

1 Clausiuksen epäyhtälö 1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,

Lisätiedot

Luku 3 Puhtaiden aineiden ominaisuudet

Luku 3 Puhtaiden aineiden ominaisuudet Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 3 Puhtaiden aineiden ominaisuudet Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

MATIAS HYTTI VOIMALAITOKSEN KÄYTÖNAIKAISEN OPTIMOINNIN ONLINE- SEURANTATYÖKALUN SUUNNITTELEMINEN. Diplomityö

MATIAS HYTTI VOIMALAITOKSEN KÄYTÖNAIKAISEN OPTIMOINNIN ONLINE- SEURANTATYÖKALUN SUUNNITTELEMINEN. Diplomityö MATIAS HYTTI VOIMALAITOKSEN KÄYTÖNAIKAISEN OPTIMOINNIN ONLINE- SEURANTATYÖKALUN SUUNNITTELEMINEN Diplomityö Tarkastaja: professori Antti Oksanen Tarkastaja ja aihe hyväksytty Luonnontieteiden tiedekuntaneuvoston

Lisätiedot

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1 DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

BIOVOIMALOIDEN URANUURTAJA, SÄHKÖN JA LÄMMÖN YHTEISTUOTTAJA

BIOVOIMALOIDEN URANUURTAJA, SÄHKÖN JA LÄMMÖN YHTEISTUOTTAJA BIOVOIMALOIDEN URANUURTAJA, SÄHKÖN JA LÄMMÖN YHTEISTUOTTAJA 03 Vaskiluodon Voima 02 Biovoimaloiden uranuurtaja, sähkön ja lämmön yhteistuottaja MANKALATOIMINTAMALLI Yritys myy tuottamansa sähkön osakkailleen

Lisätiedot

Öljystä pellettiin: kiinteistökohtainen ja aluelämpö sekä alle 1 MW CHP

Öljystä pellettiin: kiinteistökohtainen ja aluelämpö sekä alle 1 MW CHP Öljystä pellettiin: kiinteistökohtainen ja aluelämpö sekä alle 1 MW CHP Uudis Alue Saneeraus PELLETTIALAN YDINVIESTI Pelletillä voidaan lämmittää koteja 7 TWh Suomessa vuonna 2020 Suomen pellettitase,

Lisätiedot

Jätteiden energiahyötykäyttö ja maakaasu Vantaan Energian jätevoimala

Jätteiden energiahyötykäyttö ja maakaasu Vantaan Energian jätevoimala Jätteiden energiahyötykäyttö ja maakaasu Vantaan Energian jätevoimala Petri Väisänen Vantaan Energian jätevoimala Vantaan Energia solmi keväällä 2009 YTV:n ja Rosk n Roll Oy:n kanssa pitkäaikaisen palvelusopimuksen

Lisätiedot

Miten ydinvoimalan turbiini toimii lyhyt johdanto turbiiniteknologiaan

Miten ydinvoimalan turbiini toimii lyhyt johdanto turbiiniteknologiaan Miten ydinvoimalan turbiini toimii lyhyt johdanto turbiiniteknologiaan Pyhäjoki Nhan Huynh 19.3.2014 1 Yleistä Kuvia ydinvoimalaitoksen turbiinista Miten turbiini toimii Kuinka paljon sähköä voidaan saada

Lisätiedot

Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen

Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen Miten kaasuala vastaa uusiin rakentamis ja energiatehokkuusvaatimuksiin? Gasum 13.9.2011 Petri Nikkanen TAUSTAA Uusi rakennusmääräyskokoelman osa D3 Rakennusten energiatehokkuus on annettu maaliskuun 30.2011

Lisätiedot

Energian tuotanto ja käyttö

Energian tuotanto ja käyttö Energian tuotanto ja käyttö Mitä on energia? lämpöä sähköä liikenteen polttoaineita Mistä energiaa tuotetaan? Suomessa tärkeimpiä energian lähteitä ovat puupolttoaineet, öljy, kivihiili ja ydinvoima Kaukolämpöä

Lisätiedot

Lämpöpumpputekniikkaa Tallinna 18.2. 2010

Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Lämpöpumpputekniikkaa Tallinna 18.2. 2010 Ari Aula Chiller Oy Lämpöpumpun rakenne ja toimintaperiaate Komponentit Hyötysuhde Kytkentöjä Lämpöpumppujärjestelmän suunnittelu Integroidut lämpöpumppujärjestelmät

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p). 3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa

Lisätiedot

BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ. Lämmitystekniikkapäivät 2015. Petteri Korpioja. Start presentation

BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ. Lämmitystekniikkapäivät 2015. Petteri Korpioja. Start presentation BIOENERGIAN HYÖDYNTÄMINEN LÄMMITYKSESSÄ Lämmitystekniikkapäivät 2015 Petteri Korpioja Start presentation Bioenergia lämmöntuotannossa tyypillisimmät lämmöntuotantomuodot ja - teknologiat Pientalot Puukattilat

Lisätiedot

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa!

3/18/2012. Ennen aloitusta... Tervetuloa! Maalämpö. 15.3.2012 Arto Koivisto Viessmann Oy. Tervetuloa! Tervetuloa! Maalämpö 15.3.2012 Arto Koivisto Viessmann Oy Mustertext Titel Vorlage 1 01/2006 Viessmann Werke Ennen aloitusta... Tervetuloa! Osallistujien esittely. (Get to together) Mitä omia kokemuksia

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy

Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011. Sami Seuna Motiva Oy Maalämpöpumput suurissa kiinteistöissä mitoitus, soveltuvuus, toiminta Finlandia-talo 14.12.2011 Sami Seuna Motiva Oy Lämpöpumpun toimintaperiaate Höyry puristetaan kompressorilla korkeampaan paineeseen

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Hydrocell Oy Energiansäästön, lämmönsiirron ja lämmöntalteenoton asiantuntija www.hydrocell.fi NAAVATAR järjestelmä

Lisätiedot

Höyrykattilat Lämmönsiirtimet, Tuomo Pimiä

Höyrykattilat Lämmönsiirtimet, Tuomo Pimiä Höyrykattilat 2015 Lämmönsiirtimet, Tuomo Pimiä Kymenlaakson ammattikorkeakoulu / www.kyamk.fi Lämpöpintojensijoittelu kattilaan KnowEnergy KyAMK Yksikkö, osasto, tms. Tekijän nimi Kymenlaakson ammattikorkeakoulu

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

Teollisuuden energiatekniikka Peruskaavat ja käsitteet. Versio 2011

Teollisuuden energiatekniikka Peruskaavat ja käsitteet. Versio 2011 Teollisuuden energiatekniikka Peruskaavat ja käsitteet Tukimateriaali on tarkoitettu tueksi kursseille: Ene-59.4101 Teollisuuden energiatekniikka, Ene-59.4102 Energiantuotanto ja -käyttö teollisuudessa

Lisätiedot

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä Samuli Rinne Jätettä on materiaali, joka on joko - väärässä paikassa -väärään aikaan tai - väärää laatua. Ylijäämäenergiaa on energia,

Lisätiedot

Pumppuvoimalaitosten toiminta

Pumppuvoimalaitosten toiminta Aalto-yliopiston teknillinen korkeakoulu Pumppuvoimalaitosten toiminta Raportti Olli Vaittinen Smart Grids and Energy Markets WP 3.2 Johdanto Tämä raportti pohjautuu kirjoittajan pitämään esitykseen SGEM

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

Hukkalämmön muuttaminen sähköksi

Hukkalämmön muuttaminen sähköksi Lappeenrannan teknillinen yliopisto School of Energy Systems Energiatekniikan koulutusohjelma BH10A0202 Energiatekniikan kandidaatintyö Hukkalämmön muuttaminen sähköksi Electricity from waste heat Työn

Lisätiedot

Exercise 1. (session: )

Exercise 1. (session: ) EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You

Lisätiedot

KUIVAN LAATUHAKKEEN 11.11.2013

KUIVAN LAATUHAKKEEN 11.11.2013 KUIVAN LAATUHAKKEEN MARKKINAT 11.11.2013 KUIVA LAATUHAKE Kuiva laatuhake tehdään metsähakkeesta, joka kuivataan hyödyntämällä Oulussa olevien suurten teollisuuslaitosten hukkalämpöjä ja varastoidaan erillisessä

Lisätiedot

Maakaasu kaukolämmön ja sähkön tuotannossa: case Suomenoja

Maakaasu kaukolämmön ja sähkön tuotannossa: case Suomenoja Maakaasu kaukolämmön ja sähkön tuotannossa: case Suomenoja Maakaasuyhdistyksen syyskokous 11.11.2009 Jouni Haikarainen 10.11.2009 1 Kestävä kehitys - luonnollinen osa toimintaamme Toimintamme tarkoitus:

Lisätiedot

Kolmen eri paineilmavarastotyypin hyötysuhteiden

Kolmen eri paineilmavarastotyypin hyötysuhteiden Lappeenrannan-Lahden teknillinen yliopisto LUT School of Energy Systems Energiatekniikan koulutusohjelma BH10A0202 Energiatekniikan kandidaatintyö Kolmen eri paineilmavarastotyypin hyötysuhteiden vertailu

Lisätiedot

Maalämpö sopii asunto-osakeyhtiöihinkin

Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpö sopii asunto-osakeyhtiöihinkin Maalämpöä on pidetty omakotitalojen lämmitystapana. Maailma kehittyy ja paineet sen pelastamiseksi myös. Jatkuva ilmastonmuutos sekä kestävä kehitys vaativat lämmittäjiä

Lisätiedot

Lahti Energia. Kokemuksia termisestä kaasutuksesta Matti Kivelä Puh

Lahti Energia. Kokemuksia termisestä kaasutuksesta Matti Kivelä Puh Lahti Energia Kokemuksia termisestä kaasutuksesta 22.04.2010 Matti Kivelä Puh 050 5981240 matti.kivela@lahtienergia.fi LE:n energiatuotannon polttoaineet 2008 Öljy 0,3 % Muut 0,8 % Energiajäte 3 % Puu

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

Kokeneempi. Osaavampi

Kokeneempi. Osaavampi Kokeneempi. Osaavampi. 020 7737 300 www.tomallensenera.fi Tom Allen Seneran tunnusluvut Tom Allen: maalämpöalan edelläkävijä Suomessa (perustettu 1991) Tom Allen Senera Oy: yli 9 000 asennettua maalämpö-

Lisätiedot

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta.

Aurinkolämpö. Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Aurinkolämpö Tässä on tarkoitus kertoa aurinkolämmön asentamisesta ja aurinkolämmön talteen ottamiseen tarvittavista osista ja niiden toiminnasta. Keräimien sijoittaminen ja asennus Kaikista aurinkoisin

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA Alustus Luentorunko (1-4) 1. Miksi pneumatiikkaa 2. Hydrauliikka vs. pneumatiikka 3. Sähkö vs. pneumatiikka 4. Pneumatiikan rajat 5. Fysiikkaa pneumatiikan takana

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 28.9.2015 / T. Paloposki / v. 01 Tämän päivän ohjelma: Tilanyhtälöt (kertaus) Termodynamiikan 1. pääsääntö (energian häviämättömyyden laki)

Lisätiedot

Keski Suomen energiatase Keski Suomen Energiatoimisto

Keski Suomen energiatase Keski Suomen Energiatoimisto Keski Suomen energiatase 2012 Keski Suomen Energiatoimisto www.kesto.fi www.facebook.com/energiatoimisto 10.2.2014 Sisältö Keski Suomen energiatase 2012 Energiankäytön ja energialähteiden kehitys Uusiutuva

Lisätiedot

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance)

Energia-alan keskeisiä termejä. 1. Energiatase (energy balance) Energia-alan keskeisiä termejä 1. Energiatase (energy balance) Energiataseet perustuvat energian häviämättömyyden lakiin. Systeemi rajataan ja siihen meneviä ja sieltä tulevia energiavirtoja tarkastellaan.

Lisätiedot

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2 Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar

Lisätiedot

NYKYAIKAINEN ÖLJYLÄMMITYS/AURINKOÖLJYLÄMMITYS

NYKYAIKAINEN ÖLJYLÄMMITYS/AURINKOÖLJYLÄMMITYS NYKYAIKAINEN ÖLJYLÄMMITYS/AURINKOÖLJYLÄMMITYS Nykyaikainen öljylämmitys tarjoaa perinteisen kevytöljyn lisäksi mahdollisuuden käyttää lukuisia muitakin energiavaihtoehtoja kuten: - bioöljy - aurinkoenergia

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

Sähkön ja lämmön tuotanto biokaasulla

Sähkön ja lämmön tuotanto biokaasulla Sähkön ja lämmön tuotanto biokaasulla Maakaasun käytön valvojien neuvottelupäivät Vierumäki, 29. 30.5.2008 Kari Lammi Mitä biokaasu on? Orgaanisesta jätteestä hapettomassa tilassa hajoamisen tuloksena

Lisätiedot

Energiaa ja elinvoimaa

Energiaa ja elinvoimaa Energiaa ja elinvoimaa Lapin liiton valtuustoseminaari 20.5.2010 Asiakaslähtöinen ja luotettava kumppani Rovaniemen Energia-konserni Rovaniemen kaupunki Konsernin liikevaihto 40 milj. Henkilöstö 100 hlö

Lisätiedot

Recair Booster Cooler. Uuden sukupolven cooler-konesarja

Recair Booster Cooler. Uuden sukupolven cooler-konesarja Recair Booster Cooler Uuden sukupolven cooler-konesarja Mikä on Cooler? Lämmön talteenottolaite, joka sisältää jäähdytykseen tarvittavat kylmä- ja ohjauslaitteet LAUHDUTINPATTERI HÖYRYSTINPATTERI 2 Miten

Lisätiedot

Uusiutuvan energian yhdistäminen kaasulämmitykseen

Uusiutuvan energian yhdistäminen kaasulämmitykseen Aurinko Maalämpö Kaasu Lämpöpumput Uusiutuvan energian yhdistäminen kaasulämmitykseen Kaasulämmityksessä voidaan hyödyntää uusiutuvaa energiaa käyttämällä biokaasua tai yhdistämällä lämmitysjärjestelmään

Lisätiedot

Arimax öljylämmitys. Arimax 17 -sarjan öljykattilat Arimax 30S suuritehoinen öljykattila SolarMax kattilavaraaja öljy/aurinkolämmitykseen

Arimax öljylämmitys. Arimax 17 -sarjan öljykattilat Arimax 30S suuritehoinen öljykattila SolarMax kattilavaraaja öljy/aurinkolämmitykseen Arimax öljylämmitys Arimax 17 -sarjan öljykattilat Arimax 30S suuritehoinen öljykattila SolarMax kattilavaraaja öljy/aurinkolämmitykseen Arimax 17 -sarjan öljykattilat Tehokas lämmitys Runsas lämpimän

Lisätiedot

AIRIA BioHAT UUSI VOIMALAITOSKONSEPTI. Reijo Alander TTY

AIRIA BioHAT UUSI VOIMALAITOSKONSEPTI. Reijo Alander TTY AIRIA BioHAT UUSI VOIMALAITOSKONSEPTI Reijo Alander TTY 12.5.2017 Teknisiä menetelmiä liike-enrgian tuottamiseksi Menetelmä Polttoaine Kehitysajankohta Höyrykone KPA, öljy, kaasu 1700-luku Höyryturbiini

Lisätiedot

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen Erik Raita Polarsol Oy Polarsol pähkinänkuoressa perustettu 2009, kotipaikka Joensuu modernit tuotantotilat Jukolanportin alueella ISO 9001:2008

Lisätiedot