Käänteiskuvauslause, implisiittikuvauslause ja Lagrangen menetelmä

Koko: px
Aloita esitys sivulta:

Download "Käänteiskuvauslause, implisiittikuvauslause ja Lagrangen menetelmä"

Transkriptio

1 Käänteiskuvauslause, implisiittikuvauslause ja Lagrangen menetelmä Pro gradu -tutkielma Dimitri Tuomela Matemaattisten tieteiden laitos Oulun yliopisto Kesä 2014

2 Sisältö Johdanto 2 1 Esitietoja 2 2 Käänteiskuvauslause 6 3 Implisiittikuvauslause 17 4 Lagrangen menetelmä 26 Lähdeluettelo 35 1

3 Johdanto Tämä Pro gradu -tutkielma on luontevaa jatkoa vektorianalyysin alkeisiin perehtyneelle. Tutkielma esittelee ja todistaa kolme merkittävää tulosta: käänteiskuvauslauseen, implisiittikuvauslauseen ja Lagrangen menetelmän. Nämä tulokset luovat merkittävän pohjan vektorianalyysille. Käänteiskuvauslause muotoilee kuvaukselle f : D R n R n asetettavat vaatimukset, jotka takaavat hyvin käyttäytyvän lokaalin käänteiskuvauksen olemassaolon. Implisiittikuvauslauseen tärkeys perustuu siihen, että se antaa oikeutuksen implisiittiselle derivoinnille. Yhtälöitä voidaan derivoida implisiittisesti saaden lisää tietoa, mutta implisiittikuvauslause muotoilee millä ehdoilla ja miksi näin voi tehdä. Tämän ansiosta monimutkaisempia graafeja, joita on vaikea käsitellä kokonaisuutena voidaan tarkastella lokaalisti yksinkertaisemmilla kuvauksilla, joista voidaan osoittaa kokonaisuuden koostuvan. Näiden pienten helpommin käsiteltävien osasten avulla on mahdollista jatkossa osoittaa merkittäviä tuloksia myös kokonaisuudelle. Esimerkiksi dierentiaaliyhtälöiden ja dierentiaaligeometrian tutkimuksessa nämä lauseet ovat keskeisiä työkaluja. Ne ovat eksistenssilauseita, jotka osoittavat tietynlaisten kuvausten olemassaolon. Eksistenssilauseiden merkitys on erityisesti se, että niiden avulla saadaan jatkossa osoitettua muita tuloksia. Lagrangen menetelmä puolestaan antaa tehokkaan tavan tutkia ääriarvoja hankalaltakin kuvaukselta, jota rajoittaa yksi tai useampi rajoite-ehto. Sillä on useita sovelluskohteita mm. taloustieteissä ja fysiikassa. Tutkielma pohjautuu pääasiassa Peter Baxandallin ja Hans Liebeckin kirjaan Vector Calculus [1]. Kappaleen lopussa on erillinen maininta, mikäli lähteenä on muu teos. 1 Esitietoja Esitietoina lukijalla on hyvä olla analyysin ja lineaarialgebran perusteet, erityisesti dierentioituvuuden ja kääntyvyyden osalta. Palautetaan mieleen keskeisiä esitietoja ja määritellään käsitteitä, joita tarvitaan, kun käsitellään käänteiskuvauslausetta, implisiittikuvauslausetta ja Lagrangen menetelmää. Määritelmä 1.1 (Luonnollinen kanta). Avaruuden R n luonnollinen kanta muodostuu vektoreista {e 1,..., e n }, jotka ovat koordinaattiakseleiden suuntaisia yksikkövektoreita. Määritelmä 1.2 (Ympäristö). Pisteen p R n ympäristöllä tarkoitetaan avointa joukkoa, joka sisältää pisteen p. Usein tällaiseksi ympäristöksi valitaan δ-säteinen p-keskipisteinen avoin pallo, jota merkitään N(p, δ). 2

4 Määritelmä 1.3 (Lineaarikuvaus). Lineaarikuvaus L : R m R n on sääntö, joka liittää määrittelyjoukkonsa vektoriin x R m yksikäsitteisen vektorin L(x) R n sillä tavoin, että L(kx + ly) = kl(x) + ll(y) kaikilla x, y R m ja k, l R. Jokainen äärellisulotteinen lineaarikuvaus avaruudelta R m avaruudelle R n voidaan esittää n m kokoisena matriisina. Lineaarikuvaus on kääntyvä, jos sitä vastaava matriisi on kääntyvä. Jotta saadaan dierentioituvuus määriteltyä napakasti, määritellään ensin mitä tarkoittaa dierenssikuvaus ja tarkka approksimointi. Määritelmä 1.4 (Dierenssikuvaus). Olkoon kuvaus f : D R m R n, missä D R m on avoin joukko ja piste p D. Tällöin kuvauksen f dierenssikuvaus δ f,p : D p R m R n pisteessä p määritellään δ f,p (h) = f(p + h) f(p), h D p, missä D p D on pisteen p ympäristö. Määritelmä 1.5 (Tarkka approksimaatio). Olkoot g : N R m R n ja g : M R m R n kaksi kuvausta joiden avoimet määrittelyjoukot sisältävät nollavektorin 0. Sanotaan, että g ja g approksimoivat tarkasti toisiaan nollavektorin 0 lähellä, jos on olemassa kuvaus η : N M R m R n, jolle [A] g(h) g (h) = h η(h), h N M ja [B] lim η(h) = 0. h 0 Määritelmä 1.6 (Dierentioituvuus). Avoimessa joukossa D R m määritelty kuvaus f : D R m R n on dierentioituva pisteessä p D, jos dierenssikuvausta δ f,p : D p R m R n voidaan approksimoida tarkasti lineaarikuvauksella L : R m R n lähellä nollavektoria 0. Kuvaus on dierentioituva, jos se on dierentioituva jokaisessa määrittelyjoukkonsa pisteessä. Tarkasti approksimoiva lineaarikuvaus voidaan osoittaa yksikäsitteiseksi. Merkitään tätä lineaarikuvausta jatkossa L f,p. Tätä lineaarikuvausta kutsutaan usein kuvauksen f dierentiaaliksi tai derivaataksi pisteessä p. Jos käytetään nimeä derivaatta, niin on olennaista ymmärtää, että moniulotteisen derivaatan merkitys on hieman erilainen kuin perinteisen derivaatan. 3

5 Määritelmä 1.7 (Jacobin matriisi). Voidaan osoittaa, että jos kuvaus f : D R m R n on dierentioituva pisteessä p D, niin kaikki osittaisderivaatat ( f i / x j )(p) ovat olemassa ja dierentiaalia L f,p luonnollisen kannan suhteen kuvaava n m matriisi on f [ ] 1 f x 1 (p)... 1 x m (p) fi J f,p = (p) =... x j f n f x 1 (p)... n x m (p) Kutsutaan tätä matriisia kuvauksen f Jacobin matriisiksi pisteessä p. Lineaarikuvaus L f,p on kääntyvä, jos ja vain jos det J f,p 0. Määritelmä 1.8 (Gradientti). Määritellään gradientti ja merkitään sitä nablalla. Olkoon f : D R m R dierentioituva pisteessä p D. Kuvauksen f gradientti pisteessä p on tällöin vektori ) f(p) = ( f x 1 (p),..., f x m (p) R m. Kuvauksen f ollessa derivoituva koko joukossa D voidaan tarkastella vektoriarvoista kuvausta f : D R m R n Jacobin matriisi voidaan kirjoittaa pystyvektorina, jonka vaakariveinä ovat koordinaattifunktioiden gradientit f 1 (p) J f,p = [ f i (p)] =. f n (p). Määritelmä 1.9 (C 1 -kuvaus). Kuvaus f on C 1 -kuvaus, jos sen osittaisderivaatat ovat olemassa ja jatkuvia. Tällöin sanotaan, että kuvaus on jatkuvasti dierentioituva. Tällainen kuvaus on aina dierentioituva. Määritelmä 1.10 (Lokaali kääntyvyys). Kuvaus f : D R n R n on lokaalisti injektiivinen pisteessä p D, jos on olemassa pisteen p sisältävä avoin joukko N D, missä f on injektio. Tällöin voidaan sanoa kuvauksen f olevan lokaalisti kääntyvä pisteessä p ja merkitään lokaalia käänteiskuvausta f 1 : f(n) R n R n. On huomattava, että kuvauksen arvon alkukuvasta käytetään joskus samaa merkintää, joten täytyy lukea merkintää tarkasti asiayhteydessä. 4

6 Sileydelle on useita määritelmiä. Tämä johtuu siitä, että eri määritelmät kuvaavat suuremman asteen sileyttä kuin toiset tai toisen tyyppistä sileyttä. Tässä tutkielmassa tarvitaan vain seuraavanlaista sileyttä. Määritelmä 1.11 (Sileä kuvaus). Kuvaus f : R n R n on sileä pisteessä p, jos det J f,p 0. Lause 1.12 (Ketjusääntö). Olkoon kuvaus g : E R l R m määritelty avoimessa joukossa E R l ja kuvaus f : D R m R n määritelty avoimessa joukossa D R m sillä tavoin, että g(e) D. Määritellään kuvaus F : E R l R n kuvausten f ja g yhdistetyksi kuvaukseksi F (t) = (f g)(t) = f(g(t)), t E. Oletetaan kuvauksen g olevan dierentioituva pisteessä a E ja kuvauksen f olevan dierentioituva pisteessä g(a) D. Tällöin vastaava yhdistetty kuvaus F on dierentioituva pisteessä a ja sen derivaattakuvaus on L F,a = L f,g(a) L g,a. Lisäksi yhdistetyn kuvauksen F Jacobin matriisi pisteessä a on matriisitulo J F,a = J f,g(a) J g,a. Todistuksen voi katsoa useimmista analyysin perusteita käsittelevistä kirjoista, kuten tämän tutkielman päälähteestä [1, s ]. Lause 1.13 (Väliarvolause). Olkoon f : D R m R n dierentioituva kuvaus, jonka avoin määritysjoukko D sisältää pisteet q ja q + h sekä näiden pisteiden määräämän janan. Tällöin jokaista vektoria u R n kohti on olemassa sellainen 0 < θ < 1, että (f(q + h) f(q)) u = L f,q+θh (h) u. Todistus. Todistuksen ideana on määritellä sopivat kuvaukset f ja F, joiden avulla saadaan tilanne sellaiseen muotoon, että voidaan soveltaa dierentiaalilaskennan väliarvolausetta. Kuvaus f : D R m R, joka määritellään f (x) = (f(x) f(q)) u, x D, on dierentioituva, koska f on dierentioituva ja siitä vain vähennetään vakio f(q), jonka jälkeen muodostetaan pistetulo vektorin kanssa. Olkoon 5

7 e 1,..., e m reaaliavaruuden R m luonnollinen kanta. Osittaisderivaatoille jokaisella k = 1,..., m pätee f x k (x) = f x k (x) u = L f,x (e k ) u, x D. (1) Tätä tulosta tarvitaan hieman myöhemmin. Tarkastellaan nyt kuvausta F : E R R, missä [0, 1] E ja F (t) = (f(q + th) f(q)) u, t E. Nyt kaikille t E, F (t) = f (q + th), joten ketjusäännön nojalla F on dierentioituva. Lisäksi kaikille t E derivaatta F (t) on F f f (t) = h 1 (q + th) h m (q + th) x 1 x m = (h 1 L f,q+th (e 1 ) h m L f,q+th (e m )) u (kohdan (1) nojalla) = L f,q+th (h) u. Dierentiaalilaskennan väliarvolauseen nojalla löytyy sellainen θ, 0 < θ < 1, että (f(q + h) f(q)) u = F (1) F (0) = F (θ) = L f,q+θh (h) u, mikä todistaa lauseen. 2 Käänteiskuvauslause Käänteiskuvauslauseen ideana on tunnistaa ne kuvauksen f : D R n R n ominaisuudet, joista seuraa hyvin käyttäytyvän lokaalin käänteiskuvauksen olemassaolo pisteessä p D. Kuvauksen f vaikutusta pisteen p lähellä approksimoi tarkasti lineaarikuvaus L f,p, joten voisi olettaa kuvauksen f paikallisella kääntyvyydellä pisteen p läheisyydessä ja lineaarikuvauksen L f,p kääntyvyydellä olevan läheinen yhteys. Lineaarikuvaus L f,p on kääntyvä, jos ja vain jos det J f,p 0. Käänteiskuvauslauseen lähtöoletuksiksi valitaankin, että det J f,p 0 eli sileys ja että f on C 1 -kuvaus. Näihin lähtöoletuksiin perustuen saamme todistettua käänteiskuvauslauseen, joka on yksi vektorianalyysin keskeisimpiä lauseita. Käänteiskuvauslauseen todistusta varten meidän tulee ensin osoittaa, että näiden lähtöoletusten seurauksena on olemassa pisteen p ympäristö, jossa kuvaus f on injektio ja sileä. Tämä seuraa kun det J f,q 0 kaikilla kyseisen ympäristön pisteillä q. Tämän osoittamiseksi tarvitaan kaksi lemmaa. 6

8 Lemma 2.1. Olkoon T : R n R n bijektiivinen lineaarikuvaus, jolloin sille on olemassa käänteiskuvaus. Tällöin on olemassa sellainen µ > 0, että jokaista x R n kohti T (x) µ x ja T 1 (x) 1 µ x. Todistus. Olkoon e 1,..., e n avaruuden R n luonnollinen kanta. Tällöin jokaiselle x R n pätee T (x) = T (x 1 e x n e n ) = x 1 T (e 1 ) x n T (e n ). Kolmioepäyhtälön nojalla T (x) x 1 T (e 1 ) x n T (e n ) = ( x 1,..., x n ) ( T (e 1 ),..., T (e n ) ), jolloin Cauchyn-Schwarzin epäyhtälön nojalla T (x) 2 n n x i 2 T (e i ) Merkitsemällä µ 2 = n 1 T (e i) 2 saadaan lemman ensimmäinen osa. Sijoittamalla ensimmäiseen osaan muuttujan x paikalle T 1 (x) saadaan lemman toinen osa. Lemma 2.2. Olkoon f : D R n R n C 1 -kuvaus ja p avoimen joukon D piste. Tällöin jokaista ɛ > 0 kohti on olemassa sellainen avoin pallo N(p, δ) D, että kaikille sen pisteille q N(p, δ) on voimassa 1. (L f,q L f,p )(h) ɛ h kaikille h R n, 2. f(q+h) f(q) L f,p (h) ɛ h kaikille h R n, joille q + h N(p, δ). Todistus. Merkitään dierentiaalin L f,p sarakkeita ( f f1 (p) = (p),..., f ) n (p) = L f,p (e j ). x j x j x j Kaikille q D ja h R n pätee ( f L f,q (h) L f,p (h) = h 1 (q) f ) (p) x 1 x 1 ( f h n (q) f ) (p), x n x n 7

9 joten pätee myös L f,q (h) L f,p (h) h 1 f (q) f (p) x 1 x h n f (q) f (p) x n x n. (2) Kuvauksen f osittaisderivaatat ovat jatkuvia joukossa D, joten jokaista ɛ > 0 vastaa sellainen ympäristö N(p, δ) D, jolle pätee f (q) f (p) x i x i ɛ kaikilla i = 1,..., n, kun q N(p, δ). n Sopivalla luvun δ valinnalla ja epäyhtälön (2) nojalla L f,q (h) L f,p (h) ɛ n ( h h n ) ɛ h, kun q N(p, δ), mikä todistaa lemman ensimmäisen kohdan. Olkoon mielivaltaisille q, q + h N(p, δ) u = f(q + h) f(q) L f,p (h). Väliarvolauseen (1.13) nojalla on olemassa sellainen 0 < θ < 1, että jolloin (f(q + h) f(q)) u = L f,q+θh (h) u (f(q + h) f(q) L f,p (h)) u = (L f,q+θh (h) L f,p (h)) u. Tällöin sijoittamalla u ja käyttämällä Cauchy-Schwarzin epäyhtälöä saadaan f(q + h) f(q) L f,p (h) (L f,q+θh L f,p )(h), mistä lemman toinen kohta seuraa käyttämällä ensimmäistä kohtaa. Näiden lemmojen avulla voimme todistaa päätuloksemme käänteiskuvauslauseen todistamista varten eli jos C 1 -kuvaus on sileä jossakin pisteessä eli sen Jacobin matriisin determinantti on nollasta eroava, niin sitten se on sileä ja injektio myös jossakin tämän pisteen ympäristössä. Lause 2.3. Olkoon f : D R n R n C 1 -kuvaus ja p sellainen avoimen joukon D piste, että det J f,p 0. Tällöin on olemassa sellainen pisteen p ympäristö N(p, δ) D, että 8

10 1. det J f,q 0 kaikille q N(p, δ), 2. f : N(p, δ) R n R n on injektio. Todistus. Lineaarikuvaus L f,p on kääntyvä, koska det J f,p 0. Lemman 2.1 nojalla on olemassa sellainen µ > 0, että kääntyvälle lineaarikuvaukselle L f,p pätee myös L 1 f,p (x) µ x ja L f,p(x) 1 µ x kaikilla x Rn. (3) Valitsemalla ɛ = 1/(2µ) voidaan osoittaa Lemman 2.2 avulla, että ympäristö N(p, δ) täyttää nyt todistettavan lauseen ehdot. Tehdään tämä vastaväitteen avulla. Oletetaan, että jollakin q N(p, δ) pätee det J f,q = 0. Tällöin on olemassa sellainen nollasta eroava h R n, että L f,q (h) = 0. Kuitenkin Lemman 2.2 ensimmäisen kohdan nojalla, kun ɛ = 1/(2µ), pätee L f,p (h) = (L f,q L f,p )(h) 1 2µ h. mikä on ristiriidassa epäyhtälön (3) jälkimmäisen kohdan kanssa, sillä muuttujan x paikalle voidaan sijoittaa muuttuja h. Siis täytyy olla det J f,q 0 kaikilla q N(p, δ), mikä on lauseen ensimmäinen kohta. Vastaavasti oletetaan, että on olemassa kaksi määrättyä pistettä q ja q +h ympäristössä N(p, δ), joille pätee f(q+h) = f(q). Tällöin Lemman 2.2 toisen kohdan nojalla L f,p (h) = f(q + h) f(q) L f,p (h) 1 2µ h, mistä seuraa sama ristiriita kuin aiemmin. Siis kuvaus f : N(p, δ) R n R n on injektio, mikä oli osoitettava. Lauseen 2.3 mukaan C 1 -kuvauksen f Jacobin matriisin ollessa kääntyvä pisteessä p myös f on lokaalisti kääntyvä pisteessä p. Se ei kuitenkaan kerro meille mitään kuvauksen f käänteiskuvauksesta g. Seuraavaksi todistettava merkittävä tulos on se, että joukko f(n(p, δ)) sisältää pisteen f(p) ympäristön V, missä itse käänteiskuvaus g on C 1 -kuvaus. Lause 2.4 (Käänteiskuvauslause). Olkoon f : D R n R n C 1 -kuvaus avoimessa joukossa D R n ja det J f,p 0 pisteessä p D. Tällöin 1. on olemassa sellaiset avoimet joukot U R n ja V R n, jotka sisältävät pisteet p U ja f(p) V, että U D, f(u) = V ja f on injektio joukossa U, 9

11 2. kuvauksen f lokaali käänteiskuvaus g : V U on myös C 1 -kuvaus, 3. J g,f(p) J f,p = I. Todistus. Todistetaan ensin kohta 1. Hahmotellaan aluksi todistuksen ideaa ja työkaluja, joita todistuksessa käytetään. Merkitään lineaarikuvausta L f,p jatkossa lyhyesti L. Koska det J f,q 0, niin kuvauksella L on käänteiskuvaus L 1 : R n R n. Olkoon µ > 0 Lemman 2.1 mukaisesti sellainen, että L 1 (z) µ z kaikilla z R n. (4) Olkoon ɛ = 1/(2µ). Lemman 2.2 nojalla on olemassa sellainen pisteen p ympäristö N(p, δ) D, että kun q, q + h N(p, δ), niin f(q + h) f(q) L(h) 1 h. (5) 2µ Lauseen 2.3 nojalla f on injektio joukossa N(p, δ) ja L f,q on isomorsmi joukossa R n kaikille q N(p, δ), sillä det J f,q 0. Tullaan osoittamaan, että on olemassa sellainen pisteen f(p) ympäristö V = N(f(p), σ) avaruudessa R n, että jokaista y V vastaa täsmälleen yksi x N(p, δ), jolle pätee y = f(x). Tämä on yhtäpitävää sen kanssa, että V f(n(p, δ)), (6) koska tiedetään jo, että kuvaus f on injektio joukossa N(p, δ). Tästä päättelystä seuraa todistuksen ensimmäinen kohta, sillä joukko U = f 1 (V ) N(p, δ) on avoin joukossa D. Tämä on perusteltua, koska joukot N(p, δ) ja D ovat avoimia ja joukko f 1 (V ) on avoin, koska V on avoin ja f on bijektiivisesti jatkuva joukolta U joukolle V. Täten kohdan (6) nojalla f(u) = V. Tässä tullaan käyttämään Banachin kiintopistemenetelmän kaltaista päättelyä. Peräkkäisellä approksimoinnilla löytyy jokaista pistettä y N(f(p), σ) vastaava piste x N(p, δ), jolle pätee y = f(x). Aloittamalla pisteestä x 1 = p löydetään jono (x k ), jonka jokainen termi sisältyy ympäristöön N(p, δ) ja joille pätee, että y f(x k ) 0 ympäristössä N(f(p), σ). Jos (x k ) suppenee arvoon x N(p, δ), niin kuvauksen f jatkuvuudesta seuraa, että y = f(x). Luvun σ > 0 täytyy olla riittävän pieni, jotta varmasti jokaista y N(f(p), σ) vastaava jono (x k ) suppenee ympäristössä N(p, δ). Pohditaan, miten jono (x k ) kannattaa valita. Jos on valittu luku x k N(p, δ), niin miten kannattaa valita x k+1 = x k + h N(p, δ), jotta f(x k+1 ) olisi lähempänä lukua y kuin f(x k ). Koska f on dierentioituva, niin f(x k + h) f(x k ) + L f,xk (h). 10

12 Lemman 2.2 nojalla L f,xk (h) on lähes sama kuin L(h), joten vaikuttaa järkevältä valita luku h siten, että y = f(x k ) + L(h). Valitsemalla tällä tavoin h = L 1 (y f(x k )) määritellään jono x k+1 = x k + L 1 (y f(x k )). (7) Toki täytyy vielä tarkistaa, että x k+1 N(p, δ). Jos kaikki jonon (x k ) termit toteuttavat ehdon (7) kaikilla k N ja jono (x k ) suppenee arvoon x N(p, δ), niin kuvauksien f ja L 1 jatkuvuudesta seuraa x = x + L 1 (y f(x)). Edellisen yhtälön nojalla L 1 (y f(x)) = 0, joten käyttämällä kuvausta L saadaan y = f(x). Jonon (x k ) suppenemisen tarkastelussa tutkitaan vektoreita x k+1 x k kaikilla k N. Jokaista lukua k kohti on olemassa sellainen z k R n, että f(x k+1 ) f(x k ) = L(x k+1 x k ) + x k+1 x k z k. (8) Tämä voidaan saattaa muotoon f(x k+1 ) f(x k ) L(x k+1 x k ) = x k+1 x k z k, mistä huomataan yhtälön vasemman puolen olevan muotoa f(q +h) f(q) L(h), joten yhtälön (5) nojalla, josta sieventämällä saadaan x k+1 x k z k 1 2µ x k+1 x k, z k 1 2µ. (9) Sieventäminen on luvallista, sillä jos x k+1 x k = 0, niin x k+1 = x k = x, joka on etsimämme kiintopiste. Tällöin tätä jonoa ei tarvitsisi, sillä sen tehtävä on etsiä tuo kiintopiste. Käyttämällä lineaarikuvausta L 1 yhtälöön (8) saadaan kaikilla k N voimaan x k+1 x k = L 1 (f(x k+1 ) f(x k )) x k+1 x k L 1 (z k ). (10) Todistetaan nyt käänteiskuvauslauseen ensimmäinen kohta käyttämällä hyväksi edellä esiteltyjä aputuloksia. Olkoon σ = δ/(4µ) ja kiinnitetään 11

13 y N(f(p), σ). Alkuarvolla x 1 = p N(p, δ) saamme määriteltyä jonon seuraavat termit rekursiivisesti yhtälön (7) avulla. Sijoittamalla k = 1 ja x 1 = p yhtälöön (7) saadaan ja yhtälön (4) avulla x 2 p = L 1 (y f(p)), L 1 (y f(p)) µ y f(p) < µσ = δ 4. Siispä x 2 x 1 = x 2 p < δ 4, (11) jolloin x 2 N(p, δ). Koska x 2 D, niin yhtälö (7) määrää rekursiivisesti luvun x 3, jolloin x 3 x 2 = (x 2 + L 1 (y f(x 2 ))) (x 1 + L 1 (y f(x 1 ))) = (x 2 x 1 ) L 1 (f(x 2 ) f(x 1 )) = x 2 x 1 L 1 (z 1 ) (yhtälön (10) nojalla). Tällöin yhtälöiden (4) ja (9) nojalla saadaan x 3 x x 2 x 1 < δ 8. (12) Lisäksi kolmioepäyhtälön ja edellisten kohtien (11) ja (12) yhdistämisestä seuraa x 3 p x 3 x 2 + x 2 x 1 < ( )δ < 1 2 δ. Osoitetaan kohdan (12) vihjailema tulos x k x k 1 < δ 2 k (13) kaikilla k 2 induktiotodistusta hyväksi käyttäen. Alkuaskel k = 2 on osoitettu jo aiemmin kohdassa (11). Induktioaskeleessa oletetaan väite todeksi, kun k = n ja osoitetaan tällöin väite todeksi myös, kun k = n + 1 eli on osoitettava, että x n+1 x n < δ kaikilla n 2. Nyt 2 n+1 yhtälöä (10) apuna käyttäen saadaan x n+1 x n = (x n + L 1 (y f(x n ))) (x n 1 + L 1 (y f(x n 1 ))) = (x n x n 1 ) L 1 (f(x n ) f(x n 1 )) = x n x n 1 L 1 (z n 1 ), 12

14 joten induktio-oletuksen ja kohtien (4) ja (9) nojalla x n+1 x n = x n x n 1 L 1 (z n 1 ) x n x n 1 µ z n 1 < 1 2 x n x n 1 < δ 2 2 = δ, n kun n 2. 2n+1 Koska alkuaskel ja induktioaskel ovat tosia, niin yhtälö (13) on tosi. Epäyhtälön (13) ja kolmioepäyhtälön seurauksena ( 1 x k p x k x k x 2 p < ) δ < 1 δ. k 2 2 (14) 2 Lisäksi epäyhtälöistä (13) ja (14) voidaan johtaa kaikille k > l 1 x k x l x k x k x l+1 x l ( ) σ < δ k 2 l+1 2. l Täten (x l ) on Cauchy-jono ympäristössä N(p, δ), joten se suppenee kohti arvoa x R n. Kohdan (14) nojalla x p 1 δ, joten x N(p, δ). Siispä 2 yhtälöstä (7) nähdään jonon (x k ) suppenemisen seurauksena, että f(x) = y. Nyt käänteiskuvauslauseen ensimmäinen osa on todistettu kohdan (5) jälkeisen päättelyn mukaisesti ja V = N(f(p), σ) sekä U = f 1 (V ) N(p, δ), jolloin f(u) = V. Todistetaan kohdat 2 ja 3. Olkoot avoimet joukot U ja V, kuten kohdassa 1. Kuvaus f : U V on injektiivinen ja kuvaa joukon U joukoksi V. Olkoon kuvaus g : V U kuvauksen f lokaali käänteiskuvaus. Oletetaan, että y, y + k V. Tällöin on olemassa yksikäsitteiset x, x + h U siten, että f(x) = y, f(x + h) = y + k, x = g(y), x + h = g(y + k). Koska kuvaus f on dierentioituva pisteessä x, niin on olemassa sellainen kuvaus η : D x R n R n, että ja k = f(x + h) f(x) = L f,x (h) + h η(h) (15) lim η(h) = 0. h 0 Lauseen 2.3 ensimmäisen kohdan nojalla lineaarikuvaus L f,x on bijektiivinen. Merkitään tämän lineaarikuvauksen käänteiskuvausta S = L 1 f,x : Rn R n. Nyt yhtälön (15) avulla saadaan S(k) = h + S( h η(h)). 13

15 Tällöin g(y + k) g(y) = h = S(k) + k S Toisaalta tuloksen (5) mukaan L(h) f(x + h) f(x) 1 2µ h. ( h ) k η(h). (16) Epäyhtälön (4) mukaan L 1 (h) µ h, joten L(h) 1 h. Tästä ja µ yhtälöstä (15) seuraa 1 1 h k µ 2µ h, joten k 1 2µ h. Nyt koska S on jatkuva pisteessä 0, niin lim S k 0 ( h k η(h) ) = 0. (17) Kohdista (16) ja (17) nähdään, että g on dierentioituva pisteessä y ja sen dierentiaali on L g,y = S = L 1 f,x. Siten Jacobin matriisi J g,y on kääntyvä ja J g,y = (J f,x ) 1, missä x U, y = f(x) V. (18) Kohta 3 seuraa, kun valitaan x = p ja y = f(p). Kohdan 2 todistamiseksi saatiin dierentioituvuus, joten kuvauksen f kaikki osittaisderivaatat ovat olemassa. Vielä täytyy osoittaa, että ne ovat jatkuvia. Tarkastellaan matriisin J 1 f,x alkiota (i, j). Nämä alkiot ovat lineaarialgebran alkeista tutun Cramerin säännön nojalla kuvauksen f koordinaattifunktioiden osittaisderivaattojen ( f k / x l )(x), x, l = 1,..., n rationaalikombinaatioita. Yhtälöstä (18) tiedetään, että ( g i / y j )(y) = ( g i / y j )(f(x)) on jatkuva muuttujasta x riippuva kuvaus. Toisaalta kuvaus g on dierentioituva, joten myös jatkuva. Siis x = g(y) on jatkuva muuttujasta y riippuva kuvaus, joten g i y j (f(g(y))) = g i y j (y) on jatkuva muuttujasta y riippuva kuvaus. Siis kuvauksen g kaikkien koordinaattifunktioiden kaikki osittaisderivaatat ovat jatkuvia, joten kuvaus g on C 1 -kuvaus. 14

16 Seuraava esimerkki kuvaa dierentioituvan kuvauksen heikkoutta suhteessa C 1 -kuvaukseen. Sen avulla voi pohtia miksi lauseiden lähtöoletukseksi täytyy valita nimenomaan jatkuva dierentioituvuus pelkän dierentioituvuuden sijasta. Esimerkki 2.5. Määritellään kuvaus f : R R, missä f(x) = x 2 sin(1/x) + x, x 0 ja f(0) = 0. Osoitetaan, että 1. f on dierentioituva joukossa R ja erityisesti f (0) = 1, 2. f ei ole lokaalisti kääntyvä pisteessä 0, 3. f on epäjatkuva pisteessä kohta. Alkeiskuvauksena f on dierentioituva, kun x 0. Kun x = 0, niin f(x) f(0) x 0 = x2 sin( 1 x ) + x 0 x = x sin , kun x 0. x 2. kohta. Tarkastellaan kuvauksen f derivaattakuvausta f (x) = 2x x cos 1 2 x + 1 = 1 2 cos 1 x. x Koska cos 1 1 x ja cos 1 vaihtaa merkkiään sitä tiheämpään mitä lähemmäksi nollaa mennään, niin derivaatta f vaihtaa merkkiään nollan lähellä x mielivaltaisen tiheästi ja samalla derivaattakuvaus f on nollan lähellä jatkuva. Siis mikä tahansa nollan sisältävä avoin väli sisältää kuvauksen f ääriarvokohdan, joten ei ole olemassa nollan ympäristöä, johon rajoitettuna kuvaus f olisi injektiivinen. Siis f ei ole lokaalisti kääntyvä. 3. kohta. Voidaan osoittaa, että derivaattakuvaus f (x) = 1 2 cos 1 x saa x mielivaltaisen lähellä nollaa arvokseen minkä tahansa reaaliluvun, vaikkapa luvun 0, mutta kuitenkin f (0) = 1. Tarkastellaan yhtälöä f (x) = 0, x 0. Tällöin yhtälö saa muodon 2 cos 1 x = x. Merkitään u = 1 1, jolloin cos u =. Tälle yhtälölle löytyy mielivaltaisen suuria ratkaisuja u eli mielivaltaisen pieniä ratkaisuja x, joten derivaattakuvauk- x 2u selle f voidaan löytää mielivaltaisen läheltä nollaa kohtia, joissa derivaatta on 0, mutta kuitenkin f (0) = 1, joten derivaattakuvaus f on epäjatkuva pisteessä 0. 15

17 Tämä osoittaa, että dierentioituvuudesta ja ehdosta f (p) 0 ei aina seuraa kuvauksen f lokaali kääntyvyys pisteessä p. Siksi käänteiskuvauslauseen lähtöoletuksena on oltava, että tarkasteltava kuvaus on jatkuvasti dierentioituva. Esimerkki 2.6. Olkoon kompleksilukujen neliöön korottamiseen läheisesti liittyvä kuvaus f : R 2 R 2 määritelty f(x, y) = (x 2 y 2, 2xy), (x, y) R 2. Kuvaus f on C 1 -kuvaus, sillä sen osittaisderivaatat ovat olemassa ja jatkuvia. Jacobin matriisi J f,(x,y) on ( ) 2x 2y J f,(x,y) = 2y 2x ja det J f,(x,y) = 4x 2 + 4y 2 = 4(x 2 + y 2 ) 0, kun (x, y) (0, 0), joten käänteiskuvauslauseen ensimmäisen kohdan nojalla voidaan todeta kuvaus f lokaalisti kääntyväksi origoa lukuunottamatta. Voidaan osoittaa, että origossa kuvaus f ei ole lokaalisti kääntyvä, sillä f(a, a) = f( a, a) = (2a 2, 2a 2 ), kaikilla a R. Ei siis löydy pisteen (0, 0) ympäristöä, jossa kuvaus f olisi injektio. Olkoon käänteiskuvauslauseen mukaisesti ympäristöt U R 2 ja V R 2 sekä piste p = (x, y) U R 2 \{0} sellaiset, että f : U R 2 on injektiivinen kuvaus joukossa U ja f(u) = V. Tällöin käänteiskuvauslauseen toisen kohdan nojalla myös kuvauksen f lokaali käänteiskuvaus g : V R 2 R 2 on C 1 -kuvaus. Vaikka lokaali käänteiskuvaus on varmasti olemassa, niin sille ei kuitenkaan ole olemassa yksinkertaista esitystä. Kolmannen kohdan avulla saadaan kuitenkin selvitettyä pisteessä p = (x, y) lokaalin käänteiskuvauksen g Jacobin matriisi ( ) 1 2x 2y J g,f(p) = (J f,p ) 1 = = 2y 2x 1 2(x 2 + y 2 ) ( ) x y, y x jonka avulla saadaan tietoa lokaalin käänteiskuvauksen käyttäytymisestä tietyn pisteen ympäristössä. Esimerkki 2.7. Kolme kuvausta f, g, h : R 2 R 2 määritellään f(x, y) = (x cos y, x sin y), g(x, y) = (x 2 + 2xy + y 2, 3x + 3y), h(x, y) = (x + y, x y). 16

18 Tutkitaan näiden kuvausten paikallista kääntyvyyttä. Kaikki kolme kuvausta ovat kaikkialla hyvin käyttäytyviä C 1 -kuvauksia, sillä ne ovat derivoituvia ja niiden osittaisderivaatat ovat jatkuvia. Kuvausten Jacobin matriisit pisteessä p = (x, y) R 2 ovat ( cos y x sin y J f,p = sin y x cos y joiden determinanteista ), J g,p = ( ) 2x + 2y 2x + 2y 3 3 det J f,p = x, det J g,p = 0 ja det J h,p = 2 ja J h,p = 1 ( ) 1 1, voidaan niiden nollasta eroavuutta tutkimalla käänteiskuvauslauseen nojalla todeta seuraavaa: Kuvaus f on lokaalisti kääntyvä ainakin, jos x 0. Kuvauksen g lokaalista kääntyvyydestä ei voida sanoa mitään ja kuvaus h on lokaalisti kääntyvä kaikkialla. Ilman käänteiskuvauslausetta voidaan tutkia sen jättämät aukot helposti. Kuvaus f ei ole kääntyvä, kun x = 0, sillä f(0, y) = (0, 0) kaikilla y R. Kuvaus g ei ole kääntyvä missään, sillä jokaisesta pisteen (x, y) ympäristöstä löytyy piste (x ɛ, y + ɛ), jolle pätee g(x, y) = (x 2 + 2xy + y 2, 3x + 3y) = ( (x + y) 2, 3(x + y) ) = g(x ɛ, y + ɛ), missä ɛ > 0. 3 Implisiittikuvauslause Kappale sisältää johdattelua implisiittikuvauslauseeseen, itse lauseen todistuksineen sekä esimerkkejä. Pistejoukko tai sen osa voidaan antaa eksplisiittisessä muodossa, jolloin yksi koordinaateista on ratkaistu toisten koordinaattien suhteen. Esimerkiksi yksikköympyrän y-koordinaatiltaan positiivinen osa voidaan määritellä eksplisiittisesti kuvauksen y = f(x) = 1 x 2, x [ 1, 1] avulla. Usein on kuitenkin mielekästä tarkastella pistejoukkoja, joita ei voida määritellä eksplisiittisesti yhdellä kuvauksella. Esimerkki 3.1. Yksikköympyrä voidaan määritellä yhtälön x 2 + y 2 1 = 0 ratkaisujoukkona C = {(x, y) R 2 x 2 + y 2 1 = 0}. 17

19 Aiemmin tarkastelemamme kuvauksen f määrittelee implisiittisesti yhtälö x 2 +y 2 1 = 0, sillä y = f(x) toteuttaa tämän yhtälön. Samoin tämän yhtälön implisiittisesti määräämiä ovat kaikki ne kuvaukset, jotka toteuttavat tämän yhtälön. Jatkossa vastaavia yhtälöitä tullaan merkitsemään ehtona F = 0, missä tämän esimerkin tapauksessa F (x, y) = x 2 + y 2 1 ja (x, y) R 2. Yleistämällä tämän esimerkin määrittelemme implisiittisesti määritellyn kuvauksen jatkon kannalta merkityksellisellä tavalla. Määritelmässä tullaan toteamaan täsmällisesti, että jos usean muuttujan yhtälön F = 0 ratkaisee jokin eksplisiittinen kuvaus f, joka määrittelee yhden näistä muuttujista muiden suhteen, niin yhtälö F = 0 määrittelee kuvauksen f implisiittisesti. Määritelmä 3.2 (Implisiittisesti määritelty kuvaus). Olkoon reaaliarvoinen kuvaus F : D R m R, missä m 2. Jos on olemassa reaaliarvoinen kuvaus f : D R m 1 R, joka toteuttaa yhtälön F (u, f(u)) = 0, (u, f(u)) D kaikilla u D, niin sanotaan yhtälön F (u) = 0 määrittelevän implisiittisesti kuvauksen f joukossa D. Esitellään seuraavaksi implisiittikuvauslauseen kaksiulotteinen versio, ensin ideana ja sitten lauseena. Olkoon meillä jatkuvuuden ja derivoituvuuden suhteen hyvin käyttäytyvä käyrä. Valitaan käyrältä yksi piste (a, b), missä osittaisderivaatta jonkin muuttujan, esimerkiksi muuttujan y, suhteen on nollasta eroava. Tällöin tämän pisteen läheisyydessä käyrämme voi korvata muista muuttujista, tässä tapauksessa vain muuttujasta x, riippuvalla kuvauksella ja tämä kuvaus on väistämättä C 1 -kuvaus ja yksikäsitteinen. Geometrisesti yhtälön F (x, y) = 0 määräämä joukko on lokaalisti sama kuin kuvauksen y = f(x) graa, missä f(x) on eksplisiittinen kuvaus. Lause 3.3 (Kaksiulotteinen implisiittikuvauslause). Olkoon F : D R 2 R reaaliarvoinen C 1 -kuvaus, joka on määritelty pisteen (a, b) R 2 ympäristössä D. Oletetaan, että [A] F (a, b) = 0 ja [B] F (a, b) 0. y Tällöin on olemassa pisteen a R ympäristö N, pisteen b R ympäristö M ja C 1 -kuvaus f : N R R siten, että 1. f(a) = b ja f(n) M 2. jokaista pistettä x N vastaavan yhtälön F (x, y) = 0 yksikäsitteinen ratkaisu on y = f(x) M, kunhan mahdolliset arvot y on rajoitettu ympäristöön M. 18

20 Lisäksi kuvauksen y = f(x) derivaatta voidaan laskea F dy dx = (x, y) x F (x, y) = F x(x, y) F y y (x, y), missä F x ja F y ovat kuvauksen F osittaisderivaatat muuttujien x ja y suhteen. Todistus. Lause tulee todistetuksi implisiittikuvauslauseen yleisen muodon (3.8) todistamisen myötä. Esimerkki 3.4. Määrää ympyrän x 2 +y 2 = 5 2 pisteeseen p = (3, 4) piirretyn tangentin kulmakerroin sekä implisiittikuvauslauseen avulla, että käyttämällä eksplisiittistä ratkaisua. Implisiittikuvauslauseen käyttöä varten todetaan, että kuvaus F (x, y) = x 2 + y 2 25 häviää pisteessä p = (3, 4) eli F (p) = 0. Lisäksi sen osittaisderivaatat F x (x, y) = 2x ja F y (x, y) = 2y ovat jatkuvia ja F y (3, 4) = 8 0. Implisiittikuvauslauseen ehdot toteutuvat, joten f (3) = F x(3, 4) F y (3, 4) = = 3 4 Eksplisiittistä derivointia varten ratkaistaan y = ± 25 x 2. Pisteessä p yhtälö y = f(x) = 25 x 2 toteutuu. Derivoimalla tämä saadaan f 1 (x) = ( 2x) 2 25 x = x, 2 25 x 2 mistä saadaan f (3) = 3/ 25 9 = 3/4 kuten implisiittisesti derivoimalla. Tässä esimerkissä implisiittisellä derivoinnilla vältyttiin ikävästä neliöjuuren käsittelystä ja tehtävä helpottui huomattavasti. Toisaalta implisiittistä derivointia varten tuli tietää tutkittavan pisteen molemmat koordinaatit, mutta eksplisiittisessä derivoinnissa pelkkä x-koordinaatti riitti. Aiempien esimerkkien ympyrät on helppo kuvata kahden eksplisiittisen kuvauksen avulla, mutta on kuvauksia, joille ei ole mahdollista muodostaa yksinkertaista eksplisiittistä esitystä useammankaan kuvauksen avulla, kuten seuraavassa esimerkissä huomataan. Esimerkki 3.5. Dierentiaali- ja integraalilaskennan kehittymisen varhaisissa vaiheissa 1600-luvulla Fermat väitti kehittäneensä menetelmän, jonka 19

21 avulla voidaan selvittää tangenttisuoria. Descartes haastoi Fermatin ratkaisemaan nykyään nimeä Folium of Descartes kantavan käyrän tangenttisuoran mielivaltaisessa käyrän pisteessä. Folium of Descartes määräytyy yhtälön F (x, y) = 0 ratkaisujoukkona, missä F (x, y) = x 3 + y 3 3xy, (x, y) R 2. Kuva 1: Folium of Descartes Modernin matematiikan suoman implisiittisen derivoinnin vuoksi tämä haaste on muuttunut helpoksi. Kuvaus F on C 1 -kuvaus, sillä se on derivoituva ja sen osittaisderivaatat ovat jatkuvia. Kaksiulotteisen implisiittikuvauslauseen kohta [A] toteutuu käyrän määritelmän vuoksi ja kohta [B] toteutuu, kun F y (x, y) = 3y 2 3x 0 eli x y 2. Sijoittamalla x = y 2 yhtälöön F (x, y) = 0 huomataan, että ainoastaan pisteissä (0, 0) ja ( 3 4, 3 2) ehto [B] ei toteudu. Nyt implisiittikuvauslauseen avulla on helppo laskea 20

22 implisiittisesti käyrän F (x, y) = 0 derivaatta mielivaltaisessa käyrän pisteessä (a, b) R 2 \{(0, 0), ( 3 4, 3 2)}, jolloin dy dx = F x F y (a, b) = 3a2 3b 3b 2 3a = b a2 a b 2. Siten käyrän F pisteen (a, b) kautta kulkeva tangenttisuora on y b = b a2 (x a), a b2 lukuunottamatta edellä mainittuja kahta pistettä. Näissä pisteissä pystysuorien tangenttien yhtälöt ovat x = 0 ja x = 3 4. Pisteeseen (0, 0) voidaan piirtää myös vaakasuora tangentti y = 0. Täten olemme löytäneet kaikki tangentit ja samalla selättäneet Descartesin asettaman haasteen. Huomautus 3.6. Käyrän Folium of Descartes nimitys tulee latinankielen sanasta Folium, joka tarkoittaa lehteä. Descartes tiesi käyrän muodostavan silmukan koordinaatiston ensimmäisessä neljänneksessä ja arveli yhdessä Ranskalaisen matematiikon Robervalin kanssa käyrän toistavan silmukan myös muissa neljänneksissä. Osoittakaamme heidän hypoteesinsä vääräksi. Tutkitaan käyrän mahdollisia arvoja, kun x = 2/3. Tällöin F (2/3, y) = y 3 2y = 0, minkä ratkaisuna saadaan kolme juurta y 1 = 4/3, y 2,3 = 1 3 ( 2 ± 6), joten käyrä ei voi muodostaa toista samanlaista silmukkaa x-akselin suhteen peilattuna. Edellisen esimerkin ja huomautuksen historiallinen tieto pohjautuu George F. Simmonsin kirjaan Calculus Gems: Brief Lives and Memorable Mathematics [2, s.101]. Yleisen implisiittikuvauslauseen todistusta varten tarvitsemme yhden lemman. Lemma 3.7. Olkoon joukko U R m avoin ja piste p U. Tällöin on olemassa sellaiset avoimet joukot N 1 R m 1 ja M R, että p N 1 M U. Todistus. Olkoon joukko U R m avoin ja piste p U. Tällöin on olemassa avoin ympäristö N(p, δ) U, missä δ > 0. Määritellään avoimet ympäristöt N 1 = { s R m 1 s (p 1,..., p m 1 ) } < δ 2 ja 21

23 { M = x R x p m < δ }. 2 Tällöin (p 1,..., p m 1 ) N 1 ja p m M, joten p N 1 M. Tämän avoimen lieriön mielivaltaiselle pisteelle l = (s, x) N 1 M pätee kolmioepäyhtälön nojalla l p s (p 1,..., p m 1 ) + x p 1 < δ 2 + δ 2 = δ, joten l N(p, δ). Siis avoin lieriö N 1 M N(p, δ) U, joten N 1 M U. Seuraava implisiittikuvauslauseen eräs yleistys ottaa huomioon kaikenkokoiset lähtöavaruudet. Lause 3.8 (Implisiittikuvauslause). Olkoon reaaliarvoinen C 1 -kuvaus F : D R m R määritelty pisteen (p 1,..., p m ) R m ympäristössä D ja m 2. Oletetaan, että [A] F (p 1,..., p m ) = 0 ja [B] F x m (p 1,..., p m ) 0. Tällöin on olemassa pisteen (p 1,..., p m 1 ) R m 1 ympäristö N R m 1, pisteen p m R ympäristö M R ja C 1 -kuvaus f : N R m 1 R siten, että 1. f(p 1,..., p m 1 ) = p m ja f(n) M 2. jokaista pistettä (x 1,..., x m 1 ) N vastaavan yhtälön F (x 1,..., x m 1, x m ) = 0 yksikäsitteinen ratkaisu on x m = f(x 1,..., x m 1 ) M, kunhan mahdolliset arvot x m on rajoitettu ympäristöön M. Todistus. Todistuksen ideana on konstruoida kuvauksesta F : D R m R vastaavanlainen kuvaus, johon voidaan kuitenkin soveltaa käänteiskuvauslausetta (2.4). Tämän vuoksi määritellään kuvaus F : D R m R m F (x 1,..., x m ) = (x 1,..., x m 1, F (x 1,..., x m )), (x 1,..., x m ) D. (19) Piste F (x 1,..., x m ) sijaitsee (m 1)-ulotteisessa avaruudessa, jonka pisteet ovat muotoa (y 1,..., y m 1 ), jos ja vain jos F (x 1,..., x m ) = 0. Erityisesti oletuksen [A] nojalla F (p 1,..., p m ) = (p 1,..., p m 1, 0). 22

24 Kuvaus F on C 1 -kuvaus avaruudessa D ja sen Jacobin matriisi pisteessä p D on J F,p = F F F x 1 (p) x 2 (p)... x m (p) Oletuksen [B] nojalla det J F,p = F x m (p) 0, joten voidaan soveltaa käänteiskuvauslausetta kuvaukselle F pisteen p D ympäristössä. Tällöin piste p sijaitsee avoimessa ympäristössä U D R m siten, että kuvauksella F on C 1 -käänteiskuvaus joukossa U ja F (U) = V R m on avoin joukko, joka sisältää pisteen F (p 1,..., p m 1, 0). Todistuksen jatkon helpottamiseksi voidaan Lemman 3.7 nojalla olettaa ympäristön U koostuvan kahdesta osasta U = N 1 M, missä N 1 R m 1 on pisteen (p 1,..., p m 1 ) ympäristö ja M R on pisteen p m ympäristö. Merkitään kuvauksen F : U V C 1 -käänteiskuvausta G : V U. Kuvauksen F määritelmästä (19) nähdään, että se pitää m 1 ensimmäistä koordinaattia samoina, ja muuttaa viimeisen koordinaatin kuvaukseksi F (x 1,..., x m ). Siispä käänteiskuvauksen G täytyy olla muotoa G (x 1,..., x m ) = (x 1,..., x m 1, G(x 1,..., x m )) N 1 M, (x 1,..., x m ) V, missä G : V R m R on C 1 -kuvaus, jolle pätee G(x 1,..., x m 1, F (x 1,..., x m )) = x m. Tällöin G(V ) M. Avoin joukkomme V R m sisältää pisteen (p 1,..., p m 1, 0), joten on olemassa pisteen (p 1,..., p m 1 ) ympäristö N R m 1 siten, että N {0} V. Täten voidaan määritellä kuvaus f : N R m 1 R f(x 1,..., x m 1 ) = G(x 1,..., x m 1, 0), missä (x 1,..., x m 1 ) N. (20) Tämä kuvaus on hyvin määritelty, koska (x 1,..., x m 1, 0) N {0} V, kun (x 1,..., x m 1 ) N. Lisäksi G ja f ovat C 1 -kuvauksia. Nyt voidaan osoittaa kuvauksen f toteuttavan implisiittikuvauslauseen kohdat 1 ja 2. 23

25 Ensimmäiseksi f(p 1,..., p m 1 ) = p m, koska ((p 1,..., p m 1, f(p 1,..., p m 1 ))) = (p 1,..., p m 1, G(p 1,..., p m 1, 0)) = G (p 1,..., p m 1, 0) = (F ) 1 (p 1,..., p m 1, 0) = (p 1,..., p m 1, p m ). Toiseksi f(n) = G(N {0}) ja N {0} V sekä G(V ) M, joten myös f(n) M, mikä viimeistelee kohdan 1 todistuksen. Kuvauksen F määritelmästä nähdään, että V N 1 R, jolloin tapauksessamme N {0} V voimme päätellä, että N N 1 ja N M N 1 M. Tällöin jokaista pistettä (p 1,..., p m 1 ) N vastaava piste (p 1,..., p m 1, f(p 1,..., p m 1 )) sisältyy kuvauksen F määritysjoukkoon juuri toteamamme f(n) M perusteella. Nyt jokaiselle (x 1,..., x m 1 ) N pätee (x 1,..., x m 1, F (x 1,..., x m 1, f(x 1,..., x m 1 ))) = (x 1,..., x m 1, F (x 1,..., x m 1, G(x 1,..., x m 1, 0))) = (F G )(x 1,..., x m 1, 0) = (x 1,..., x m 1, 0). Siis x m = f(x 1,..., x m 1 ) M ratkaisee yhtälön F (x 1,..., x m ) = 0 kaikilla (x 1,..., x m 1 ) N. Todistetaan vielä yksikäsitteisyys. Oletetaan, että jotakin pistettä (a 1,..., a m 1 ) N vastaa kaksi sellaista ratkaisua a m M ja b m M, että Tällöin myös F (a 1,..., a m 1, a m ) = F (a 1,..., a m 1, b m ) = 0. F (a 1,..., a m 1, a m ) = F (a 1,..., a m 1, b m ). Koska F on injektio joukossa N M N 1 M, niin täytyy olla a m = b m, mikä todistaa yksikäsitteisyyden ja täten koko implisiittikuvauslause on todistettu. Esimerkki 3.9. Tarkastellaan yhtälöä x + y + z sin(xyz) = 0, missä (x, y, z) R 3. (21) Yhtälön eräs ratkaisu on (x, y, z) = (0, 0, 0). Yhtälöstä nähdään, että siitä ei voida suoraviivaisesti ratkaista yhtä muuttujaa muiden kahden suhteen. 24

26 Implisiittikuvauslauseen nojalla on kuitenkin mahdollista ratkaista muuttuja z muuttujien x ja y suhteen origon lähellä. Määritellään F : R R siten, että F (x, y, z) = x+y+z sin(xyz), missä (x, y, z) R 3. Tällöin F on C 1 -kuvaus, koska se on derivoituva ja sen keskenään samankaltaiset osittaisderivaatat muotoa F (x, y, z) = 1 xy cos(xyz) z ovat jatkuvia. Lisäksi [A] F (0, 0, 0) = 0 ja [B] F (0, 0, 0) = 1 0. z Tällöin implisiittikuvauslauseen nojalla on olemassa pisteen (x, y) = (0, 0) ympäristö N R 2 ja pisteen z = 0 ympäristö M R sekä C 1 -kuvaus f : N R siten, että yhtälön (21) toteuttaa yksikäsitteisesti kuvaus z = f(x, y) avoimessa lieriössä N M. Implisiittikuvauslauseen avulla osoitettiin siis tällaisen kuvauksen olemassaolo. Kuvaus f on määritelty implisiittisesti eikä sille ole eksplisiittistä esitystä. Annetulle pisteelle (a, b) N on kuitenkin mahdollista laskea numeerisella menetelmällä arvo f(a, b) yhtälöstä (21). Huomautus Tarkastellaan implisiittikuvauslauseen tilannetta, kun m = 3. Olkoon merkinnät kuten Lauseessa 3.8. Kuvauksen f osittaisderivaatoista voidaan päätellä hieman lisää, kun määritellään g : R 2 R 3 Tällöin g(u, v) = (u, v, f(u, v)), missä(u, v) N. (F g)(u, v) = F (u, v, f(u, v)) = 0, missä (u, v) N eli kuvaus H = F g : N R 2 R on nollakuvaus. Nyt ketjusäännön nojalla saadaan 0 = J H,(a,b) = J F,g(a,b) J g,(a,b) missä (a, b) N. Tämän auki laskemalla saadaan 0 = H F F (a, b) = (a, b, f(a, b)) 1 + (a, b, f(a, b)) 0 u x y + F z (a, b, f(a, b)) f (a, b) u 25

27 ja 0 = H F F (a, b) = (a, b, f(a, b)) 0 + (a, b, f(a, b)) 1 v x y + F z (a, b, f(a, b)) f (a, b), v joista voidaan ratkaista ( f/ u)(a, b) ja ( f/ v)(a, b) saaden ja F f u (a, b) = (a, b, f(a, b)) x (a, b, f(a, b)) F z F f v (a, b) = (a, b, f(a, b)) y (a, b, f(a, b)). F z Esimerkki Huomautuksen (3.10) avulla saadaan esimerkin (3.9) tapauksessa lisää tietoa osittaisderivaatoista laskemalla ja f 1 bf(a, b) cos(abf(a, b)) (a, b) = u 1 ab cos(abf(a, b)) f v 1 af(a, b) cos(abf(a, b)) (a, b) =, 1 ab cos(abf(a, b)) joihin sijoittamalla (a, b) = (0, 0) saadaan f f (0, 0) = (0, 0) = 1. u v Tämä kuvaa muuttujan z riippuvuutta muuttujista x ja y. Likimääräisesti tämä tarkoittaa, että pisteen (0, 0, 0) välittömässä ympäristössä muuttujan z arvon kasvattaminen tai vähentäminen aiheuttaa samansuuruisen, mutta vastakkaissuuntaisen muutoksen molemmissa muissa muuttujissa, jotta alkuperäinen yhtälö (21) olisi tosi. 4 Lagrangen menetelmä Lagrangen menetelmän myötä erilaisten moniulotteisten pistejoukkojen ääriarvojen tarkastelu helpottuu huomattavasti. Lagrangen menetelmällä on useita sovelluskohteita esimerkiksi taloustieteessä ja fysiikassa. Tietyntyyppisissä optimointitehtävissä, joissa rajoittava ehto on hankalampi, on tarpeen käyttää Lagrangen menetelmää, jonka avulla voidaan ottaa implisiittisesti rajoitusehto näppärästi huomioon. Tällaisia hankalampia 26

28 rajoittavia ehtoja ovat esimerkiksi sellaiset, joista ei voida ratkaista yhtä muuttujaa muiden muuttujien suhteen, kuten Esimerkki 3.9 tai sellaiset, joista voidaan ratkaista yksi muiden suhteen, mutta sitä ei saada tehtyä yhden kuvauksen avulla esimerkiksi ehdon x y2 + z 2 1 = 0 tapauksessa. Ennen Lagrangen menetelmään syventymistä tarvitsemme yhden lemman. Lemma 4.1. Olkoon joukko S = {(x 1,..., x m ) D F (x 1,..., x m ) = 0} ja piste p S sellaiset, että F (p) 0. Tällöin kaikilla vektoreilla u R m, joille F (p) u = 0 on olemassa sellainen joukon S käyrä α : I S, I on avoin, 0 I, että α(0) = p ja α (0) = u. Todistus. Konstruoidaan joukon S käyrä, jonka tangentti pisteessä p on yhdensuuntainen vektorin u kanssa. Koska F (p) 0, niin voidaan olettaa, että ( F/ x m )(p) 0. Jos näin ei olisi, niin ( F/ x i )(p) 0 jollakin i, missä 1 i m 1, jolloin voitaisiin vaihtaa koordinaattien x i ja x m paikkaa. Nyt kuvaus F toteuttaa implisiittikuvauslauseen (3.8) ehdot. Voidaan todeta olevan olemassa sellainen pisteen (p 1,..., p m 1 ) R m 1 ympäristö N ja sellainen C 1 -kuvaus f : N R m 1 R, että f(p 1,..., p m 1 ) = p m ja F (x 1,..., x m 1, f(x 1,..., x m 1 )) = 0, missä (x 1,..., x m 1 ) N. (22) Määritellään sellainen derivoituva kuvaus α : I R R m, jonka avoin määritysjoukko I sisältää nollan ja α(t) = (p 1 +tu 1,..., p m 1 +tu m 1, f(p 1 +tu 1,..., p m 1 +tu m 1 )), missä t I ja (p 1 + tu 1,..., p m 1 + tu m 1 ) N kaikilla t I. Yhtälöstä (22) nähdään, että kuvauksen α kuva sijaitsee joukossa S ja α(0) = p. Itseasiassa kuvauksemme α(i) on x m akselin suuntaisen suoran {p + tu R m t R} projektio joukolle S. Osoitetaan, että α (0) = u. Kuvauksen α määritelmästä nähdään, että jollekin w R pätee α (0) = (u 1,..., u m 1, w). Kaikille t I pätee F (α(t)) = 0, joten myös (F α) (0) = 0. Tällöin ketjusäännön ja ylläolevan nojalla F (p) (u 1,..., u m 1, w) = 0. Vähentämällä edellisestä F (p) u = 0 saadaan F (p) (0,..., 0, u m w) = 0. 27

29 Koska ( F/ x m )(p) 0, niin u m = w. Täten α (0) = u. Lagrangen menetelmän ideana on, että kaikkien ääriarvopisteiden täytyy kuulua siihen joukkoon, jossa optimoitavan kuvauksen gradientti ja rajoittavan kuvauksen gradientti ovat toisistaan lineaarisesti riippuvia. Lause 4.2. Olkoon kuvaus g : D R m R derivoituva ja C 1 -kuvaus F : D R m R määritelty avoimessa joukossa D R m, missä m 2. Muodostukoon joukko S kuvauksen F nollakohdista joukossa D eli S = {(x 1,..., x m ) D F (x 1,..., x m ) = 0}. Oletetaan pistettä p = (p 1,..., p m ) S vastaava gradientti nollasta eroavaksi eli F (p) 0. Jos piste p on joukkoon S rajoitetun kuvauksen g : S R m R ääriarvokohta, niin on olemassa sellainen sopivasti skaalaava vakio λ R, että g(p) = λ F (p). (23) Todistus. Olkoon p kuvauksen g : S R m R ääriarvokohta. Yllä olevan yhtälön (23) toteuttaa vakion arvo λ = 0 aina, kun g(p) = 0. Tällainen piste on kuvauksen g kriittinen piste joukossa D. Oletetaan nyt, että g(p) 0 ja todetaan yhtälö (23) todeksi vastaoletuksen avulla. Oletetaan, että g(p) ja F (p) ovat lineaarisesti riippumattomia. Olkoon u = (u 1,..., u m ) R m sellainen vektori, että F (p), u muodostaa ortogonaalisen kannan gradienttien F (p) ja g(p) virittämälle tasolle. Tällöin F (p) u = 0, g(p) u 0. Lemman 4.1 nojalla on olemassa joukon S käyrä α : E S, jonka tangentti pisteessä p on yhdensuuntainen vektorin u kanssa. Sille pätee α(0) = p ja α (0) = u. Johdetaan haluttuun ristiriitaan. Koska p on oletettu kuvauksen g ääriarvokohdaksi joukossa S, α(e) S ja α(0) = p, niin kuvauksella (g α) : E R R on ääriarvokohta pisteessä 0. Tällöin pitäisi olla (g α) (0) = 0. 28

30 Toisaalta ketjusäännön ja oletuksesta seuranneen tuloksen g(p) u 0 perusteella (g α) (0) = g(p) α (0) = g(p) u 0, mikä johtaa ristiriitaan, joten gradienttien g(p) ja F (p) on oltava lineaarisesti riippuvia. Huomautus 4.3. Lagrangen menetelmä. Edellisen lauseen perusteella kuvauksen g : S R m R ääriarvopisteelle p pätee jompikumpi seuraavista vaihtoehdoista. Joko F (p) = 0 ja F (p) = 0, tai { F (p) = 0, F (p) 0 ja g(p) = λ F (p), jollakin λ R. Vakiota λ kutsutaan Lagrangen kertoimeksi. Pisteitä p, jotka täyttävät jomman kumman näistä ehdoista kutsutaan kriittisiksi pisteiksi. Ääriarvokohdat löytyvät aina kriittisten pisteiden joukosta, mutta kaikki kriittiset pisteet eivät välttämättä ole ääriarvokohtia. Tällaisia pisteitä kutsutaan satulapisteiksi. Esimerkki 4.4. Etsitään Lagrangen menetelmällä pienin etäisyys origosta ellipsoidille 5x 2 6xy + 5y 2 = 8. Merkitään etäisyyden neliötä origosta pisteeseen p = (x, y) kuvauksella g(p) = x 2 + y 2 ja rajoittavaksi kuvaukseksi määritellään Näiden gradientit ovat F (p) = 5x 2 6xy + 5y 2 8. g(p) = (2x, 2y) ja F (p) = (10x 6y, 10y 6x). Lagrangen menetelmän ensimmäisen kohdan ehdoista F (p) = 0 ja F (p) = 0 saadulle yhtälöryhmälle 5x 2 6xy + 5y 2 = 8 10x 6y = 0 10y 6x = 0 29

31 ei ole ratkaisuja. Toisessa kohdassa F (p) 0 ja ehdoista F (p) = 0 ja g(p) = λ F (p) saadaan yhtälöryhmä 5x 2 6xy + 5y 2 = 8 2x = λ(10x 6y) 2y = λ(10y 6x), josta eliminoidaan ensin Lagrangen kerroin ja ratkaisuina löydetään kriittiset pisteet ( 1 1 2, 2 ), ( 1 2, 1 2 ), ( 2, 2), ( 2, 2). Laskemalla näiden pisteiden etäisyys origosta kaavalla x 2 + y 2 saadaan minimietäisyydeksi 1 ja maksimietäisyydeksi 2. Esimerkki 4.5. Etsitään Lagrangen menetelmällä paraabelin y 2 = 4x ja sen akselin pisteen (a, 0) lyhin etäisyys, missä a R. Paraabelin pisteen p = (x, y) etäisyyden neliötä pisteestä (a, 0) kuvaa g(p) = (x a) 2 + y 2 ja rajoite-ehtona on F (p) = y 2 4x. Vastaavat gradientit ovat g(p) = (2x 2a, 2y) ja F (p) = ( 4, 2y). Lagrangen menetelmän ensimmäisestä kohdasta ehtojen F (p) = 0, F (p) = 0 ratkaisuja ei ole. Toisen kohdan ehtojen F (p) = 0, F (p) 0, g(p) = λ F (p) seurauksena saadaan yhtälöryhmä y 2 4x = 0 2x 2a = 4λ 2y = 2yλ, jonka ratkaisuna saadaan kriittinen piste (0, 0), kun a 2 ja kriittiset pisteet (0, 0), (a 2, ±2 a 2), kun a > 2. Näitä vastaavat etäisyyden neliöt ovat g(0, 0) = a 2 ja g(a 2, ±2 a 2) = 4a 4 < a 2, kun a > 2, joten akselin pisteille, joille a 2 lyhin etäisyys paraabelille y 2 = 4x on a ja akselin pisteille, joille a > 2 vastaava lyhin etäisyys on 2 a 1. Ensimmäisessä tapauksessa lyhin etäisyys on siis huippuun ja jälkimmäisessä tapauksessa paraabelin molempiin haaroihin on yhtä lyhyt matka. Kuvassa 2 on samaan kuvaan piirretty paraabelimme y 2 = 4x ja pisteistä (1, 0) ja (3, 0) lyhin etäisyys paraabelille. Piirretyt ympyrät ovat hahmotusavuksi. 30

32 Kuva 2: Paraabeli y 2 = 4x ja lyhin etäisyys akselin pisteisiin (1, 0) ja (3, 0) Esimerkki 4.6. Etsi tilavuudeltaan suurin mahdollinen koordinaattiakselien suuntainen suorakulmainen särmiö, joka mahtuu ellipsoidin x2 + y2 + z2 = 1 a 2 b 2 c 2 sisälle. Olkoon ellipsoidin kahdeksannen mielivaltainen piste p = (x, y, z), missä x, y, z > 0. Tällöin suorakulmaisen särmiön kulmapisteet ovat muotoa p i = (±x, ±y, ±z), i = 1, 2,..., 8 ja sen sivujen pituudet ovat 2x, 2y, 2z. Siis tutkitun särmiön tilavuus on V (p) = 8xyz. Merkitään rajoittavaksi kuvaukseksi F (p) = x2 a 2 saadaan gradienteiksi + y2 b 2 + z2 c 2 V (p) = (8yz, 8xz, 8xy) ja F (p) = 2x a 2 + 2y b 2 + 2z c 2. Lagrangen menetelmän ensimmäisestä kohdasta saadaan ehto x 2 a + y2 2 b + z2 2 c 1 = 2x 2 a = 2y 2 b 2 4xzb 2 = λy 4xyc 2 = λz, = 2z c 2 = 0, 1, jolloin mille ei ole olemassa ratkaisuja. Toisesta kohdasta saadaan yhtälöryhmä x 2 + y2 + z2 1 = 0 a 2 b 2 c 2 4yza 2 = λx jonka ainoa ratkaisu on ( a 3, b 3, c 3 ). Tämän täytyy olla maksimikohta, sillä ratkaisujoukko on ylhäältä suljettu ja rajoitettu, alhaalta avoin ja Lagrangen lauseen nojalla ääriarvokohta löytyy kriittisten pisteiden joukosta. 31

33 Lagrangen menetelmä on yleistettävissä myös tilanteisiin, joissa optimoitavan yhtälön ratkaisuja rajoittaa useampi side-ehto. Tällöin optimoitavana on kuvaus g : D R m R, joka on määritelty avoimessa joukossa D R m ja jota rajoittaa r < m kappaletta side-ehtoja rajoittaen tutkittavaksi joukoksi joukon S = {x R m F 1 (x) = 0,..., F r (x) = 0}, missä kuvaukset F i, i = 1,..., r ovat C 1 -kuvauksia joukossa D. Oletetaan, että p on sellainen joukon S piste, että vektorit F 1 (p),..., F r (p) ovat lineaarisesti riippumattomia. Jos tällöin p on kuvauksen g ääriarvopiste joukossa S, niin on olemassa sellaiset Lagrangen kertoimet λ 1,..., λ r, että g(p) = λ 1 F 1 (p) λ r F r (p). Esimerkki 4.7. Etsi lausekkeen x 2 + y 2 + z 2 suurin ja pienin arvo niillä ehdoilla, että x 2 /4 + y 2 /5 + z 2 /25 = 1 ja z = x + y. Pohdi lisäksi mikä on laskemasi geometrinen tulkinta. On siis etsittävä kuvauksen g(x, y, z) = x 2 + y 2 + z 2 suurin ja pienin arvo, kun määritysjoukko rajataan joukkoon missä Lasketaan gradientit S = {(x, y, z) R 3 F 1 (x, y, z) = 0, F 2 (x, y, z) = 0}, F 1 (x, y, z) = x2 4 + y2 5 + z2 25 1, F 2 (x, y, z) = x + y z. g(x, y, z) = (2x, 2y, 2z), F 1 (x, y, z) = ( 1 2 x, 2 5 y, 2 25 z), F 2 (x, y, z) = (1, 1, 1). Edellisestä nähdään, että kuvausten F 1, F 2 gradientit ovat lineaarisesti riippuvia, kun (x, y, z) = (4a, 5a, 25a), missä a R. Tällöin F 1 (4a, 5a, 25a) = 16a 2 1 < 0, kaikilla a R, joten tätä muotoa olevat pisteet eivät kiinnosta meitä, sillä meitä kiinnostavissa joukon S pisteissä tulee olla voimassa F 1 (x, y, z) = 0 ja F 2 (x, y, z) = 0 samanaikaisesti. Siispä kaikissa meitä kiinnostavissa pisteissä kuvaukset 32

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Vektorianalyysi II (MAT21020), syksy 2018

Vektorianalyysi II (MAT21020), syksy 2018 Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2 LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,... HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x

Lisätiedot

Matematiikka B1 - TUDI

Matematiikka B1 - TUDI Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R, Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Vektorilaskenta, tentti

Vektorilaskenta, tentti Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Differentiaalimuodot

Differentiaalimuodot LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot