Magneettikentät. Haarto & Karhunen.

Koko: px
Aloita esitys sivulta:

Download "Magneettikentät. Haarto & Karhunen. www.turkuamk.fi"

Transkriptio

1 Magneettikentät Haarto & Karhunen

2 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan varaukseen

3 Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina kaksi napaa, pohjoiskohtio (N) ja eteläkohtio (S). Magneetin katkaisu tuottaa kaksi kaksinapaista magneettia. Magneettinapa hylkii toista samannimistä magneettinapaa. Magneettinapa vetää puoleensa erinimistä magneettinapaa tai rautakappaletta.

4 Magneetin pohjoiskohtio pyrkii kääntymään kohti Maan magneettista pohjoisnapaa. Siten Maan magneettinen pohjoisnapa onkin fysikaalisesti ajatellen eteläkohtio. Ferromagneettisista aineista voidaan valmistaa kappaleita, jotka säilyttävät magneettiset ominaisuutensa, kestomagneetteja.

5 Magneettikenttiä havainnollistetaan kenttäviivojen avulla, jotka magneetin ulkopuolella kulkevat pohjoiskohtiosta eteläkohtioon

6 Piirroksissa magneettikenttää kuvataan Risteillä, jos suunta on poispäin katsojasta Pisteillä, jos suunta on kohti katsojaa Homogeenisessa kentässä kenttäviivat ovat tasavälisiä ja samansuuntaisia

7 Magneettivuon tiheys Suure, joka kuvaa magneettikenttää, on magneettivuon tiheys B Vektorisuure. Suunta kenttäviivan suunta Yksikkö: tesla = T Määritellään verrannollisuuskertoimena varattuun hiukkaseen vaikuttavan voiman avulla F qv B F qvbsin q on hiukkasen varaus ja v on hiukkasen nopeus Magneetivuon tiheys on korkeintaan kymmeniä tesloja

8 Magneettikentän voimakkuus Magneettikentän voimakkuus H ja magneettivuon tiheys B riippuvat toisistaan Permeabiliteetti μ on tyhjiön permeabiliteetin ja aineen suhteellisen permeabiliteetin tulo Tyhjiön permeabiliteetti B H r 0H r Vs Am Useimmille aineille suhteellinen permeabiliteetti μ r 1 Ferromagneettisille aineille μ r >>1 0 7

9 Permeabiliteetti kuvaa aineen magnetoitumiskykyä ulkoisessa magneettikentässä. Paramagnetismi Paramagneettisilla aineilla elektronien magneettimomentit pyrkivät asettumaan ulkoisen magneettikentän suuntaan. Suhteellinen permeabiliteetti vähän suurempi kuin 1. Diamagnetismi Diamagneettisilla aineilla elektronien magneettimomentit pyrkivät asettumaan ulkoisen magneettikentän suuntaa vastaan. Suhteellinen permeabiliteetti vähän pienempi kuin 1. Ferromagnetismi Ferromagneettisilla aineilla elektronien magneettimomentit pyrkivät voimakkaasti asettumaan ulkoisen magneettikentän suuntaan. Suhteellinen permeabiliteetti yleensä välillä

10 Varattuun hiukkaseen vaikuttava voima F qv B on aina kohtisuorassa sekä magneettivuon tiheyteen että varauksen nopeuteen nähden Voiman suunta voidaan selvittää ns. vasemman käden säännön avulla

11 Varatun hiukkasen liike magneettikentässä Hiukkasen liikkuessa kohtisuorassa suunnassa homogeeniseen magneettikenttään nähden, niin sen rata on ympyrä. F F r r mv qb qvb m v r 2

12 Esimerkki Aurinkotuuli tuo elektronin nopeudella 6, m/s kohtisuorasti Maan magneettikenttään, jonka magneettivuon tiheys on 50,0 T. a) Piirrä kuva, josta ilmenee mihin suuntaan elektronin rata kaartuu Maan magneettikentän suhteen. b) Laske elektronin kiihtyvyys Maan magneettikentässä. c) Laske elektronin radan kaarevuussäde Maan magneettikentässä. v 6,2010 q 1,6010 m 9, B 50, m/s T C kg a) v b) c) F ma qvb a F F qvb R qvb m r mv qb mv R 5, ,706 m 13 m/s 2

13 Jos hiukkanen liikkuu magneettikentän suunnassa, niin siihen ei vaikuta voima. Jos hiukkasen nopeuden ja magneettikentän suunnan välinen kulma on välillä 0º<θ<90º, niin rata on spiraali.

14 Epähomogeenisessa magneettikentässä liikkuvan varauksen liike on mutkikas. Magneettinen pullo, esim. fuusioreaktorissa Maan magneettikenttä ohjaa auringosta tulevat varatut hiukkaset navoille, revontulet

15 Lorenzin voima Sekä sähkö- että magneettikentässä liikkuvaan varaukseen kohdistuva nettovoima F qe qv B

16 Nopeusvalitsin Nopeusvalitsimessa varatuilla hiukkasilla, joilla on tietty nopeus, Lorenzin voima on nolla. Sähkö- ja magneettikentän aiheuttamat voimat ovat itseisarvoltaan yhtä suuret qvb v qe E B

17 Esimerkki Kuinka suuri magneettivuon tiheys tarvitaan V/m sähkökenttää vastaan kohtisuoraan, että protoni pääsee kenttien läpi suuntaansa muuttamatta nopeudella 1,010 6 m/s? Protonin nopeus on kohtisuorassa sekä magneetti- että sähkökenttää vastaan. E V/m v 1, m/s Sähkö - ja magneettikenttien aiheuttamat voimat kumoavat toisensa B E v 0,012 T qvb qe

18 Hallin ilmiö Sähkövirran kulkiessa johteessa, joka on magneettikentässä, sen pintojen välille muodostuu jännite. Liikkuviin varauksiin kohdistuva magneettinen voima siirtää varauksia johteen pinnoille, kunnes voima kumoutuu sähkökentän aiheuttaman voima takia Hallin jännite Käytetään magneettikentän mittareissa

19 Hallin jännite U H Es v d Bs Virta I nqdsv d v d I /(nqsd) Varausten vaellusnopeus n on varausten kuljettajien lukumäärätiheys U H IB nqd B U H nqd I

20 Esimerkki Kuparijohtimen poikkileikkaus on suorakulmion muotoinen ja sen leveys on 1,5 cm ja paksuus on 0,15 cm. Johtimen läpi kulkee 5,0 A virta. Kuinka suuri on syntyvä Hallin jännite, kun virta on kohtisuorassa magneettikenttää vastaan? Magneettivuon tiheys on 1,2 T ja kuparin varauksen kuljettajien lukumäärätiheys on 8, m -3. s 0,015 m d 0,0015 m I 5,0 A Varauksen kuljettajina elektronit q 1, C B 1,2 T n 8, m 3 U H IB nqd 0, V

21 Magneettikenttä ja virtajohdin _ F Johtimessa (pituus l) liikkuviin varauksiin vaikuttava kokonaisvoima, kun johdin on magneettikentässä, jonka tiheys on B F Il B tai F IlBsin θ on magneettivuon tiheyden ja johtimen välinen kulma A _ v d l _ B I Kokonaisvoima on yhtä suuri kuin se voima, joka vaikuttaa virtajohtimeen.

22 Esimerkki Kuinka suuri voima vaikuttaa 1,0 m pituiseen johtoon, joka on kohtisuorassa Maan magneettikenttää (51 µt) vastaan ja jossa kulkee 12 ma virta? l 1,0 m F IlB A 1,0 m T B 51μT T 0, N 0,51μN I 12 ma A

23 Kahden yhdensuuntaisen virtajohtimen välinen voima Koska johtimissa kulkee virta, niin ne aiheuttavat ympärilleen magneettikentän. Magneettikenttä aiheuttaa voiman johtimeen Siten johtimien välille syntyy voima- vastavoimapari. F 0I1I 2d Samansuuntaiset virrat vetävät toisiaan ja vastakkaissuuntaiset virrat hylkivät toisiaan 2 l _ B 2 I 2ₓ _ F 1 _ F 2 ₓ I 1 d

24 Esimerkki Sähkötolppien välissä on kaksi yhdensuuntaista johtoa 1,2 m etäisyydellä toisistaan ja niissä kulkee samansuuntainen 26 A virta. Kuinka suuri voima johtoihin aiheutuu 25 m matkalla? I d l ,2 m I 25 m 26 A 4π 10 7 Vs Am F I I l 2πd 7 4π π 1,2 2, N N Mikäli johtoja olisi enemmän, niin niiden yhteen johtoon aiheuttamat voimat laskettaisiin yhteen vektoreina

25 Amperen laki Amperen lailla voidaan laskea virran aiheuttama magneettikentän voimakkuus tai magneettivuon tiheys mielivaltaisessa pisteessä. Amperen laki S H ds i I i ₓ I 1 I 2 Vasen puoli on viivaintegraali Oikea puoli on silmukan lävistämä nettovirta Virta lasketaan positiivisena, jos virran suuntaan katsottuna, se kierretään myötäpäivään. ₓ I 3 _ H d _ s s

26 Suoran virtajohtimen magneettikenttä S H ds H 2πr I I H I 2πr B I 2πr

27 Solenoidin magneettikenttä S H ds Integrointipolulla osissa 2 ja 4 on Osassa 3 on H 0 (kaukana!) Osassa 1 integraalista tulee Hl Virtasilmukoita N kappaletta matkalla l Integraali sievenee muotoon Hl=NI I H ds 0 H NI l B NI l l

28 Ampeerin määritelmä Ampeeri on ajallisesti muuttumaton sähkövirta, joka kulkiessaan kahdessa suorassa yhdensuuntaisessa äärettömän pitkässä ohuessa johtimessa, joiden poikkileikkaus on ympyrä ja jotka ovat metrin etäisyydellä toisistaan tyhjiössä, aikaansaa johtimien välille newtonin voiman johtimen metriä kohti. Jos johtimessa kulkee ajallisesti muuttumaton yhden ampeerin virta, niin johtimen poikkileikkauksen läpi sekunnissa kulkeva sähkövaraus on yksi coulombi. 1 A 1 s = 1 C

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

5 Magneettiset materiaalit

5 Magneettiset materiaalit 5 Magneettiset materiaalit 5.1 Magnetoituma Samoin kuin sähkökenttään asetettu eriste muuttaa sähkökenttää, muuttaa magneettikenttään asetettu aine magneettikenttää. Tämä aiheutuu atomien tai molekyylien

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

SOLENOIDIN MAGNEETTIKENTTÄ

SOLENOIDIN MAGNEETTIKENTTÄ SOLENOIDIN MAGNEETTIKENTTÄ 1 Johdanto Tarkastellaan suljettua pyöreää virtasilmukkaa (virta I), jonka säde on R. Biot-Savartin laista voidaan johtaa magneettivuon tiheydelle virtasilmukan keskiakselilla,

Lisätiedot

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jani Vitikka p87434 Hannu Tiitinen p87432 Dynaaminen kenttäteoria SATE2010 KESTOMAGNEETTI Sivumäärä: 10 Jätetty tarkastettavaksi: 16.1.2008 Työn tarkastaja

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

4 Tasavirrat ja magneettikentät

4 Tasavirrat ja magneettikentät 4 Tasavirrat ja magneettikentät Edellisissä luvuissa käsiteltiin paikallaan olevien sähkövarausten välisiä voimia. Jos varaus on liikkeessä, se voi kokea myös magneettisen voiman. Magneettinen voima johtuu

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

1. YLEISTÄ MAGNETISMISTA

1. YLEISTÄ MAGNETISMISTA 1 1. YLEISTÄ MAGNETISMISTA Magneetin aiheuttama vetovoima on ollut tunnettu jo vuosituhansia. Jo kreikkalainen filosofi Thales (n. 600 ekr) tiesi, että tietyillä rautamalmeilla on kyky vetää puoleensa

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Lisätiedot

tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Sähkö- ja magneettikentät työpaikoilla 11.10. 2006, Teknologiakeskus Pripoli SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

Sähköiset ja magneettiset materiaalit

Sähköiset ja magneettiset materiaalit Luku 10 Sähköiset ja magneettiset materiaalit Aiemmat 9 lukua ovat esitelleet klassisen elektrodynamiikan peruskäsitteet ja teorian perusrakenteen. Alamme nyt perehtyä elektrodynamiikan käyttöön erilaisissa

Lisätiedot

6. Kertaustehtävien ratkaisut

6. Kertaustehtävien ratkaisut Fotoni 7 6-6. Kertaustehtävien ratkaisut Luku. Oheisessa kuvassa on kompassineulan punainen pohjoisnapa osoittaa alaspäin. a) Mikä johtimen ympärille muodostuvan magneettikentän suunta? b) Mikä on johtimessa

Lisätiedot

FERROMAGNEETTISET MATERIAALIT

FERROMAGNEETTISET MATERIAALIT FERROMAGNEETTISET MATERIAALIT MAGNEETTITEKNOLOGIAKESKUS Harri Kankaanpää DIAMAGNETISMI Vesi, elohopea, kulta, vismutti,... Magneettinen suskeptibiliteetti negatiivinen: 10-9...10-4 (µ r 1) Heikentää/hylkii

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Staattiset sähkö- ja magneettikentät työpaikoilla

Staattiset sähkö- ja magneettikentät työpaikoilla Staattiset sähkö- ja magneettikentät työpaikoilla Rauno Pääkkönen Työterveyslaitos, Tampere rauno.paakkonen@ttl.fi Staattinen sähkö ja terveys sairaudet ja sairastumiset pulssit staattiset sähkökentät

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

1. YLEISTÄ MAGNETISMISTA

1. YLEISTÄ MAGNETISMISTA 1 1. YLEISTÄ MAGNETISMISTA Magneetin aiheuttama vetovoima on ollut tunnettu jo vuosituhansia. Jo kreikkalainen filosofi Thales (n. 600 ekr) tiesi, että tietyillä rautamalmeilla on kyky vetää puoleensa

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen, kevät 2014

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen, kevät 2014 Sähäkästi sähköstä, makeasti magnetismista Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen, kevät 2014 Kappaleet voivat varautua sähköisesti Kun kappaletta hangataan sopivasti, se varautuu eli

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 taattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskelluksi huolellisesti, niin

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 Staattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskeltua huolellisesti, niin

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian pedagogiset perusteet, kevät 2012 Kari Sormunen

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian pedagogiset perusteet, kevät 2012 Kari Sormunen Sähäkästi sähköstä, makeasti magnetismista Fysiikan ja kemian pedagogiset perusteet, kevät 2012 Kari Sormunen Oppilaiden ennakkokäsityksiä virtapiireihin liittyen a) Yksinapamalli, jonka mukaan paristosta

Lisätiedot

Sähkömagneettisen sironnan numeerinen simulointi

Sähkömagneettisen sironnan numeerinen simulointi Keijo Mattila Sähkömagneettisen sironnan numeerinen simulointi Tietotekniikan (tieteellinen laskenta) pro gradu -tutkielma 12. tammikuuta 2004 Jyväskylän yliopisto Tietotekniikan laitos Jyväskylä Tekijä:

Lisätiedot

Sähkö ja magnetismi 2

Sähkö ja magnetismi 2 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

MAGNETOMETRIEN TESTAUKSESSA KÄYTETTÄVÄN KELAJÄRJESTELMÄN VALIDOINTI

MAGNETOMETRIEN TESTAUKSESSA KÄYTETTÄVÄN KELAJÄRJESTELMÄN VALIDOINTI Opinnäytetyö (AMK) Elektroniikan koulutusohjelma Elektroniikkasuunnittelu 2015 Maarit Peltomäki MAGNETOMETRIEN TESTAUKSESSA KÄYTETTÄVÄN KELAJÄRJESTELMÄN VALIDOINTI OPINNÄYTETYÖ (AMK) TIIVISTELMÄ TURUN

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot