Magneettikentät. Haarto & Karhunen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Magneettikentät. Haarto & Karhunen. www.turkuamk.fi"

Transkriptio

1 Magneettikentät Haarto & Karhunen

2 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan varaukseen

3 Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina kaksi napaa, pohjoiskohtio (N) ja eteläkohtio (S). Magneetin katkaisu tuottaa kaksi kaksinapaista magneettia. Magneettinapa hylkii toista samannimistä magneettinapaa. Magneettinapa vetää puoleensa erinimistä magneettinapaa tai rautakappaletta.

4 Magneetin pohjoiskohtio pyrkii kääntymään kohti Maan magneettista pohjoisnapaa. Siten Maan magneettinen pohjoisnapa onkin fysikaalisesti ajatellen eteläkohtio. Ferromagneettisista aineista voidaan valmistaa kappaleita, jotka säilyttävät magneettiset ominaisuutensa, kestomagneetteja.

5 Magneettikenttiä havainnollistetaan kenttäviivojen avulla, jotka magneetin ulkopuolella kulkevat pohjoiskohtiosta eteläkohtioon

6 Piirroksissa magneettikenttää kuvataan Risteillä, jos suunta on poispäin katsojasta Pisteillä, jos suunta on kohti katsojaa Homogeenisessa kentässä kenttäviivat ovat tasavälisiä ja samansuuntaisia

7 Magneettivuon tiheys Suure, joka kuvaa magneettikenttää, on magneettivuon tiheys B Vektorisuure. Suunta kenttäviivan suunta Yksikkö: tesla = T Määritellään verrannollisuuskertoimena varattuun hiukkaseen vaikuttavan voiman avulla F qv B F qvbsin q on hiukkasen varaus ja v on hiukkasen nopeus Magneetivuon tiheys on korkeintaan kymmeniä tesloja

8 Magneettikentän voimakkuus Magneettikentän voimakkuus H ja magneettivuon tiheys B riippuvat toisistaan Permeabiliteetti μ on tyhjiön permeabiliteetin ja aineen suhteellisen permeabiliteetin tulo Tyhjiön permeabiliteetti B H r 0H r Vs Am Useimmille aineille suhteellinen permeabiliteetti μ r 1 Ferromagneettisille aineille μ r >>1 0 7

9 Permeabiliteetti kuvaa aineen magnetoitumiskykyä ulkoisessa magneettikentässä. Paramagnetismi Paramagneettisilla aineilla elektronien magneettimomentit pyrkivät asettumaan ulkoisen magneettikentän suuntaan. Suhteellinen permeabiliteetti vähän suurempi kuin 1. Diamagnetismi Diamagneettisilla aineilla elektronien magneettimomentit pyrkivät asettumaan ulkoisen magneettikentän suuntaa vastaan. Suhteellinen permeabiliteetti vähän pienempi kuin 1. Ferromagnetismi Ferromagneettisilla aineilla elektronien magneettimomentit pyrkivät voimakkaasti asettumaan ulkoisen magneettikentän suuntaan. Suhteellinen permeabiliteetti yleensä välillä

10 Varattuun hiukkaseen vaikuttava voima F qv B on aina kohtisuorassa sekä magneettivuon tiheyteen että varauksen nopeuteen nähden Voiman suunta voidaan selvittää ns. vasemman käden säännön avulla

11 Varatun hiukkasen liike magneettikentässä Hiukkasen liikkuessa kohtisuorassa suunnassa homogeeniseen magneettikenttään nähden, niin sen rata on ympyrä. F F r r mv qb qvb m v r 2

12 Esimerkki Aurinkotuuli tuo elektronin nopeudella 6, m/s kohtisuorasti Maan magneettikenttään, jonka magneettivuon tiheys on 50,0 T. a) Piirrä kuva, josta ilmenee mihin suuntaan elektronin rata kaartuu Maan magneettikentän suhteen. b) Laske elektronin kiihtyvyys Maan magneettikentässä. c) Laske elektronin radan kaarevuussäde Maan magneettikentässä. v 6,2010 q 1,6010 m 9, B 50, m/s T C kg a) v b) c) F ma qvb a F F qvb R qvb m r mv qb mv R 5, ,706 m 13 m/s 2

13 Jos hiukkanen liikkuu magneettikentän suunnassa, niin siihen ei vaikuta voima. Jos hiukkasen nopeuden ja magneettikentän suunnan välinen kulma on välillä 0º<θ<90º, niin rata on spiraali.

14 Epähomogeenisessa magneettikentässä liikkuvan varauksen liike on mutkikas. Magneettinen pullo, esim. fuusioreaktorissa Maan magneettikenttä ohjaa auringosta tulevat varatut hiukkaset navoille, revontulet

15 Lorenzin voima Sekä sähkö- että magneettikentässä liikkuvaan varaukseen kohdistuva nettovoima F qe qv B

16 Nopeusvalitsin Nopeusvalitsimessa varatuilla hiukkasilla, joilla on tietty nopeus, Lorenzin voima on nolla. Sähkö- ja magneettikentän aiheuttamat voimat ovat itseisarvoltaan yhtä suuret qvb v qe E B

17 Esimerkki Kuinka suuri magneettivuon tiheys tarvitaan V/m sähkökenttää vastaan kohtisuoraan, että protoni pääsee kenttien läpi suuntaansa muuttamatta nopeudella 1,010 6 m/s? Protonin nopeus on kohtisuorassa sekä magneetti- että sähkökenttää vastaan. E V/m v 1, m/s Sähkö - ja magneettikenttien aiheuttamat voimat kumoavat toisensa B E v 0,012 T qvb qe

18 Hallin ilmiö Sähkövirran kulkiessa johteessa, joka on magneettikentässä, sen pintojen välille muodostuu jännite. Liikkuviin varauksiin kohdistuva magneettinen voima siirtää varauksia johteen pinnoille, kunnes voima kumoutuu sähkökentän aiheuttaman voima takia Hallin jännite Käytetään magneettikentän mittareissa

19 Hallin jännite U H Es v d Bs Virta I nqdsv d v d I /(nqsd) Varausten vaellusnopeus n on varausten kuljettajien lukumäärätiheys U H IB nqd B U H nqd I

20 Esimerkki Kuparijohtimen poikkileikkaus on suorakulmion muotoinen ja sen leveys on 1,5 cm ja paksuus on 0,15 cm. Johtimen läpi kulkee 5,0 A virta. Kuinka suuri on syntyvä Hallin jännite, kun virta on kohtisuorassa magneettikenttää vastaan? Magneettivuon tiheys on 1,2 T ja kuparin varauksen kuljettajien lukumäärätiheys on 8, m -3. s 0,015 m d 0,0015 m I 5,0 A Varauksen kuljettajina elektronit q 1, C B 1,2 T n 8, m 3 U H IB nqd 0, V

21 Magneettikenttä ja virtajohdin _ F Johtimessa (pituus l) liikkuviin varauksiin vaikuttava kokonaisvoima, kun johdin on magneettikentässä, jonka tiheys on B F Il B tai F IlBsin θ on magneettivuon tiheyden ja johtimen välinen kulma A _ v d l _ B I Kokonaisvoima on yhtä suuri kuin se voima, joka vaikuttaa virtajohtimeen.

22 Esimerkki Kuinka suuri voima vaikuttaa 1,0 m pituiseen johtoon, joka on kohtisuorassa Maan magneettikenttää (51 µt) vastaan ja jossa kulkee 12 ma virta? l 1,0 m F IlB A 1,0 m T B 51μT T 0, N 0,51μN I 12 ma A

23 Kahden yhdensuuntaisen virtajohtimen välinen voima Koska johtimissa kulkee virta, niin ne aiheuttavat ympärilleen magneettikentän. Magneettikenttä aiheuttaa voiman johtimeen Siten johtimien välille syntyy voima- vastavoimapari. F 0I1I 2d Samansuuntaiset virrat vetävät toisiaan ja vastakkaissuuntaiset virrat hylkivät toisiaan 2 l _ B 2 I 2ₓ _ F 1 _ F 2 ₓ I 1 d

24 Esimerkki Sähkötolppien välissä on kaksi yhdensuuntaista johtoa 1,2 m etäisyydellä toisistaan ja niissä kulkee samansuuntainen 26 A virta. Kuinka suuri voima johtoihin aiheutuu 25 m matkalla? I d l ,2 m I 25 m 26 A 4π 10 7 Vs Am F I I l 2πd 7 4π π 1,2 2, N N Mikäli johtoja olisi enemmän, niin niiden yhteen johtoon aiheuttamat voimat laskettaisiin yhteen vektoreina

25 Amperen laki Amperen lailla voidaan laskea virran aiheuttama magneettikentän voimakkuus tai magneettivuon tiheys mielivaltaisessa pisteessä. Amperen laki S H ds i I i ₓ I 1 I 2 Vasen puoli on viivaintegraali Oikea puoli on silmukan lävistämä nettovirta Virta lasketaan positiivisena, jos virran suuntaan katsottuna, se kierretään myötäpäivään. ₓ I 3 _ H d _ s s

26 Suoran virtajohtimen magneettikenttä S H ds H 2πr I I H I 2πr B I 2πr

27 Solenoidin magneettikenttä S H ds Integrointipolulla osissa 2 ja 4 on Osassa 3 on H 0 (kaukana!) Osassa 1 integraalista tulee Hl Virtasilmukoita N kappaletta matkalla l Integraali sievenee muotoon Hl=NI I H ds 0 H NI l B NI l l

28 Ampeerin määritelmä Ampeeri on ajallisesti muuttumaton sähkövirta, joka kulkiessaan kahdessa suorassa yhdensuuntaisessa äärettömän pitkässä ohuessa johtimessa, joiden poikkileikkaus on ympyrä ja jotka ovat metrin etäisyydellä toisistaan tyhjiössä, aikaansaa johtimien välille newtonin voiman johtimen metriä kohti. Jos johtimessa kulkee ajallisesti muuttumaton yhden ampeerin virta, niin johtimen poikkileikkauksen läpi sekunnissa kulkeva sähkövaraus on yksi coulombi. 1 A 1 s = 1 C

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

Kertausta. Haarto & Karhunen.

Kertausta. Haarto & Karhunen. Kertausta Haarto & Karhunen Newtonin 1. laki Massan hitauden laki Jatkavuuden laki Kappaleen nopeus on vakio tai kappale pysyy paikallaan, jos siihen ei vaikuta voimia. Newtonin 1. laki on voimassa myös,

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

SOVELLUS: SYKLOTRNI- KIIHDYTIN

SOVELLUS: SYKLOTRNI- KIIHDYTIN SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Magnetoituvat materiaalit

Magnetoituvat materiaalit Luku 8 Magnetoituvat materiaalit 8.1 Magnetoitumavirta Kappaleessa 7.8 esitetyn määritelmän perusteella virtasilmukan magneettimomentti voidaan esittää muodossa m = IS, (8.1) missä I on silmukassa kiertävä

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta Magneettikenttä Magneettikenttä on magneettisen uooaikutuksen aikutusalue Magneetti on aina dipoli. Yksinapaista magneettia ei ole haaittu (nomaaleissa aineissa). Kenttäiiat: Suunta pohjoisnaasta (N) etelänapaan

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan.

KYSYMYS: Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. : Lai*akaa varaukset järjestykseen, posi9ivisesta nega9ivisempaan. Protoni Elektroni 17 protonia 19 electronia 1,000,000 protonia 1,000,000 elektronia lasipallo puu*uu 3 elektronia (A) (B) (C) (D) (E)

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

5 Magneettiset materiaalit

5 Magneettiset materiaalit 5 Magneettiset materiaalit 5.1 Magnetoituma Samoin kuin sähkökenttään asetettu eriste muuttaa sähkökenttää, muuttaa magneettikenttään asetettu aine magneettikenttää. Tämä aiheutuu atomien tai molekyylien

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen Kannuksen lukio Maastossa ja mediahuoneessa hanke Fysiikan tutkimus Muuttuvan magneettikentän tutkiminen Menetelmäohjeet Muuttuvan magneettikentän tutkiminen Työn tarkoitus Opiskelijoille magneettikenttä

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 7. Sähkömagnetismi. Sanoma Pro Oy Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 7. Sähkömagnetismi. Sanoma Pro Oy Helsinki Tehtävien ratkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 7 Sähkömagnetismi Sanoma Pro Oy Helsinki Sisällys Johdantotehtävien ratkaisut 4 Magneettikenttä 6 Induktio 8 3 Vaihtovirta

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 5 Tavoitteet Magneettikenttä ja magneettiset voimat Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori

Lisätiedot

Fysiikka 7 muistiinpanot

Fysiikka 7 muistiinpanot Fysiikka 7 muistiinpanot 1 Magneettikenttä - Magneetilla navat eli kohtiot S ja N S N - Sovelluksia: kompassi (Maa kuin kestomagneetti) - Kuvataaan kenttäviivoilla kestomagneetit S N N S - tai vektorimerkeillä

Lisätiedot

Coulombin laki ja sähkökenttä

Coulombin laki ja sähkökenttä Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista;

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jani Vitikka p87434 Hannu Tiitinen p87432 Dynaaminen kenttäteoria SATE2010 KESTOMAGNEETTI Sivumäärä: 10 Jätetty tarkastettavaksi: 16.1.2008 Työn tarkastaja

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

SOLENOIDIN MAGNEETTIKENTTÄ

SOLENOIDIN MAGNEETTIKENTTÄ SOLENOIDIN MAGNEETTIKENTTÄ 1 Johdanto Tarkastellaan suljettua pyöreää virtasilmukkaa (virta I), jonka säde on R. Biot-Savartin laista voidaan johtaa magneettivuon tiheydelle virtasilmukan keskiakselilla,

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

4 Tasavirrat ja magneettikentät

4 Tasavirrat ja magneettikentät 4 Tasavirrat ja magneettikentät Edellisissä luvuissa käsiteltiin paikallaan olevien sähkövarausten välisiä voimia. Jos varaus on liikkeessä, se voi kokea myös magneettisen voiman. Magneettinen voima johtuu

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

KURSSIN TÄRKEIMPIÄ AIHEITA

KURSSIN TÄRKEIMPIÄ AIHEITA KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot

Varatun hiukkasen liike

Varatun hiukkasen liike Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Lisätiedot

Kiinteiden materiaalien magneettiset ominaisuudet

Kiinteiden materiaalien magneettiset ominaisuudet Kiinteiden materiaalien magneettiset ominaisuudet Peruskäsite: Yhdisteessä elektronien orbtaaliliike ja spin vaikuttavat magneettisiin ominaisuuksiin (spinin vaikutus on merkittävämpi) Diamagnetismi Kaikki

Lisätiedot

1. YLEISTÄ MAGNETISMISTA

1. YLEISTÄ MAGNETISMISTA 1 1. YLEISTÄ MAGNETISMISTA Magneetin aiheuttama vetovoima on ollut tunnettu jo vuosituhansia. Jo kreikkalainen filosofi Thales (n. 600 ekr) tiesi, että tietyillä rautamalmeilla on kyky vetää puoleensa

Lisätiedot

VIELÄ KÄYTÄNNÖN ASIAA

VIELÄ KÄYTÄNNÖN ASIAA VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan,

Lisätiedot

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia. Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja

Lisätiedot

Työ 4547B S4h. SÄHKÖ- JA MAGNEETTIKENTÄT

Työ 4547B S4h. SÄHKÖ- JA MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 4547B S4h. SÄHKÖ- JA MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan sähkökentän muotoa ja mittaamista sekä homogeenisen magneettikentän luomista ja kentän voimavaikutusta

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot