1. Matemaattiset perusteet

Koko: px
Aloita esitys sivulta:

Download "1. Matemaattiset perusteet"

Transkriptio

1 .. Kolmiulotteisten rakenteiden käsittel. Matemaattiset perusteet ietokonegrafiikka perustuu paljolti matemaattiseen laskentaan, jossa kätetään vektoreita ja matriiseja sekä näille lineaarialgebran peruskäsitteitä. Käsitteellisesti vastassa on jokseenkin kkertaisia menetelmiä. Muunnokset ovat tärkeitä kolmiulotteisten näkmien luomisessa. Niitä kätetään kohteiden siirtämiseen näkmässä ja kaksiulotteisen näkmän luomisessa lipäänsä. ässä luvussa esitetään perusmuunnoksia, muodon muuttamiseen kätettäviä muunnoksia ja kolmiulotteista geometriaa. Kohde esitetään monikulmioverkkona tarkemmin. luvussa Kohteen pinta esitetään hdistettjen tasomonikulmioiden joukkona. Jokainen monikulmio muodostuu hdistettjen pisteiden listasta. Esits on joko tarkka tai likimääräinen kohteesta riippuen. Esim. kuutio esitetään kuudella neliöllä. Slinteriä approksimoidaan monikulmiotasoilla, esim. karkeasti kuudella suorakulmiolla kaarevia sivuja ja kahdella kuusikulmiolla ala ja läpintaa.. luku 7. luku 8 Affiinit muunnokset Lisäämällä monikulmioita approksimaatiota saadaan parannettua, mutta tällöin vaaditaan tietsti enemmän laskentaa niiden käsittelssä ja muistitilaa. Monikulmioiden kättö on kkertaista ja nopeasti laskettavissa olevaa. ämän vuoksi niiden kättö on vallitsevaa. Monikulmioverkkomalli käsittää kolmiulotteia pisteinä kuvattuja kärkiä nk. maailmankoordinaatistossa. Kärkien väliset janat määräävät kohteen reunat. Affiinit muunnokset esitetään matriiseilla. Joukko näitä muunnoksia voidaan hdistää hdeksi hdistetksi muunnokseksi perättäisillä lineaarisilla muunnoksilla, joita seuraa siirto. Muunnokset ovat tpiltään kierto rotaatio, skaalaus, vääntö ja siirto translaatio. Kohteet määritellään tavallisesti oikeakätisessä maailmankoordinaatistossa. Kuvassa.. on oikea ja vasenkätinen koordinaatisto. Erona on akselin suunta. Kuva.. Oikea ja vasenkätinen koordinaatisto.. luku 9. luku

2 oiaan on mielekästä määritellä kohteet omassa lokaalissa koordinaatistossaan. Jopa kohteen osilla saattaa olla lokaalisia koordinaatistojaan. Muunnosten suorittaminen on silloin mmärrettävissä kunkin kohteen lokaalin koordinaatistonsa muunnoka suhteessa maailmankoordinaatistoon. Esim. tehtäessä kohteen kierto on helppoa suorittaa se smmetriaakselia vertailukohteena kättäen. Kohteen kärkien joukko, so. kolmiulotteiset pisteet, muunnetaan toiseksi pistejoukoksi lineaarisella muunnoksella. Molemmat pistejoukot ovat samassa koordinaatistossa. Muunnokset esitetään matriiseilla ja pisteet pst eli sarakevektoreina. Muunnosmatriisi edeltää vektoria. Piste V muunnetaan siirrossa, skaalauksessa ja kierrossa seuraavasti. V V + D V SV V RV ässä D on siirtovektori sekä S ja R ovat skaalaus ja kiertomatriiseja. Nämä ovat tietokonegrafiikassa tavallisimmin kätett muunnokset. Esim. animaatiossa kiinteää kappaletta voi käsitellä ainoastaan kierrolla ja siirrolla, kun taas skaalausta kätetään mallintamisessa.. luku. luku On kätevää kättää homogeenista koordinaatistoa, jossa ulottuvuutta on kasvatettu. ällöin mös siirto on suoritettavissa helposti matrii kertolaskulla hteenlaskun sijasta, kuten kaksi muuta muunnosta. Homogeenisessa koordinaatistossa kärki V,, esitetään muodossa VwX,wY,wZ,w mille tahansa kertoimelle w. Kolmiulotteinen karteeen koordinaatisto on nt muotoa: X/w, Y/w, Z/w Kun asetetaan w htä suureksi kuin, pisteen vektori tai matriisiesits on seuraavaa muotoa: Siirto tapahtuu tällöin matriisitulona muodossa: V' V ' ' '. luku 3. luku 4

3 Edellinen vastaa tunnetusti htälörhmää, jossa siirtoarvot on lisätt alkuperäisiin: ' + ' ' + + Seuraavaksi annetaan skaalaus, jossa on kätett matrii S skaalauskertoimia: V' SV S S S S ässä kätetään normaalisti arvoja S S S, muuten skaalaus ei olisi tasainen, hdenmukainen eri akselien suhteen. Jälleen voidaan kuvaus esittää mös htälörhmänä: ' S ' S ' S Kierron suorittamiseksi on määrättävä kiertoakseli. ämä voi olla mikä tahansa kolmiulotteisessa avaruudessa, mutta helpointa on tarkastella jotakin kolmesta koordinaattiakselista. Kierrot akselien, ja suhteen ovat: R. luku 5. luku 6 R R Viimeisen tilanteessa voidaan toimia jälleen htälörhmällä ks. mös kuva..: Kuva.. a Identiteetti, b kierto ja c skaalaus akselin suhteen ' ' + ' d siirto, e kierto ja siirto sekä f siirto ja kierto.. luku 7. luku 8

4 Monesti tarvitaan näiden käänteismuunnoksia. saadaan muuttamalla sen komponenttien, ja etumerkit, ts. asettamalla ne vastaluvuikseen. S saadaan muuttamalla S, S ja S käänteisluvuikseen. Asettamalla kierron kulma vastaluvukseen saadaan R. Mikä tahansa kiertojen, skaalausten ja siirtojen joukko on kerrottavissa tai hdistettävissä katenoitavissa, jolloin saadaan hdistett muunnosmatriisi. Jos on esim. " ' " ' ja M " ', niin muunnosmatriisi on hdistettävissä muotoon ja ' ' ' M M 3 MM " " M3 " On stä huomata matriisitulon järjests, siis en sovelletaan muunnosta M. Vaikka siirrot ovat vaihdannaisia eli kommutatiivisia, kierrot eivät ole, joten on RR RR, mikä on havainnollistettu kuvassa.. e ja f.. luku 9. luku Yleinen muunnosmatriisi on muotoa: A A A3 A A A3 A3 A3 A33 Kokoa 3 3 oleva alimatriisi A vastaa kierron ja skaalauksen kokonaisuutta sekä pstvektori siirtoa. Mahdollisuus katenoida muunnoksia hdistetn muunnoksen saamiseksi on hödllinen, sillä se antaa ksittäisen matrii mille tahansa lineaariselle muunnokselle. Pohditaan esim. kohdetta, joka on pisteessä,, ja jota halutaan kiertää akselin suuntaisen ja kohteen hden kärjen kautta kulkevan suoran suhteen. Kohde ei sijaitse origossa, ja halutaan tehdä kierto pisteen suhteen, joka on kohteessa itsessään. Halutaan siis kiertää kohdetta omassa lokaalissa koordinaatistossaan. Kiertomatriisia ei voi suoraan soveltaa, sillä se on määritelt origon suhteen eikä kohteen suhteen. Pitää siirtää kohde origoon, soveltaa haluttua kiertoa ja 3 siirtää kohde takai alkuperäiseen paikkaansa.. luku. luku

5 . luku 3 Yhdistett matriisi on seuraava: ästä on esimerkki kuvassa.3., jossa kulma on 3. + R. luku 4 Kuva.3. Aluksi kohde siirretään origoon, jossa kierretään akselin suhteen. Lopuksi kohde palautetaan siirrolla alkuperäiseen paikkaansa.. luku 5 Koordinaatiston muunnokset oiaan on tarpeellista tehdä koordinaatiston muunnos, kun esim. on useita käsiteltäviä kohteita, kukin omassa lokaalissa koordinaatistossaan. Esim. käsitellään slinteriä tämän keskiakselin suhteen. Sen sijaan, että käsiteltäisiin sitä lokaalissa koordinaatistossa, se voidaan siirtää ns. mallintamismuunnoksella sopivaan asentoon maailmankoordinaatistossa käsiteltäväksi. utkitaan kahta koordinaatistoa, joiden akselit ovat samansuuntaiset. Muunnettaessa koordinaatiston määrätt pisteet koordinaatistoon kätetään käänteismuunnosta, joka siirtää koordinaatiston origon koordinaatiston origoon. ällöin kuvataan edellisen piste,,, jälkimmäisen pisteeksi,,, : ' ' '. luku 6.. Muotoa muuttavat muunnokset Edeltävät lineaariset muunnokset joko siirtävät kohdetta siirto ja kierto tai skaalaavat sitä. asainen skaalaus säilttää muodon, mutta kättäen erisuuria arvoja S, S ja S kohdetta ventetään tai painetaan kasaan koordinaatistoakseleita pitkin. Seuraavassa pohditaan suipentamista, vääntöä ja taivuttamista. Määritellään leisesti muunnos missä,, on alkuperäisen kiinteän kohteen kärkipiste ja X, Y, Z muunnetun kärki. F Z F Y F X

6 Suipennus tuotetaan skaalauksella X r Y r Z missä r f on lineaarinen tai epälineaarinen suipentamisprofiili tai funktio. Muunnos on r:n funktio. Muunnosta muutetaan riippuen sen paikasta avaruudessa. Globaali akselin suuntainen vääntö toteutetaan vastaavasti kierrolla. Kohteen vääntämiseksi akselin suuntaan sovelletaan kiertoa X Y + Z missä f ja f määrittelee väännön suuruuden mittaksikköä kohti akselilla. Globaali lineaarinen taivutus akselin suhteen saadaan hdistämällä muunnos taivutusalueella ja tämän ulkopuolisella alueella. Muotoa muutetaan kierrolla ja siirrolla. aivutusalue Y akselin suhteen määritellään: aivutuksen kärs on /k ja taivutuksen keskipiste. aivutuskulma missä on: min ma k ' ' min ma min min < < ma ma. luku 7. luku 8 Muunnos käsittää: X + min ma k Y + + min < min k + + ma > ma k + min ma k Z + + min < min k k + + ma > ma k k Kuva.4. sisältää esimerkin kuution ja Utahin teekannun väännöstä. Kuvassa.5. on esimerkki monikulmioverkkokohteesta slinteri, jota on väännett ja suipennettu. Kuva.4. Ylhäältä lukien alkuperäiset kohteet, suipennetut, väännett ja taivutetut.. luku 9. luku 3

7 Monikulmioverkkoja ei voi leisesti muuttaa epälineaarisesti ja rajoitta. Esim. ongelmana on kärkien hdistettävden rajoitukset; kuutiota ei voi rajatta vääntää ja samalla säilttää sen käsiteltävttä tietokonegrafiikan mielessä. Mös kärjet saattavat siirtä erilleen, joka aiheuttaa epätarkkuutta monikulmioesitksessä. Kuva.5. Väännett ja suipennettu slinteri.. luku 3. luku 3.3. Vektorit tietokonegrafiikassa Vektoreita hödnnetään alati tietokonegrafiikassa. Niillä on suuruus ja suunta. Ykkertainen esimerkki on liikkuvan kappaleen nopeus avaruudessa. Se eroaa skalaarisuureesta, jolla on vain suuruus, kuten lämpötila. Kolmiulotteinen vektori esitetään kolmen skalaarikomponentin muodossa: V v, v, v3 Vektorien hteenlasku Kahden vektorin V ja W hteenlasku määritellään ks. kuva.6.: X V + W,, 3 v + w, v + w, v3 + w3 Kuva.6. Kaksi vaihtoehtoista, ekvivalenttia tapaa esittää vektorien hteenlasku. Vektorien pituus Vektorin pituus eli suuruus määritellään suureena V v / + v + v 3 ja tulkitaan geometrisesti vektorin alun ja lopun välisenä euklidisena etäistenä. Vektori normoidaan normalisoidaan muodostamalla ksikkövektori, jonka pituus on ksi. ämä saadaan jakamalla vektori pituudellaan: U V V. luku 33. luku 34

8 Vektorilla U on sama suunta kuin vektorilla V. Kirjoittaen V V U osoitetaan jokaisen vektorin olevan pituutensa ja suuntansa tulo. ietokonegrafiikassa pitää usein tällä keinolla laskea kohteiden asennot ja verrata näitä toisiinsa nähden. Normaalivektorit ja ristitulot Laskennassa tpillinen tehtävä on laskea pinnan normaalivektoreita. Esim. monikulmioverkolle normaalivektoria kätetään esittämään pinnan asento verrattaessa tätä valon suuntaan. Heijastusmallissa lasketaan pinnasta heijastuneen valon intensiteettiä. Mitä pienempi kulma on pinnan normaalin ja tulevan valon välillä, sitä suurempi intensiteetti on. Monikulmion normaalivektori lasketaan kolmesta ei samalla suoralla kärkipisteestään. Kolme kärkeä määrittelevät vektorit V ja V kuva.7.. Monikulmion normaali lasketaan edellisten ristitulolla: N p V V Yleisesti esittäen vektorien V ja W ristitulo on: X V W vw3 v3w i + v3w vw3 j + vw vw k ässä i, j ja k ovat akselien ksikkövektorit: i,, j,, k,, Nämä määräävät kseisen vektoriavaruuden. Kuvan.7. mukaan normaalivektori suuntineen saadaan oikean käden säännön mukaan.. luku 35. luku 36 Kuva.7. Monikulmion normaalivektorin laskeminen. Kun kseessä on sopiva parametrinen pinta, normaalivektorin suunta vaihtelee pinnan jokaisesta pisteestä toiseen. ällöin pisteessä u,v lasketaan tangenttivektorit osittaisderivaatat kahdessa toistensa suhteen kohtisuorassa suunnassa. Pinnalle Qu,v saadaan ristitulolla normaalivektori kuva.8.: Q u, v Q u, v Ns u v Kuva.8. Parametrisen pinnan normaalivektori. Normaalivektorit ja pistetulot Pistetulon tavanomai sovellus tietokonegrafiikassa on kahden vektorin välisen kulman laskeminen toisen vektorin ollessa jonkin pinnan normaali, esimerkkinä pinnan normaalin ja valon suuntavektorin välisen kulman laskeminen. Vektorien V ja W pistetulo on skalaari kuva.9.: X V W vw + vw + v3w3. luku 37. luku 38

9 Kuva.9. a Vektoreiden pistetulo riippuu niiden välisestä kulmasta. b X V W on vektorin W projektion V:lle pituus. Koisääntöä kättäen saadaan: Lisäksi on: V W V + W V W Kun on vektorien välinen kulma, saadaan näistä: V W V W V V W + W V W Edelleen tulee V W V W ts. kahden vektorin välisen kulman koi on niiden normivektorien pistetulo. Kuvan.9. b tapaan pistetuloa kätetään vektorin projektion laskemiseksi. Olkoon V ksikkövektori V, jolle W:n projektio X muodostetaan: X W V W W V W V W ietokonegrafiikan kannalta olennaista on pistetulon etumerkki. Pistetulon suhteesta koiin takia vektorien pituudesta riippumatta V ja W on: V W > V W V W < jos < 9 jos 9 jos > 9. luku 39. luku 4 Heijastukseen liittvät vektorit Pinnan normaalin hteteen sisält muutamia keskeisiä vektoreita. Ne ovat valon suuntavektori L, heijastus eli peilivektori R ja katselun suuntavektori V. Kuva.. esittää näiden riippuvuuden normaalivektorista N. Kuva.. Heijastusvektorin R muodostaminen. Kuvan..nojalla saadaan: R R + R R L + R äten on R R L ja s. 4 ensimmäisen kaavan perusteella R N L N Kuva.. a Valon suuntavektori L, b heijastusvektori R ja c katselun suuntavektori V. Huomaa optiikan lakien mukaiset smmetriset kulmat ja. ja saadaan lopuksi vektorigeometrisestikin selvä tulos: R N L N L. luku 4. luku 4

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Luento 4: 3D Transformaatiot

Luento 4: 3D Transformaatiot ietokonegrafiikan perusteet -.43 3 op Luento 4: 3D ransformaatiot Lauri aioja /5 3D transformaatiot / isältö Lineaarialgebran kertausta Geometriset objektit 3D-maailmassa Perustransformaatiot 3D:ssä 3D

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Luento 2: Transformaatiot (2D)

Luento 2: Transformaatiot (2D) ietokonegrafiikan perusteet -.43 3 op Luento 2: ransformaatiot (2D) Lauri Savioja /7 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia

Lisätiedot

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Sisältö 1 Johdanto 1 2 Vektorilaskennan kertaus 3 2.1 Vektorit koordinaatistossa........................... 7 3 Siirto 9 3.1 Siirto koordinaatistossa.............................

Lisätiedot

Luento 3: Transformaatiot (2D)

Luento 3: Transformaatiot (2D) ietokonegrafiikan perusteet -.43 3 op Luento 3: ransformaatiot (2D) Lauri Savioja /5 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu)

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu) Sisältö ietokonegrafiikka / perusteet Ako/-.3/3 4 ov / 2 ov Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia Luento : ransformaatiot (2D) Marko Mllmaa 6/4 2D

Lisätiedot

6.6. Tasoitus ja terävöinti

6.6. Tasoitus ja terävöinti 6.6. Tasoitus ja terävöinti Seuraavassa muutetaan pikselin arvoa perustuen mpäristön pikselien ominaisuuksiin. Kuvan 6.18.a nojalla ja Lukujen 3.4. ja 3.5. harmaasävjen käsittelssä esitellillä menetelmillä

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Vektorit, suorat ja tasot

Vektorit, suorat ja tasot , suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin

Lisätiedot

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö. Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt

9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt 9 Lineaarikuvaukset, matriisit 9 Vektoriavaruudet Aiemmin olemmme puhuneet tason (R 2 ja kotiavaruuden (R 3 vektoreista Nämä (kuten mös pelkkä R ovat esimerkkejä reaalisista vektoriavaruuksista Yleisesti

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

4. Esittäminen ja visualisointi (renderöinti)

4. Esittäminen ja visualisointi (renderöinti) 4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit KJR-C1001: Statiikka L2 Luento 21.2.2018: voiman momentti ja voimasysteemit Apulaisprofessori Konetekniikan laitos Luennon osaamistavoitteet Tämän päiväisen luennon jälkeen opiskelija Pystyy muodostamaan,

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

VEKTORIT paikkavektori OA

VEKTORIT paikkavektori OA paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

Usean muuttujan funktiot

Usean muuttujan funktiot Usean muuttujan funktiot Johdantoa Kertauksen vuoksi seuraavassa kuviossa on joitakin asioita, joita olemme laskeneet hden muuttujan funktioista f() : [a, b] R Kuvion kärä on funktion f() kuvaaja = f()

Lisätiedot

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Yleistä vektoreista GeoGebralla

Yleistä vektoreista GeoGebralla Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm.

14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm. 1 14 Monikulmiot Nimeä monikulmio. a) b) c) kolmio nelikulmio 12-kulmio Laske monikulmion piiri. a) 4,2 cm b) 3,6 cm 11,2 cm 4,8 cm 3,6 cm 4,3 cm 30,8 cm 18,2 cm Laske sivun x pituus, kun monikulmion piiri

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Vektoreita GeoGebrassa.

Vektoreita GeoGebrassa. Vektoreita GeoGebrassa 1 Miten GeoGebralla piirretään vektoreita? Työvälineet ja syöttökentän komennot Vektoreiden esittäminen GeoGebrassa on luontevaa: vektorien piirtämiseen on kaksi työvälinettä vektoreita

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

Piste ja jana koordinaatistossa

Piste ja jana koordinaatistossa 607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä 3D animaatio: liikekäyrät ja interpolointi Tommi Tykkälä Läpivienti Keyframe-animaatio Lineaarisesta interpoloinnista TCB-splineihin Bezier-käyrät Rotaatioiden interpolointi Kameran animointi Skenegraafit

Lisätiedot

POIKKIPINNAN GEOMETRISET SUUREET

POIKKIPINNAN GEOMETRISET SUUREET 1.10.018 POIKKIPINNAN GEOMETRISET SUUREET KOORDINAATISTON VALINTA: x akseli sauvan tai palkin akselin suuntainen akseli alaspäin akseli siten, että muodostuu oikeakätinen koordinaatisto Pintamomentti (pinnan

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Lineaarialgebran laskumoniste Osa1 : vektorit

Lineaarialgebran laskumoniste Osa1 : vektorit Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.

Lisätiedot

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat? 2..207 Määritelmä, (terävän kulman) trigonometriset funktiot: Suorakulmaisessa kolmiossa terävän kulman trigonometriset funktiot ovat: kulman sini hpotenuusa sin a c kulman kosini hpotenuusa kulman tangentti

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö Toisen asteen kärät 1/7 Sisältö ESITIEDOT: kärä, kartio ja lieriö Hakemisto KATSO MYÖS: mprä, toisen asteen pinnat Toisen asteen kärä Toisen asteen käräksi kutsutaan kärää, jonka htälö -ssa on muuttujien

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Lineaarialgebra (muut ko)

Lineaarialgebra (muut ko) Lineaarialgebra (muut ko) p. 1/103 Lineaarialgebra (muut ko) Tero Laihonen Lineaarialgebra (muut ko) p. 2/103 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Luento 6: Geometrinen mallinnus

Luento 6: Geometrinen mallinnus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja, Janne Kontkanen 11/2007 Geometrinen mallinnus / 1 Sisältö Mitä on geometrinen mallinnus tietokonegrafiikassa

Lisätiedot

Tietokonegrafiikan perusteet

Tietokonegrafiikan perusteet Tietokonegrafiikan perusteet Tuomo Rossi Jyväskylän yliopisto Tietotekniikan laitos 7. syyskuuta 2003 1 2 Sisältö 1 Lineaarialgebran kertausta 1 1.1 Vektorit............................... 1 1.1.1 Vektorien

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 )

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 ) APPROBATUR (MATP170) Harjoitus 7, Ratkaisut 1. Kuvaa kirjaimen H smmetriarhmä permutaatioiden avulla ja tee saadulle rhmälle kertotaulu. (Nimeä tätä varten kirjaimesta smmetrian mielessä tärkeitä kohtia

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Jos γ on tylppä, niin. c 2 = h 2 + (b + s) 2 = a 2 s 2 + (b + s) 2 = a 2 + b 2 + 2bs

Jos γ on tylppä, niin. c 2 = h 2 + (b + s) 2 = a 2 s 2 + (b + s) 2 = a 2 + b 2 + 2bs 12 Vaasan liopiston julkaisuja, opetusmonisteita Lause 1.2.5. Kosinilause: c 2 = a 2 + b 2 2ab cos γ. Perustelu: a c h γ u b Tapaus: Terävä γ b u = a cos γ c h a s γ b Tapaus: Tlppä γ s = a cos γ Yllä

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7. BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5 Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot