Luento 2: Transformaatiot (2D)

Koko: px
Aloita esitys sivulta:

Download "Luento 2: Transformaatiot (2D)"

Transkriptio

1 ietokonegrafiikan perusteet op Luento 2: ransformaatiot (2D) Lauri Savioja /7 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia 2D transformaatiot / 2

2 . Koordinaattimuunnokset Geometriset objektit ietorakenteet koostuvat leensä pisteistä: tpe Point record, : real end; Line record p,p2 : Point end; Polgon record N : integer; corners : arra [..MA] of Point end; Usein olisi mukavaa, jos voitaisiin määritellä objektin pisteet omassa koordinaatistossaan (C), josta objekti sitten siirrettäisiin sopivan kokoisena sopivaan paikkaan ja asentoon kättökoordinaatistossa (C'). 2D transformaatiot / 3 Muunnokset (jatkuu) ämä voidaan toteuttaa suorittamalla kuvion pisteille transformaatioita eli koordinaattimuunnoksia. Kokonainen geometrinen objekti muunnetaan leensä muuntamalla jokainen piste erikseen. ärkeää on silloin pstä esittämään objektit ja muunnokset siten, että vain olennaisten määrittel- tai ohjauspisteiden käsittel riittää, ja muunnettu kuvio voidaan piirtää näiden avulla. Esim. muunnettu monikulmio voidaan piirtää muunnetujen nurkkapisteiden kautta. 2D transformaatiot / 4 2

3 2. Perustransformaatiot ) Siirto (translaatio) vektorin t verran: eli vektorimuodossa: Y Y' + t + t t p p + t + t alkuperäinen (C) siirrett (C') ' Huom. Kaikki pisteet siirtvät saman verran; Kuvion muoto, koko ja asento säilvät. 2D transformaatiot / 5 Perustransformaatiot (jatkuu) 2) Kierto (rotaatio) kulman verran vastapäivään origon mpäri: eli matriisimuodossa: Y cos sin sin + cos cos' p Rp sin ' Y' ( sin ' cos' alkuperäinen (C) kierrett (C') Huom. Origo ps paikallaan, kaikki muut pisteet siirtvät; Kuvion muoto ja koko säilvät. 2D transformaatiot / 6 +9 ' 3

4 Kierto (jatkuu) Esim. ' ( 9 : sin (, cos( : ' ( 8 : sin (, cos( ' : ' Y Y' alkuperäinen (C) kierrett (C') +9 ' 2D transformaatiot / 7 Perustransformaatiot (jatkuu) 3) Mittakaavan muutos (skaalaus) eri suuntiin: Esim. S S Y p Sp Y' S S S.5 alkuperäinen (C) skaalattu (C') S.75 ' 2D transformaatiot / 8 4

5 Erikoistapauksia: Skaalaus (jatkuu) S S mittasuhteet säilvät (uniform scale) S -, S vaakapeilaus -akselin suhteen S, S - pstpeilaus -akselin suhteen S -, S - kierto 8 (pistesmmetria origon suhteen) Huom. Origo ps aina paikallaan, leensä kaikki muut pisteet siirtvät, erikoistapauksia lukuun ottamatta asento säil, mutta kuvion muoto litist tai ven. 2D transformaatiot / 9 Perustransformaatiot (jatkuu) 4) viistoutus (shearing): koordinaattiakseleita kallistetaan + H + H Y Y' p Hp H H.5.5 Y'' H.5 H alkuperäinen (C) -viistottu (C') H Huom Samalla -arvolla olevat pisteet siirtvät vakiomatkan - suunnassa, vaikka mös muuttuisi. Jos H, niin -akselin pisteet psvät paikallaan (vastaavasti - akseli, jos H ). Origo ps paikallaan; kuvion muoto ja koko muuttuvat. ' 2D transformaatiot / -viistottu (C'') H.25 '' 5

6 Koordinaatiston kannan muuntuminen Kuvion muuntuminen voidaan mmärtää koordinaatiston kannan vaihtumisena: sovelletaan alkuperäisen kuvion -koordinaatteja vinokantaisessa koordinaatistossa. Lineaarimuunnoksille (edellä esitett) tämä toteutuu matriisikertolaskuna. Y alkuperäinen kanta Y'' muunnettu kanta e2 e M e2' e' '' 2D transformaatiot / 3. Muunnosten hdistel Perusmuunnokset ovat lineaarisia (ts. suorat viivat säilvät suorina), jolloin monikulmiosta riittää muuntaa vain nurkkapisteet. Sama ei päde kaikille esitstavoille (esim. mprälle keskipisteen ja säteen muunnos). Muunnoksia voidaan hdistellä tekemällä ne ksi kerrallaan peräkkäin, esim. skaalaus (S), kierto (R) ja siirto () kuten edellä. Huom Järjests vaikuttaa: SR ja SR antavat eri tuloksen. 2D transformaatiot / 2 6

7 Y SR SR Y' alkuperäinen (C) Y' S S.5 S.75 ' ' Y'' Y'' S.5 S.5.75 S.75 R +9 '' '' Y''' Y''' R +9 Entä RS? ''' ''' 2D transformaatiot / 3 Muunnosten hdistel (jatkuu) Ongelma: Usein halutaan tehdä hierarkkisia geometrisia malleja, joissa mallin osat muunnetaan omista koordinaatistoistaan laajemman kokonaisuuden koordinaatistoon. Osat voivat samoin muodostua pienemmistä osista jne. Kullakin tasolla voidaan joutua tekemään jopa 3 eri muunnosta (siirto, kierto, skaalaus). Onko N-tasoisen mallin kullekin osalle siis tehtävä 3 N muunnosta, jotta päästäisiin lopulliseen piirtokoordinaatistoon? Vastaus: Onneksi ei ransformaatiot voidaan hdistää (katenoida) hdeksi. 2D transformaatiot / 4 7

8 Muunnosten hdistel (jatkuu) Esim. skaalaus (2., 3.), kierto 9 ja siirto (+, +5): S: ' 2 ' 3 R: '' -' -3 '' ' 2 : ''' '' ''' '' Mutta: On ikävää tehdä algebrallista käsittelä jokaiselle muunnokselle erikseen. 2D transformaatiot / 5 4. Muunnokset matriisien avulla Pitäisi lötää formalismi, joka sallisi kaikkien esitettjen transformaatioiden homogeenisen käsitteln. Lineaarialgebra tuntuisi tarjoavan oivan välineen kaikkien lineaaristen muunnosten hoitamiseen matriisikertolaskun avulla: m p Mp m 2 m m 2 22 Voidaanko tällä esittää kaikki em. muunnokset? 2D transformaatiot / 6 8

9 Muunnosmatriisit (jatkuu) Idea: Viistoutusmuunnos (shearing) toteutti saman -suuntaisen translaation kaikille samalla -arvolla oleville pisteille. Vakiosiirtmät molempiin suuntiin () saataisiin 3-ulotteisessa koordinaatistossa tasolla z-koordinaatin suhteen tehtävällä viistoutusmuunnoksella: Z Z' taso z.5 z Y z-akselin viistoutus (' +.5 z) saa tasolla (z) psville kuvioille aikaan vakiosiirtmän 2D transformaatiot / 7 Muunnosmatriisit (jatkuu) Homogeeniset koordinaatit Laajennetaan n-ulotteisen avaruuden piste n+-ulotteiseksi lisäämällä tekijä w, jolla n-ulotteiset koordinaatit kerrotaan: [ ] [ w w w] [ ], jos w Huom: Yhtä n-ulotteisen avaruuden pistettä esittää nt äärettömän monta n+-ulotteista pistettä eri w:n arvoilla. Ne sijaitsevat origon ja pisteen [ ] kautta kulkevalla suoralla. Huom2: Pisteet muunnetaan homogeenisista koordinaateista takaisin tavalliseen esitsmuotoon projisoimalla ne tasolle w, eli jakolaskulla: [ w w w] [ /w /w] [ ], jos w 2D transformaatiot / 8 9

10 2D transformaatiot / 9 Muunnosmatriisit (jatkuu) Huom3: ämä mahdollistaa mös äärettömän kaukana olevien pisteiden esittämisen äärellisten koordinaattiarvojen avulla: Äärettömdessä sijaitsevan pisteen suunta on kuitenkin hvin määritelt, sillä suuntakulman tangentti on laskettavissa. (ällä on kättöä eritisesti 3-ulotteisissa kuvissa.) Huom4: Homogeenisilla koordinaateilla esitetn pisteen voi mmärtää mös vektorina, jonka suunnan määräävät ja (vektorin ja koordinaattiakselien välisten kulmien kosinit) ja pituuden w(käänteisarvona): Näin esitett vektori ei muutu, jos kaikki komponentit kerrotaan samalla vakiolla. Sama vektori voidaan siis esittää lläolevassa muodossa kun 2 + 2, tai vektorisiirtmää vastaavana pisteenä kun w. [ ] [ ] [ ] / / [ ] [ ] d w / sin cos 2D transformaatiot / 2 Muunnosmatriisit (jatkuu) Kaikki perustransformaatiot voidaan nt ilmaista lineaarimuunnoksina homogeenisille koordinaateille: Huom Näissä muunnoksissa aina pätee, että w' w Siis jos w, niin voidaan kättää suoraan tavallisia koordinaatteja; muunnetun pisteen koordinaatit saadaan ilman jakolaskua. Esim. w w : ' w w cos sin sin cos : ( ( ( ( R w S S w S : w H H w H : + + w

11 5. Matriisien hdistäminen (katenointi) Matriisikertolasku on assosiatiivinen, ts. kertolaskulauseke voidaan laskea htä hvin vasemmalta oikealle tai päinvastoin: A(BC) (AB)C. Esim. Kuvion kiertäminen mielivaltaisen pisteen F [ F F ] mpäri koostuu kolmesta vaiheesta: : Siirretään piste F origoksi translaatiolla [ -F -F ]. R : Kierretään kuviota kulman verran origon mpäri. : Siirretään origo takaisin translaatiolla [ +F +F ]. Kokonaismuunnos saadaan matriisikertolaskuna: p Rp Mp, missä M R 2D transformaatiot / 2 Matriisihdists (jatkuu) Esim2. Kuvion suurentaminen kaksinkertaiseksi (viivasuhteen säilttäen) ja siirtäminen kmmenen ksikköä oikealle: 2 S 2 Jos suurennus tehdään ensin: p' (S)p Päinvastaisessa järjestksessä: p' (S)p 2D transformaatiot / 22

12 Matriisihdists (jatkuu) Huom. Pisteet voidaan esittää joko pst- tai vaakavektoreina. Matriisikertolaskun suunta on näissä erilainen, esim.: A C p ; p Mp ; M B D p [ ]; p p M ; M A C Yleisesti matriiseille pätee: (A B) B A B D 2D transformaatiot / 23 Matriisihdists (jatkuu) Erikoistapauksia: ranslaatiot summautuvat hteen (, ) ( 2, 2 ) ( + 2, + 2 ) Skaalaukset kertautuvat keskenään S (S, S ) S (S 2, S 2 ) S (S S 2, S S 2 ) Rotaatioiden kulmat summautuvat (mutta matriisit eivät) R (ϕ ) R (ϕ 2 ) R (ϕ + ϕ 2 ) Skaalaus- ja kiertomatriisit mielivaltaisen pisteen suhteen ovat muuten samoja kuin vastaavat origon suhteen, mutta matriisiin lisätään kaikista tekijöistä riippuva translaatio 2D transformaatiot / 24 2

13 6. Laskennallisia näkökohtia Käänteismuunnokset Käänteismuunnos palauttaa muunnetun kuvion alkuperäiseksi, ts. M M p p ; M M I ranslaation käänteiskuvaus saadaan vastaavilla negatiivisilla siirtmäarvoilla ( -, - ) Rotaation käänteismatriisi saadaan saman kulman negatiivisella arvolla. Koska cos(-ϕ) cos(ϕ) ja sin(- ϕ) -sin(ϕ), niin käänteismatriisi on alkuperäisen transpoosi: R (- ϕ) R (ϕ) Käänteinen skaalaus saadaan kättämällä skaalaustekijöiden käänteisarvoja (/S, /S ) 2D transformaatiot / 25 Laskennallisia... (jatkuu) Yleisen muunnosmatriisin käänteiskuvaus saadaan vain laskemalla käänteismatriisi numeerisesti. Perusmuunnoksista koostuva matriisi voidaan kuitenkin purkaa edellä esitettihin ksinkertaisiin tapauksiin, sillä leisesti pätee: (A B) B A Siis esim. (R S ) ( S R ) Huom käänteismatriisi on olemassa vain, jos determinantti M <>. ämä tarkoittaa, ettei missään vaiheessa ole skaalattu tekijällä, mikä kutistaisi 2-ulotteisen kuvion suoraksi tai pisteeksi. 2D transformaatiot / 26 3

14 7. Graafisten objektien muuntaminen Pisteiden avulla ilmaistut kuviot (Polmarker, Polline, Fill-area) muunnetaan kertomalla kunkin ohjauspisteen koordinaatit muunnosmatriisilla. ekstiprimitiivillä on vain ksi ohjauspiste (tekstin aloituskohta), joka voidaan käsitellä muunnosmatriisilla. Muut geometriset muunnokset on korvattava tekstiattribuuttien vastaavilla muutoksilla (skaalaus vaikuttaa kirjasinkokoon, kierto kirjainten pstvektoriin). Laiteohjaimen tasolla muunnosmahdollisuudet riippuvat tekstin toteutustavasta: laitetasolla toteutettu tekstin piirto on harvoin mahdollista muuten kuin vaakasuoraan ja ennalta määrättinä kokovaihtoehtoina. Rasterimaskeina esitettihin kirjaimiin pätee sama kuin rasteriobjekteihin leensäkin (ks. alla). vektoreina tai kärinä toteutetut kirjaimet voidaan käsitellä täsin samalla tavoin kuin viivapiirrokset (ts. jokainen ohjauspiste muunnetaan erikseen). 2D transformaatiot / 27 Objektien muunnokset (jatkuu) Rasteriobjektien kohdalla muunnosten toteutus voi olla vaikeaa ja epätarkkaa (esim. mielivaltainen kierto ja skaalaus). äsmällisesti onnistuvat vain translaatio ja skaalaus kokonaisluvuilla sekä kierto 9 kerrannaisilla. Muissa tapauksissa on approksimaationa sntvä rasteri antialiasoitava (suodatettava). 2D transformaatiot / 28 4

15 Rasterikuvioiden käsittelstä Rasterikuviot ovat leensä koordinaattiakselien suuntaisia suorakaiteen muoroisia alueita, jotka esitetään tietokoneessa htenäisinä muistialueina. Perusoperaationa on suorakulmaisen osa-alueen kopiointi muistialueesta toiseen eli Bit Block ransfer (bit-blt). ämä on niin tehokasta, että usein pritään muutkin operaatiot suorittamaan sen avulla pelkkinä siirtoina. Esim. : Mielivaltaisen muotoinen rasterikuvio esitetään mpäröivän suorakaiteen kokoisena rasterina sekä siihen liittvänä vastaavan kokoisena maskina, joka ilmaisee hdellä bitillä kuuluuko kukin pikselin kuvioon Kuviota siirrettäessä kopioidaan kohteena olevaan muistialueeseean (esim. nätön kuvapuskuri) vain ne pikselit, joiden kohdalla maskissa on kkönen 2D transformaatiot / 29 Rasteri... (jatkuu) Esim.2 : Rasterikuvion pörittäminen 9 kulman verran voidaan toteuttaa siten, että neliöalueen neljännesten paikkoja vaihdetaan kiertävässä järjestksessä. oistamalla tätä rekursiivisesti osaneliöiden sisällä saadaan lopulta koko kuvion pikselit oikeille paikoilleen. 2D transformaatiot / 3 5

Luento 3: Transformaatiot (2D)

Luento 3: Transformaatiot (2D) ietokonegrafiikan perusteet -.43 3 op Luento 3: ransformaatiot (2D) Lauri Savioja /5 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia

Lisätiedot

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu)

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu) Sisältö ietokonegrafiikka / perusteet Ako/-.3/3 4 ov / 2 ov Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia Luento : ransformaatiot (2D) Marko Mllmaa 6/4 2D

Lisätiedot

Luento 4: 3D Transformaatiot

Luento 4: 3D Transformaatiot ietokonegrafiikan perusteet -.43 3 op Luento 4: 3D ransformaatiot Lauri aioja /5 3D transformaatiot / isältö Lineaarialgebran kertausta Geometriset objektit 3D-maailmassa Perustransformaatiot 3D:ssä 3D

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Sisältö 1 Johdanto 1 2 Vektorilaskennan kertaus 3 2.1 Vektorit koordinaatistossa........................... 7 3 Siirto 9 3.1 Siirto koordinaatistossa.............................

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

1. Matemaattiset perusteet

1. Matemaattiset perusteet .. Kolmiulotteisten rakenteiden käsittel. Matemaattiset perusteet ietokonegrafiikka perustuu paljolti matemaattiseen laskentaan, jossa kätetään vektoreita ja matriiseja sekä näille lineaarialgebran peruskäsitteitä.

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt

9.2 Lineaarikuvaus Olkoon A kuvaus (funktio) vektoriavaruudesta V vektoriavaruuteen U: jos nyt 9 Lineaarikuvaukset, matriisit 9 Vektoriavaruudet Aiemmin olemmme puhuneet tason (R 2 ja kotiavaruuden (R 3 vektoreista Nämä (kuten mös pelkkä R ovat esimerkkejä reaalisista vektoriavaruuksista Yleisesti

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA = 3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

Piste ja jana koordinaatistossa

Piste ja jana koordinaatistossa 607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan

Lisätiedot

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat? 2..207 Määritelmä, (terävän kulman) trigonometriset funktiot: Suorakulmaisessa kolmiossa terävän kulman trigonometriset funktiot ovat: kulman sini hpotenuusa sin a c kulman kosini hpotenuusa kulman tangentti

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita.

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. Grafiikka 205 9 Grafiikka Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. 9.1 Kolmio Seuraavana tutkimme kolmiota: Minkä tahansa kolmion ala saadaan kaavasta:

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Jos γ on tylppä, niin. c 2 = h 2 + (b + s) 2 = a 2 s 2 + (b + s) 2 = a 2 + b 2 + 2bs

Jos γ on tylppä, niin. c 2 = h 2 + (b + s) 2 = a 2 s 2 + (b + s) 2 = a 2 + b 2 + 2bs 12 Vaasan liopiston julkaisuja, opetusmonisteita Lause 1.2.5. Kosinilause: c 2 = a 2 + b 2 2ab cos γ. Perustelu: a c h γ u b Tapaus: Terävä γ b u = a cos γ c h a s γ b Tapaus: Tlppä γ s = a cos γ Yllä

Lisätiedot

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö Toisen asteen kärät 1/7 Sisältö ESITIEDOT: kärä, kartio ja lieriö Hakemisto KATSO MYÖS: mprä, toisen asteen pinnat Toisen asteen kärä Toisen asteen käräksi kutsutaan kärää, jonka htälö -ssa on muuttujien

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

Ellipsit, hyperbelit ja paraabelit vinossa

Ellipsit, hyperbelit ja paraabelit vinossa Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0007 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 3 MS-A7 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 925 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita ratkotaan

Lisätiedot

Symmetrioiden tutkiminen GeoGebran avulla

Symmetrioiden tutkiminen GeoGebran avulla Symmetrioiden tutkiminen GeoGebran avulla Tutustutaan esimerkkien kautta siihen, miten geometrista symmetriaa voidaan tutkia ja havainnollistaa GeoGebran avulla: peilisymmetria: peilaus pisteen ja suoran

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.

dx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7. BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Lineaarialgebra MATH.1040 / trigonometriaa

Lineaarialgebra MATH.1040 / trigonometriaa Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Teoreettisia perusteita II

Teoreettisia perusteita II Teoreettisia perusteita II Origon siirto projektiokeskukseen:? Origon siirto projektiokeskukseen: [ X X 0 Y Y 0 Z Z 0 ] [ Maa-57.260 Kiertyminen kameran koordinaatistoon:? X X 0 ] Y Y 0 Z Z 0 Kiertyminen

Lisätiedot

6.1 Lineaarinen optimointi

6.1 Lineaarinen optimointi 6.1 Lineaarinen optimointi Suora a + b + c = 0 jakaa -tason kahteen puolitasoon. Tason jokainen piste, joka on suoralla, toteuttaa suoran htälön ja kääntäen. Jos siis tason mielivaltaisen pisteen koordinaatit

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Tik-111.5450 Tietokoneanimaatio

Tik-111.5450 Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 3. Asennon (pyörähdysliikkeen) esittäminen ja interpolointi 3.10.05 - Tassu Animaatio 2005 - luento 3 1 Sisältö matriisiesitys, matriisin komponenttivektorien merkitys perusakselien

Lisätiedot

Matematiikan pohjatietokurssi

Matematiikan pohjatietokurssi Matematiikan pohjatietokurssi Demonstraatio 3, 15.9.014 1. Mitkä seuraavista voisivat olla funktion kuvaajia ja mitkä eivät? Miksi? (a) (b) (c) (d) Vastaus: Kuvaajat b ja c esittävät funktioita. Huomaa,

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Luento 2: 2D Katselu. Sisältö

Luento 2: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 2: 2D Katselu Lauri Savioja 11/07 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Sini- ja kosinifunktio

Sini- ja kosinifunktio Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään

Lisätiedot

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 Tietokonegrafiikka Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 1. Sovellusalueita 2. Rasterigrafiikkaa 3. Vektorigrafiikkaa 4. 3D-grafiikkaa 1. Säteenheitto

Lisätiedot

6.6. Tasoitus ja terävöinti

6.6. Tasoitus ja terävöinti 6.6. Tasoitus ja terävöinti Seuraavassa muutetaan pikselin arvoa perustuen mpäristön pikselien ominaisuuksiin. Kuvan 6.18.a nojalla ja Lukujen 3.4. ja 3.5. harmaasävjen käsittelssä esitellillä menetelmillä

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Objektien deformaatiot

Objektien deformaatiot T-111.450 Tietokoneanimaatio ja mallintaminen Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 03/02 Animaatio / 1 Objektien deformaatiot Perinteisessä animaatiossa

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Luento 4: kertaus edelliseltä luennolta

Luento 4: kertaus edelliseltä luennolta Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

Lineaarialgebran laskumoniste Osa1 : vektorit

Lineaarialgebran laskumoniste Osa1 : vektorit Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta

Lisätiedot

Usean muuttujan funktiot

Usean muuttujan funktiot Usean muuttujan funktiot Johdantoa Kertauksen vuoksi seuraavassa kuviossa on joitakin asioita, joita olemme laskeneet hden muuttujan funktioista f() : [a, b] R Kuvion kärä on funktion f() kuvaaja = f()

Lisätiedot

y + z. z + xyz

y + z. z + xyz 2. 11. 2010 Kuusi ensimmäistä tehtävää ovat monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Monivalintatehtävien vastauksia varten on erillinen lomakkeensa. Tehtävät 7 ja 8 ovat perinteisiä tehtäviä,

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Luento 2: Tulostusprimitiivit

Luento 2: Tulostusprimitiivit Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Tulostusprimitiivit Lauri Savioja 11/06 D primitiivit / 1 Sisältö Mallintamisen alkeita Perusprimitiivit (GKS) attribuutteineen Näyttömuisti D primitiivit

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot