Luento 6: Geometrinen mallinnus

Koko: px
Aloita esitys sivulta:

Download "Luento 6: Geometrinen mallinnus"

Transkriptio

1 Tietokonegrafiikan perusteet T op Luento 6: Geometrinen mallinnus Lauri Savioja, Janne Kontkanen 11/2007 Geometrinen mallinnus / 1 Sisältö Mitä on geometrinen mallinnus tietokonegrafiikassa Ulottuvuuksia < 3 Piste, viiva, jana ja polygoni Parametriset käyrät Implisiittiset käyrät Kolmiulotteinen mallinnus Polygoniverkko Parametriset pinnat Alijakopinnat Pistemallit Muita: CSG, Hilaesitys, Octree-esitys, Proseduraalinen geometria Lyhyesti: Transformaatiohierarkiat Hienorakenteen esittämisestä Geometrinen mallinnus / 2 1

2 Piste Tasossa piste esitetään kahdella koordinaatilla [x,y] tai homogeenisissa koordinaateissa [xh, yh, h] [x,y] Geometrinen mallinnus / 3 Viiva Viiva voidaan esittää viivayhtälöllä y = kx + c c Geometrinen mallinnus / 4 2

3 Viiva Tai määritellä kahden pisteen avulla [x0,y0]-[x1,y1] [x1,y1] [x0,y0] Geometrinen mallinnus / 5 Viiva Tai pisteen [x,y] ja suunnan [dx,dy] avulla [dx,dy] [x,y] Geometrinen mallinnus / 6 3

4 Jana Jana on suoran osa alkupisteestä [x0,y0] loppupisteeseen [x1,y1] [x1,y1] [x0,y0] Geometrinen mallinnus / 7 Monikulmio eli Polygoni Monikulmio eli polygoni määritellään luettelona reunapisteitä p 0, p 1 p n Pisteet määrittelevät polygonin reunaviivan p 4 p 3 p 2 p 0 p 1 Geometrinen mallinnus / 8 4

5 Erilaisia Polygoneja Ei-konveksi (kovera) polygoni Konveksi (kupera) polygoni Polygoni joka ei ole yksinkertainen (simple) Täytetty polygoni Geometrinen mallinnus / 9 Parametriset käyrät Parametrisella käyrälla tarkoitetaan esitystä joka on muotoa: p (t) = [ x (t), y (t) ] ; t : [0 1] x() ja y() voivat olla mitä tahansa funktiota Matala-asteiset (2-3 ) polynomit ovat kuitenkin käyttökelpoisimpia Korkeampiasteiset funktiot käyttäytyvät epäennustettavasti Geometrinen mallinnus / 10 5

6 Paloittaiset parametriset käyrät eli splinit Useita parametrisia käyriä voidaan liittää yhteen ketjuksi Jotta yhdistelmä näyttäisi sileältä täytyy leikkauskohdissa vaatia vähintään C 1 jatkuvuus (ensimmäisen derivaatan jatkuvuus) Geometrinen mallinnus / 11 Paloittaiset parametriset käyrät eli splinit Käyrien määrittelemisestä ja muokkaamisesta Polynomikerrointen määritteleminen manuaalisesti hankalaa (kuinka säilyttää jatkuvuus ja saada haluttu muoto) Kertoimet voidaan määrittää automaattisesti, perustuen käyttäjän asettamiin kontrollipisteisiin ja jatkuvuusehtoihin Sovitus voi olla interpoloiva tai approksimoiva Tarkka menetelmä riippuu käytettävästä splinityypistä Splinityyppejä Natural Cubic Spline Hermite Spline Cardinal Spline Bezier B-Spline NURBS Geometrinen mallinnus / 12 6

7 Implisiittiset käyrät Käyrä voidaan määritellä myös implisiittisessä muodossa olevalla yhtälöllä, esimerkkinä ympyrä: [x,y] 2 2 x + y = r 2 Muita tavallisia muotoja: parabeli, ellipsi, jne. Implisiittisessä muodossa ei ole helppo esittää millaisia käyriä tahansa, vaan sopiva yhtälö on pystyttävä muodostamaan Geometrinen mallinnus / 13 Kolmiulotteinen Mallinnus Geometrinen mallinnus / 14 7

8 Monikulmioverkko (mesh) Erittäin tavallinen tapa pinnan esittämiseksi kolmessa ulottuvuudessa Renderöinti tehokasta Muokkaaminen hieman kömpelöä Paloittain lineaarinen esitys: saavutetaan ainoastaan C 0 jatkuvuus Geometrinen mallinnus / 15 Monikulmioverkko (mesh) Monikulmioverkko voidaan tallettaa monella tapaa muistiin Tapa 1: Pistelista: p 0,p 1 p n, jossa p i = [ x i, y i, z i ] Monikulmiolista: m 0,m 1,m 2 m k, jossa kukin m i sisältää yhtä monta indeksiä pistelistaan kuin monikulmiossa on kulmia Tapa 2: Pistelista: p 0,p 1 p n, jossa p i = [ x i, y i, z i ] Särmälista: e 0,e 1 e q, jossa kukin e i sisältää kaksi indeksiä pistelistaan Monikulmiolista: m 0,m 1,m 2 m k, jossa kukin m i sisältää yhtä monta indeksiä särmälistaan kuin monikulmiossa on särmiä Usein monikulmioverkkoon talletetaan muutakin tietoa Esim. kulmapisteiden normaalivektorit (erityisesti jos verkolla approksimoidaan kaarevaa pintaa) Geometrinen mallinnus / 16 8

9 Parametriset Pinnat Parametrinen käyrä kolmessa ulottuuvudessa p (u) = [ x (u), y (u), z(u) ] ; u : [0 1] Parametrinen pinta puolestaan p(u,v) = [ x(u,v), y(u,v), z(u,v) ] ; u,v : [0 1] Pintatilkku, joka saadaan yhdistämällä kaksi kolmannen asteen parametrista käyrää on hyvin suosittu mallinnusprimitiivi (bi-cubic patch) Mallien rakentaminen tilkuista ja tilkkujen yhteenliittäminen ei ole täysin ongelmatonta Lähde: Geometrinen mallinnus / 17 Alijakopinnat (subdivision surfaces) Pintaa voidaan muokata useilla eri tarkkuustasoilla Voidaan määritellä minkä vain monikulmioverkon avulla Lopputulos on sileä (ainakin C 1 jatkuva) Esitystapa kasvattaa suosiotaan jatkuvasti Lähde: Geometrinen mallinnus / 18 9

10 Pistemallit Malli voidaan ilmaista pelkkinä pisteinä ja niihin assosioituina pintanormaaleina Mallin pinta voidaan rekonstruoida käyttäen nk. surface splatting tekniikkaa, joka virittää kuhunkin pisteeseen naapuripisteistä riippuvaisen rekonstruktiokernelin Kehitteillä oleva tekniikka, jota pidetään polygoniverkkoesityksen kilpailijana Lähde: Surface Splatting: Theory, Extensions and Implementation (Jussi Räsänen 2002) Geometrinen mallinnus / 19 Muita Esitystapoja CSG = Constructive Solid Geometry Määritellään uusia kappaleita tekemällä joukko-opillisia operaatioita primitiivikappaleiden välillä Kolmiulotteinen hilaesitys Mikä vain äärellisen osa-avaruuden määrittelevä malli voidaan esittää myös diskretoidussa hilassa, joka on kaksiulotteisen rasterikuvan kolmiulotteinen vastine + - = Octree-esitys Hilaesitys voidaan rakentaa hierarkisesti, jolloin kokonaan tyhjät tai samaa ainetta olevat solut voidaan ilmaista karkealla tasolla (ohessa 2D havaintokuva eli itse asiassa quadtree) NIL NIL NIL NIL 1 2 NIL 3 4 NIL NIL NIL NIL NIL Geometrinen mallinnus / 20 10

11 Muita Esitystapoja: Proseduraalinen Geometria Fraktaalit Sopivat hyvin luonnollisten rakennelmien mallintamiseen (esim. vuoristot) Hyvin yksinkertaisilla säännöillä voidaan saada vaikuttavan näköisiä tuloksia L-systeemit Kielioppi joka sopii esimerkiksi kasvien kasvusäännöstön määrittelyyn (oheinen puu tuotettu yksinkertaisella L-systeemillä) Geometrinen mallinnus / 21 Lyhyesti: Transformaatiohierarkia AKA scene graph Tarpellinen silloin kun malli koostuu useammasta osasta jotka voidaan luontevasti järjestää hierarkiaan Esim. Auto koostuu korista ja renkaista, tällöin voi olla luontevaa järjestää mallit seuraavasti: Auto Kori Rengas 1 Rengas 2 Rengas 3 Rengas 4 Jos Auto-objektiin tehdään jokin koordinaattimuunnos, tämä heijastuu myös hierarkiassa alapuolella oleviin objekteihin Lisäksi samaa geometrista mallia käyttävät objektit voivat sisältää viittauksen yhteen ainoaan instanssin varsinaisesta geometriasta Geometrinen mallinnus / 22 11

12 Hienorakenteen esittämisestä Usein ei ole mielekästä esittää kaikkein hienojakoisimpia yksityiskohtia edellä kuvatuilla tavoilla Hienorakenteen esittämiseen voidaan käyttää geometrian pinnalle liitettävää tekstuuria Tekstuurin ei välttämättä tarvitse sisältää ainoastaan pinnan värejä, vaan voidaan tallettaa myös Normaalivektoreita (normal mapping) Geometrian poikkeutukseen tarkoitettuja arvoja (displacement mapping) LoD - Level of Detail Geometrinen mallinnus / 23 12

Luento 6: Geometrinen mallinnus

Luento 6: Geometrinen mallinnus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja 11/05 Geometrinen mallinnus / 1 Mitä on mallintaminen? Perusmenetelmät Mallihierarkiat Sisältö Geometrinen mallinnus

Lisätiedot

4. Esittäminen ja visualisointi (renderöinti)

4. Esittäminen ja visualisointi (renderöinti) 4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)

Lisätiedot

Visualisoinnin perusteet

Visualisoinnin perusteet 1 / 12 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto Visualisoinnin perusteet Mitä on renderöinti? 2 / 12 3D-mallista voidaan generoida näkymiä tietokoneen avulla. Yleensä perspektiivikuva Valon

Lisätiedot

T-111.450 Tietokoneanimaatio ja mallintaminen. Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02

T-111.450 Tietokoneanimaatio ja mallintaminen. Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02 T-111.450 Tietokoneanimaatio ja mallintaminen Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02 Animaatio / 1 2D Avainkuvatekniikka Sisältö Kerronnallisia

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

Luento 2: Tulostusprimitiivit

Luento 2: Tulostusprimitiivit Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Tulostusprimitiivit Lauri Savioja 11/06 D primitiivit / 1 Sisältö Mallintamisen alkeita Perusprimitiivit (GKS) attribuutteineen Näyttömuisti D primitiivit

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43

Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43 Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Luento 3: Tulostusprimitiivien toteutus

Luento 3: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 3: Tulostusprimitiivien toteutus Lauri Savioja 11/05 Primitiivien toteutus / 1 Suora ja ympyrä Antialiasointi Fill-algoritmit Point-in-polygon Sisältö

Lisätiedot

Luento 6: Piilopinnat ja Näkyvyys

Luento 6: Piilopinnat ja Näkyvyys Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella

Lisätiedot

Luento 6: Tulostusprimitiivien toteutus

Luento 6: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Tulostusprimitiivien toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 ntialiasointi Fill-algoritmit Point-in-polygon Sisältö Primitiivien toteutus

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta

Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta Tassu Takala Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta Mallinnustekniikkaa Animaation perustekniikkaa Harjoitustyöt 12.10.2006 1 Aiheita mallintaminen muodon

Lisätiedot

Objektien deformaatiot

Objektien deformaatiot T-111.450 Tietokoneanimaatio ja mallintaminen Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 03/02 Animaatio / 1 Objektien deformaatiot Perinteisessä animaatiossa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

7 tapaa mallintaa maasto korkeuskäyristä ja metodien yhdistäminen

7 tapaa mallintaa maasto korkeuskäyristä ja metodien yhdistäminen 1 / 11 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto 7 tapaa mallintaa maasto korkeuskäyristä ja metodien yhdistäminen Kertauslista yleisimmistä komennoista 2 / 11 Kuvan tuominen: PictureFrame Siirtäminen:

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Pintoja kuvaavien verkkojen muodostaminen ja optimointi. Antti Seppälä

Pintoja kuvaavien verkkojen muodostaminen ja optimointi. Antti Seppälä Pintoja kuvaavien verkkojen muodostaminen ja optimointi Antti Seppälä Tampereen yliopisto Tietojenkäsittelytieteiden laitos Pro gradu -tutkielma Joulukuu 2001 Tampereen yliopisto Tietojenkäsittelytieteiden

Lisätiedot

Tik Tietokoneanimaatio

Tik Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 2. Avainkuvat ja interpolointi 26.9.05 - Tassu Animaatio 2005 - luento 2 1 Sisältö avainkuvatekniikka yleisesti lineaarinen interpolaatio esimerkkinä, ongelmana derivaatan

Lisätiedot

Sovituskomennot GeoGebrassa

Sovituskomennot GeoGebrassa Versio Dimensiota varten Mikko Rahikka Vanhempi lehtori, Helsingin yhteislyseo Sovituskomennot GeoGebrassa Funktion sovittaminen pisteistöön on tyypillinen ongelma, jonka ratkaisemiseminen onnistuu mukavahkosti

Lisätiedot

TIES471 Reaaliaikainen renderöinti

TIES471 Reaaliaikainen renderöinti TIES471 Reaaliaikainen renderöinti Laskuharjoitus 1 Lataa kirja 3D Math Primer for Graphics and Game development https://tfetimes.com/wp-content/uploads/2015/04/f.dunn-i.parberry-3d-math-primer-for-graphics-and-game-development.pdf

Lisätiedot

Pintamallintaminen ja maastomallinnus

Pintamallintaminen ja maastomallinnus 1 / 25 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto Pintamallintaminen ja maastomallinnus Muistilista uuden ohjelman opetteluun 2 / 25 1. Aloita käyttöliittymään tutustumisesta: Mitä hiiren näppäintä

Lisätiedot

Harjoitus Bones ja Skin

Harjoitus Bones ja Skin LIITE 3 1(6) Harjoitus Bones ja Skin Harjoituksessa käsiteltävät asiat: Yksinkertaisen jalan luominen sylinteristä Luurangon luominen ja sen tekeminen toimivaksi raajaksi Luurangon yhdistäminen jalka-objektiin

Lisätiedot

2016/07/05 08:58 1/12 Shortcut Menut

2016/07/05 08:58 1/12 Shortcut Menut 2016/07/05 08:58 1/12 Shortcut Menut Shortcut Menut Shortcut menut voidaan aktivoida seuraavista paikoista. Shortcut menun sisältö riippuu siitä, mistä se aktivoidaan. 1. Shortcut menu suunnitellusta linjasta

Lisätiedot

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ 58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,

Lisätiedot

POLYNOMISET JA RATIONAALISET PARAMETRISET KÄYRÄT MUODONOPTIMOINNISSA. Juha Mäkipelto Rakenteiden mekaniikka, Vol. 37 No. 2, 2004, ss.

POLYNOMISET JA RATIONAALISET PARAMETRISET KÄYRÄT MUODONOPTIMOINNISSA. Juha Mäkipelto Rakenteiden mekaniikka, Vol. 37 No. 2, 2004, ss. POLYNOMISET JA RATIONAALISET PARAMETRISET KÄYRÄT MUODONOPTIMOINNISSA Juha Mäkipelto Rakenteiden mekaniikka, Vol. 37 No. 2, 2004, ss. 27 33 TIIVISTELMÄ Muodonoptimoinnissa suunnittelumuuttujana on periaatteessa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Tilanhallintatekniikat

Tilanhallintatekniikat Tilanhallintatekniikat 3D grafiikkamoottoreissa Moottori on projektin osa joka vastaa tiettyjen toiminnallisuuksien hallinnasta hallitsee kaikki vastuualueen datat suorittaa kaikki tehtäväalueen toiminnot

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

6.5. Renderöintijärjestys

6.5. Renderöintijärjestys 6.5. Renderöintijärjestys Näkymän käsittelyjärjestyksiä on kahta tyyppiä. Ensimmäinen on monikulmioittainen käsittely, jossa kukin monikulmio prosessoidaan vuorollaan välittämättä muista. Toinen on selaussuorajärjestys,

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

8.7. Kolmiulotteiset tekstuuritekniikat. Kolmiulotteinen kohina eli häiriö. Turbulenssin simulointi. turbulence

8.7. Kolmiulotteiset tekstuuritekniikat. Kolmiulotteinen kohina eli häiriö. Turbulenssin simulointi. turbulence 8.7. Kolmiulotteiset tekstuuritekniikat Edellä lueteltiin keskeiset kaksiulotteisiin tekstuurikuvauksiin liittyvät ongelmat. Syyt ovat: (1) Kaksiulotteinen tekstuurikuvaus, joka perustuu pintakoordinaatistoon,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma 1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma Pisteen, suoran ja tason avulla lähdetään muodostamaan uusia geometrian käsitteitä. Jos suora sahataan (keskeltä!!) poikki ja heitetään toinen puoli pois,

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko

Lisätiedot

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio T-106.1041 Tietotekniikan peruskurssi: Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio Luennon aiheita (1) mitä on tietokonegrafiikka? tietokone piirtää kuvia mikä on digitaalinen

Lisätiedot

Vektoreita GeoGebrassa.

Vektoreita GeoGebrassa. Vektoreita GeoGebrassa 1 Miten GeoGebralla piirretään vektoreita? Työvälineet ja syöttökentän komennot Vektoreiden esittäminen GeoGebrassa on luontevaa: vektorien piirtämiseen on kaksi työvälinettä vektoreita

Lisätiedot

Luento 3: 2D Katselu. Sisältö

Luento 3: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 3: 2D Katselu Lauri Savioja 11/06 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),... Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja

Lisätiedot

3D-mallinnus ja teksturointi tietokonepeleissä

3D-mallinnus ja teksturointi tietokonepeleissä 3D-mallinnus ja teksturointi tietokonepeleissä Markus Palviainen Johdantoa aiheeseen Graafikko sekoitus taiteilijaa ja teknistä tuntijaa Graafikolla oltava visuaalista näkemystä asioihin ja hänen pitäisi

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot 2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita.

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. Grafiikka 205 9 Grafiikka Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. 9.1 Kolmio Seuraavana tutkimme kolmiota: Minkä tahansa kolmion ala saadaan kaavasta:

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan

Lisätiedot

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

Yleistä vektoreista GeoGebralla

Yleistä vektoreista GeoGebralla Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla

Lisätiedot

Tik-111.5450 Tietokoneanimaatio

Tik-111.5450 Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 8.luento: procedural shapes fractals, graftals, etc. 14.11.2005 - Tassu Animaatio 2005 - luento 8 1 Sisältö Periaate: proseduraalisesti määritelty muoto Sovelluksia: muuntuvat

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot