Magneettinen energia

Koko: px
Aloita esitys sivulta:

Download "Magneettinen energia"

Transkriptio

1 Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee sähkövirta, varastoi magneettista energiaa. Tämä voidaan päätellä seuraavalla tavalla. a) I(t) L b) I 1 (t) L 1 L I (t) U(t) U 1 (t) U (t) Kuva 11.1: Kelojen varastoima magneettinen energia. Tarkastellaan kuvan 11.1 a mukaista piiriä, joka koostuu kelasta ja säädettävästä jännitelähteestä. Oletetaan yksinkertaisuuden vuoksi, että piirin resistanssi on nolla, jolloin piiri ei kuluta Joulen tehoa (jos resitanssi huomioitaisiin, kaavat tulisivat monimutkaisemmiksi, mutta periaate olisi kuitenkin sama). Kun jännitettä aletaan kasvattaa nollasta, virta rupeaa kulkemaan ja kelaan indusoituu jännite LdI/. Koska virta kasvaa, on di/ >. Aikavälillä δt piirin läpi kulkee varaus δq. Koska indusoitunut jännite vastustaa virran kasvua, on varauksen δq ylitettävä positiivinen potentiaaliero LdI/. Näinollen jännitelähteen on tehtävä työ δw = δql di = Lδq δi = LIδI. (11.1) δt Aikavälillä (, t) tehty työ on kaikkien tällaisten töiden summa, eli c Tuomo Nygrén, 1 W = L I(t) IdI = 1 LI (t). (11.) 131

2 13 LUKU 11. MAGNEETTINEN ENERGIA Koska piirissä ei ole resistanssia, joka voisi tuottaa lämpöä, kelan on täytynyt kyetä varastoimaan energiaa. Tätä energiaa sanotaan magneettiseksi energiaksi. Myöhemmin nähdään, että energian voidaan tulkita varastoituvan magneettikenttään samalla tavalla kuin sähköstaattisen energian voidaan tulkita varastoituvan sähkökenttään. Jos jännitelähde irrotetaan jollakin hetkellä kelasta ja käämin päiden välille kytketään vastus, induktiojännite kytkeytyy vastuksen päiden välille ja vastuksen läpi kulkee virta. oidaan osoittaa, että tämä virta vaimenee ja sen tuottama lämpöenergia vastuksessa on yhtä suuri kuin kelan varastoima magneettinen energia kytekentähetkellä. Siis energia oli todellakin varastoituneena kelaan, koska sen suuruinen energia voidaan muuttaa vastuksessa lämmöksi. Kuvassa 11.1 b on kaksi kelaa, joiden välillä on magneettinen kytkentä, jota edustaa keskinäisinduktanssi M. Kun jännitteitä U 1 ja U ruvetaan kasvattamaan nollasta lähtien, kasvavat myös piireissä kulkevat virrat I 1 ja I lähtien nollasta. Aikavälillä δt kulkee piirin 1 lävitse varaus δq 1 ja piirin lävitse varaus δq. Samalla periaatteella kuin edellä nähdään, että jännitelähteet joutuvat tekemään työt ( di 1 δw 1 = δq 1 L 1 + M di ) ( δw = δq M di ) 1 + L di Näiden summa on jännitelähteiden yhteensä tekemä työ =L 1 δq 1 δt δi 1 + M δq 1 δt δi =L 1 I 1 δi 1 + MI 1 δi (11.3) =M δq δt δi 1 + L δq δt δi =MI δi 1 + L I δi. (11.4) δw = δw 1 + δw = L 1 I 1 δi 1 + L I δi + MI 1 δi + MI δi 1 = L 1 I 1 δi 1 + L I δi + Mδ(I 1 I ). (11.5) Jännitelähteet tekevät siis aikavälillä (, t) yhteensä työn W = L 1 I 1 (t) I 1 di 1 + L I (t) I di + M I 1 (t)i (t) d(i 1 I ) = 1 L 1I 1(t) + 1 L I (t) + MI 1 (t)i (t). (11.6) Tämä on magneettinen energia, jonka kelat ovat varastoineet. Samalla periaatteella voidaan tarkastella useampia keloja, joiden välillä on magneettinen kytkentä. Yhtälö (11.6) voidaan myös kirjoittaa muotoon W = 1 (L 1I 1 + MI )I (L I + MI 1 )I. (11.7) Yhtälöiden (1.5) ja (1.6) perusteella käämien läpi kulkevat magneettivuot ovat Φ B1 = L 1 I 1 + MI (11.8) Φ B = L I + MI 1, (11.9)

3 11.. KELAN LATAAMINEN JA PURKAMINEN 133 joten magneettinen energia voidaan esittää myös muodossa W = 1 Φ B1I Φ BI. (11.1) Tulokset (11.6) ja (11.1) ovat yleistettävissä useammasta käämistä muodostuvalle systeemille. Kun kelojen resistanssit ovat nollia, virtojen voimakkuudet lähestyvät lopulta ääretöntä. aikka induktanssit viivyttävät virtojen rajua kasvua, ne eivät kykene sitä estämään. Näinollen jännitelähteet menevät oikosulkuun mikäli jännitteitä ei riittävän nopeasti pienennetä takaisin nollaan. Todellisuudessa virtapiirien resistanssit rajoittavat virtoja, ja mikäli jännitteet asetetaan vakioarvoihin, myös virrat saavat lopulta äärelliset vakioarvot jotka määräytyvät resistansseista ja jännitteistä Ohmin lain mukaisesti. 11. Kelan lataaminen ja purkaminen Energian varastoitumista kelaan voidaan tarkastella kuvan 11. mukaisen kytkennän avulla. Tässä kelan induktanssi on L ja sisäinen resistanssi R. Hetkellä t = kytkin käännetään asentoon 1, jolloin kela kytkeytyy paristoon. Piirin jännitteiden summan täytyy olla sama kuin jännitehäviö vastuksessa. Koska indusoitunut jännite pyrkii rajoittamaan virran kasvua, on sen oltava pariston jännitteen suhteen vastakkaismerkkinen. Siis U L di = IR, (11.11) josta Ajassa T paristo tekee työn W (T ) = T T UI = L U = L di I di T + + IR. (11.1) RI = 1 LI (T ) + T RI. (11.13) Jälkimmäinen termeistä on vastuksessa lämmöksi muuttunut energia. Yhtälön (11.) perusteella termi LI (T )/ on kelan magneettikenttään varastoitunut magneettinen U 1 L R Kuva 11.: Kelan lataaminen ja purkaminen.

4 134 LUKU 11. MAGNEETTINEN ENERGIA energia. Tämä voidaan varmistaa osoittamalla, että kääntämällä kytkin asentoon syntyy oikosulkupiirissä virta, joka aiheuttaa vastuksessa lämpöhäviön LI (T )/. Asennossa on voimassa yhtälö L di + RI = di I R L ln I R L t + ln K I = Ke Rt/L. (11.14) Alkuehtona on, että hetkellä t = T virta on I(T ). Tällöin Siis yksityisratkaisu on I(T ) = Ke RT/L josta K = I(T ) e RT/L. (11.15) I = I(T ) e R(t T )/L, (11.16) joten virta pienenee eksponentiaalisesti. Lämpöhäviö vastuksessa on T RI = RI (T ) e R(t T )/L T ( = RI (T )e RT/L L ) / R T e Rt/L = 1 LI (T ). (11.17) Yhtälön (11.13) avulla nähtiin, että vain osa pariston tekemästä työstä kului vastuksessa. Yhtälö (11.17) osoittaa, että jäljelle jäänyt osa oli varastoituna kelan magneettikenttään, ja se voitiin muuttaa lämpöenergiaksi vastuksessa kääntämällä kytkin asentoon. Tämä tulos osoittaa, että kela on todellakin laite, joka varastoi magneettista energiaa induktanssinsa avulla samaan tapaan kuin kondensaattori varastoi sähköstaattista energiaa kapasitanssinsa avulla Magneettikentän energiatiheys Edellä nähtiin, että kelan virran kasvattamiseen tarvitaan energiaa, jonka kela kykenee varastoimaan. Samalla tavalla minkä tahansa virtajärjestelmän luomiseen tarvitaan energiaa, joka varastoituu systeemiin. Sähköstatiikassa havaittiin, että varaussysteemin potentiaalienergia voitiin tulkita sähkökentän energiatiheyden w E = E D/ avulla. Tässä kappaleessa osoitetaan, että virtajärjestelmän varastoima energia voidaan tulkita magneettikentän energiatiheyden avulla. Kappaleessa 11.1 nähtiin, että kelaan kytketty jännitelähde joutuu tekemään työtä indusoitunutta jännitettä vastaan saadakseen virran kulkemaan. Yleisessä tapauksessa (kun virta jakautuu kaikkialle avaruuteen) kokonaissähkökenttä muodostuu kentästä E c, joka varsinaisesti virran aiheuttaa, ja indusoituneesta kentästä E i, joka pyrkii vastustamaan virran muutoksia. Joulen lain differentiaalimuodon (9.3) mukaan sähkökenttä, joka saa aikaan vapaan virran, aiheuttaa tehotiheyden j f E c. Tämä pistetulo on positiivinen, kun virta ja sähkökenttä ovat samansuuntaisia. Jos virran kasvattamiseksi on tehtävä työtä indusoitunutta sähkökenttää E i vastaan,

5 11.3. MAGNEETTIKENTÄN ENERGIATIHEYS 135 on tähän liittyvän tehotiheyden siis oltava j f E i. Tämän perusteella kaikkialla avaruudessa kulkevien virtojen kasvattamiseksi on tehtävä työtä teholla j f E i dτ, (11.18) missä integrointi periaatteessa suoritetaan koko avaruuden yli. Integroidaan kuitenkin aluksi R-säteisen pallon yli ja annetaan lopuksi pallon säteen lähestyä ääretöntä. Ampèren lain H = j f avulla yhtälö (11.18) saadaan muotoon Käytetään seuraavaksi kaavaa josta E i ( H) dτ. (11.19) (E i H) = H E i E i H, (11.) E i H = H E i (E i H). (11.1) Tämän avulla yhtälön (11.19) oikealla puolella oleva integraali jakautuu kahteen osaan, joten H E i dτ + (E i H) dτ H E i dτ + S (E i H) ds. (11.) Tässä on toisessa vaiheessa sovellettu Gaussin lausetta (divergenssilausetta). Pallon S pinta-ala on suoraan verrannollinen R:n toiseen potenssiin. Etäisyyden virroista kasvaessa E i ja H pienenevät vähintään kääntäen verrannollisina R:n toiseen potenssiin. Näinollen yhtälön (11.) viimeisen integraalin integrandi pienenee vähintään kääntäen verrannollisena R:n neljänteen potenssiin. Tästä seuraa, että viimeinen integraali lähenee nollaa, kun R lähenee ääretöntä, joten H E i dτ = H B dτ, (11.3) missä tilavuusintegraali lasketaan koko avaruuden yli. Tässä on toisessa vaiheessa sovellettu Faradayn lakia E i B/. Lineaarisessa (ei-ferromagneettisessa) väliaineessa (B H) = B H + H B = µµ H H + H B = H (µµ H) + H B = H B + H B = H B, (11.4)

6 136 LUKU 11. MAGNEETTINEN ENERGIA joten H B = 1 (B H). (11.5) Sijoittamalla tämä yhtälöön (11.3) saadaan ( ) 1 = B H dτ = d 1 B H dτ, (11.6) Tämä tulos voidaan tulkita siten, että virtojen synnyttämiseen käytetty työ on varastoitunut magneettikenttään, jolla on energiatiheys w B = 1 B H. (11.7)

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V.

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V. Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

Faradayn laki ja sähkömagneettinen induktio

Faradayn laki ja sähkömagneettinen induktio Faradayn laki ja sähkömagneettinen induktio Haarto & Karhunen Magneettivuo Magneettivuo Φ määritellään magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetuloksi Φ B A BAcos Acosθ θ θ

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1) Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Oppimateriaali RMC luku 11 ja CL 8.1; esitiedot KSII luku 5. Toistaiseksi olemme tarkastelleet vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

PERUSRAKENTEET Forward converter, Myötävaihemuunnin ( BUCK regulaattori )

PERUSRAKENTEET Forward converter, Myötävaihemuunnin ( BUCK regulaattori ) HAKKRIKYTKENNÄT H. Honkanen PERSRAKENTEET Forward converter, Myötävaihemuunnin ( BCK regulaattori ) Toiminta: Kun kytkin ( = päätetransistori ) on johtavassa tilassa, siirtyy virta I 1 kelan kautta kondensaattoriin

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi

Lisätiedot

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola Hakkuriteholähde Hakkuriteholähteet imo Lepola Hakkuriteholähde Lineaarinen teholähde Kookas ja painava muuntaja imo Lepola 2 Hakkuriteholähde Lineaarinen teholähde Isot kondensaattorit ja transistorit

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Passiiviset peruskomponentit Luento Kondensaattori kapasitanssi C, i =f(u), varauksen häviämättömyyden laki eli sähkövirran määritelmä Kela induktanssi

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1) Luku 8 Magneettinen energia Oppimateriaali RMC Luku 1 ja CL 7.3; esitiedot KSII luvut 4 ja 5. Luvussa 4 todettiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita,

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

6.1 Sähkömagneettinen induktio

6.1 Sähkömagneettinen induktio 6 ähkömagneettinen induktio ja magneettinen energia Edellisissä luvuissa virrat ja kentät oletettiin ajasta riippumattomiksi. Tässä luvussa käsitellään tilanteita, joissa virrat ja kentät riippuvat ajasta,

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

Kondensaattori ja vastus piirissä (RC)

Kondensaattori ja vastus piirissä (RC) Kondensaattori ja vastus piirissä (RC) = QC/C 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo: Kondensaattori ja vastus piirissä (RC) Kirchhoffin lait ovat hyvä idea I 1.

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Sähköopin mittauksia 1

Sähköopin mittauksia 1 Sähköopin mittauksia 1 Sisällysluettelo Pikaohje LoggerPro mittausohjelma... 2 Pikaohje sähköopin anturit... 3 Kytkentäalusta... 4 Sähkövirran perusominaisuudet... 6 Jännitteen perusominaisuudet... 8 Virtapiirin

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN TUUN AMMATTKOKEAKOULU TYÖOHJE 1/7 FYSKAN LABOATOO V. 5.14 Työ 449 4h. SÄHKÖVAN ETENEMNEN TYÖN TAVOTE Perehdytään vaihtovirran etenemiseen värähtelypiirissä eri taajuuksilla eli resonanssi-ilmiöön ja sähköenergian

Lisätiedot