1. Integrointi n-ulotteisessa avaruudessa

Koko: px
Aloita esitys sivulta:

Download "1. Integrointi n-ulotteisessa avaruudessa"

Transkriptio

1 1 Laaja matematiikka 5 Kevät Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään määrätyn integraalin käsite ensin tasoon, sitten 3 n kolmiulotteiseen avaruuteen ja lopuksi yleiseen :ään. Kaikissa tapauksissa yhteisenä ominaisuutena on integraalin liittyminen kumulatiivisiin ilmiöihin. Esimerkiksi tasoalueen (region) pintatiheyden ρ(x,y) ja pienten pintaalkioiden Δa i tulojen ρ(x,y)δa i summista saadaan :n massa. Ajatuksena on jakaa integroitava tason joukko pieniin palasiin, kuten yhden muuttujan tapauksessa väli [a,b] jaettiin osaväleihin. Nyt joukot voivat kuitenkin olla huomattavasti monimutkaisempia kuin yhden muuttujan tapauksessa. Oheisissa kuvissa alue on jaettu samankokoisiin (mikä ei yleisesti ole välttämätöntä) palasiin k sisältäpäin.

2 2 2 Avaruudessa sanomme väleiksi sellaisia suorakulmioita, jotka ovat sivuiltaan koordinaattiakselien suuntaisia. Karteesista tuloa hyväksi käyttäen suljetun välin muoto on siis 2 I = [a,b] [c,d] = {(x,y) a x b, c y d}. Vastaavasti määritellään avoimet välit. Suljetun välin pinta-ala katsotaan selviöksi ja sovitaan, että se on a(i) = (b-a)(d-c). Avoimen välin pinta-ala on sama. (Tämä voitaisiin todistaa alla olevan pinta-alamitan määritelmän avulla.)

3 3 Suljetut välit ovat sisäosiltaan erillisiä, jos niiden sisäosat eivät leikkaa. (eunoissa saa olla yhteisiä pisteitä.) Olkoon tason rajoitettu joukko. Joukkoa voidaan approksimoida sisältäpäin suljettujen sisäosiltaan erillisten välien k äärellisillä yhdisteillä: k k. Vastaavasti ulkopuolelta: Sk. k Näillä välien yhdisteillä on äärellisinä summina pinta-alat: a( k )=a( 1 )+ a( 2 )+..., a( Sk )=a(s 1 )+ a(s 2 )+.... k k Joukon sisäala on kaikkien mainitun tyyppisten sisäpuolelta approksimoivien väliyhdisteiden pinta-alojen pienin yläraja, ja vastaavasti ulkoala ulkopuolelta approksimoivien väliyhdisteiden pintaalojen suurin alaraja. Joukko on (Jordan-)mitallinen, jos sisäala ja ulkoala ovat samat. Silloin yhteinen arvo on joukon ala (Jordan-mitta, pinta-ala, pintamitta,...), merkitään a(). Joukko on nollamittainen, jos sen ala on 0. Yhtäpitävä karakterisointi on seuraava: Joukko on nollamittainen, jos ja vain jos jokaista positiivista lukua ε vastaa sellainen välien joukko I 1, I, että k I ja i= 1 i k ai ( i) < ε. i= 1, k

4 4 Jonkin ominaisuuden sanotaan olevan voimassa melkein kaikkialla X:ssä, jos se on voimassa kaikkialla X:ssä, paitsi mahdollisesti nollamittaisessa X:n osajoukossa. Voidaan osoittaa, että rajoitettu tasojoukko on Jordan-mitallinen täsmälleen silloin, kun sen reuna on nollamittainen. Siis ei-mitalliset joukot ovat siinä mielessä melko "patologisia", että niillä on paljon reunaa: eunan pinta-ala on ei-mitallisilla joukoilla positiivinen. Nyt voidaan tasointegraali joukon yli määritellä analogisesti yhden muuttujan tapauksen kanssa iemannin summilla. Kun integroimisjoukon jako pienempiin osiin tehdään, jokaisen jakoon kuuluvan osajoukon pinta-ala on määritelty, mikäli osat ovat Jordan-mitallisia. Koska Jordan mitallisilla joukoilla pinta-ala on sama kuin sisäala, voidaan jako ilmeisesti korvata approksimatiivisesti välien yhdisteellä. 2 Funktion f: iemannin integraali yli tasojoukon määritellään iemannin summien raja-arvona, kun jakoa tihennetään: f ( xyda, ) = lim f( x, y) Δa D 0 i i i i Tätä merkitään usein myös fda = f. Jako tässä määritelmässä voidaan aina saada aikaan siten, että sijoitetaan yhteen väliin I = [a,b] [c,d] ja jaetaan yksiulotteiset välit [a,b] ja [c,d] kukin osaväleihin. Kun näiden osavälien jakoja tihennetään, tihenee välin I jako ja samalla :n jako. Merkintä D tarkoittaa jaon normia, joka voidaan laskea osavälien jakojen normien D 1 ja D 2 avulla muodossa D = (D 1,D 2 ) 2. Pinta-ala Δa i kuvaa jaon yleisen välin i pinta-alaa ja piste (x i,y i ) on väliltä i valittu jokin piste.

5 5 Voidaan todistaa, että funktio f on Jordan-mitallisessa joukossa iemann-integroituva täsmälleen silloin, kun se on siellä rajoitettu ja melkein kaikkialla jatkuva. (Lebesguen integroituvuusehto iemannintegraalille) Erityisesti siis jos on suljettu (rajoitettuhan se on jo aikaisemman oletuksen mukaan) niin jokainen jatkuva funktio on kompaktissa joukossa rajoitettu ja siis iemann-integroituva. Jos funktio f(x,y)=1 joukossa, niin integraali antaa :n pinta-alan (Jordan mitan): a ( ) = 1da. Toisin ilmaistuna: Joukon karakteristisen funktion χ (x) = 1, kun x, χ (x) =0 muuten, integraali yli :n sisältävän välin I on joukon pinta-ala: a() = χda, I I. Useissa esityksissä integraali määritellään aluksi pelkästään tapauksissa, joissa on integroitava jonkin välin I yli. Sen jälkeen yleinen tapaus mielivaltaisen rajoitetun Jordan mitallisen joukon yli saadaan integraalilla f χ da, I I

6 6 Kytkentä tasointegraalin ja tilavuuden välille saadaan, kun todetaan, että kahden muuttujan funktion f(x,y) 0 kuvaajan ja xy-tason välisen kappaleen tilavuus on { ( x, yz, ) } 3 ( xy, ) 2,0 z f ( xy, ) V = f( x, y) da. (Vertaa yhden muuttujan funktion tilanteeseen: Kuvaajan ja x-akselin väliin jäävän alueen pinta-ala on määrätty integraali.) Oheisessa kuviossa on pinta z=f(x,y) ja sitä on approksimoitu kohdassa ( x1, y 1) tason palasella T 1, joka on ( x, y) -tason suuntainen ja jonka projektio tälle on 1. Pylvään tilavuus on silloin f ( x1, y1) Δx1Δ y1. Tilavuus saadaan siis iemannin summana. (Jälkimmäisessä kuvassa pylvään mittasuhteita on liioiteltu suuremmiksi.)

7 Pylväiden tihentämistä ja summaamista havainnollistaa myös seuraava kuva: 7

8 8

9 9 Tällainen integraali voidaan laskea kaksinkertaisena integraalina edellyttäen, että pohja on esitettävissä kahden funktion välissä olevana = ( xy, ) a x b, g( x) y g( x), tasoalueena { 1 2 } jonka voi "maalata" y-akselin suuntaisin vedoin, kuten seuraavassa kuvassa:

10 10 Integraali voidaan esittää iteroituna integraalina, jolloin laskenta palautuu kahdeksi yhden muuttujan peräkkäiseksi integroinniksi: b g 2( x ) 2( ) merk. b g x f ( xyda, ) = ( f( xydydx, ) ) = f( xydydx, ). a g1( x) a g1( x) Sisempi integraali antaa yllä olevassa kuvassa näkyvän pinta-alan A( x ): g2( x) A( x) = f( x, y) dy. g1( x) Tätä laskettaessa muuttuja x on siis parametrina vakion roolissa. Jos alue voidaan esittää muodossa = ( xy, ) c y d, h ( y ) x h ( y ) { 1 2 } niin silloin maalataan vaakasuorin vedoin eli x-akselin suuntaisesti. Jos voidaan esittää molemmilla yllä mainituilla tavoilla, niin b g2( x) d h2( y) f ( x, y) da = f ( x, y) dydx = f ( x, y) dxdy. a g1( x) c h1( y) Silloin sanotaan, että on kyseessä on integroimisjärjestyksen vaihto. Tilanne on yksinkertaisin, jos on suorakulmio [a,b] [c,d]: b d d b f ( x, y) da = ( f ( x, y) dy) dx = ( f ( x, y) dx) dy. a c c a

11 11 Muuttujan vaihto tasointegraalissa esitetään tarkemmin myöhemmin luvussa 2. Mainitaan heti kuitenkin tärkein tapaus, eli siirtyminen napakoordinaatistoon x = rcos ϕ, y = rsinϕ : f ( x, y) da = f ( rcos ϕ, rsin ϕ) rdrdϕ. S Huomaa lausekkeeseen ilmaantunut tekijä r (joka on ns. Jacobin determinantti). Integroimisalue on tässä muuntunut ( r, ϕ) -tason alueeksi S. Alla olevassa kuvassa on esimerkki tilanteesta, jossa napakoordinaatteihin siirtyminen on järkevää: 3 π /2 f ( xyda, ) = f( rcos ϕ, rsin ϕ) rdϕdr. 0 0

12 12

13 13 Avaruusintegraali 3 Integrointia 3-ulotteisen avaruuden osajoukon Ω yli sanotaan usein avaruusintegroinniksi, vaikka sitä useampiulotteisetkaan integraalit eivät ole harvinaisia. Yleistys 2-ulotteisesta tapauksesta on suoraviivaista. Väli on nyt 3- ulotteinen suorakulmainen särmiö, jonka särmät ovat koordinaattiakselien suuntaiset: I = [a 1, b 1 ] [a 2, b 2 ] [a 3, b 3 ]. Välin I mitta on tilavuus ja vastaavanlaisella konstruktiolla kuin tasossa saadaan mielivaltaisen rajoitetun joukon Ω sisä- ja ulkotilavuus. Joukko on Jordan-mitallinen, jos sisä- ja ulkotilavuus ovat samat, ja silloin niiden yhteinen arvo on joukon Ω tilavuus (3-ulotteinen Jordan-mitta, tilavuusmitta). Nollamittainen joukko on sellainen, jonka tilavuus on 0. ajoitetun joukon voidaan osoittaa olevan Jordan-mitallinen täsmälleen silloin, kun sen reunan tilavuus on 0. iemannin integraali määritellään iemannin summien raja-arvona. ajoitettu joukko Ω, jonka yli integroidaan, sijoitetaan riittävän isoon väliin ("laatikkoon"), jonka koordinaattiakselien suuntaiset särmät jaetaan yksiulotteisen välin jakojen mukaisesti. Kun kunkin särmän jakoa tihennetään, tihenee laatikon jako ja iemannin summan edellyttämä tihennys saadaan aikaan. Avaruusintegraali yli joukon Ω merkitään f ( x ) dv. Ω Lebesguen integroituvuusehto on voimassa avaruusintegraaleillekin. Oheisessa kuvassa on kolmiulotteisen avaruuden kappale ja sen sisällä näkyvillä yksi väli eli suorakulmainen särmiö Q 1, ns. tilavuuselementti.

14 14 Funktion f ( xyz=,, ) 1 integraali antaa nyt joukon tilavuuden: v(ω) = 1dv. Ω Myös avaruusintegraalit voidaan laskea iteroituina integraaleina, jos alue Ω on sopivaa muotoa. Kappale Ω on silloin rakennettava kolmiulotteisista tilavuuselementeistä koordinaattiakseleiden suuntaisesti. Helpoin tilanne on, jos Ω on suorakulmainen särmiö [a 1, b 1 ] [a 2, b 2 ] [a 3, b 3 ]: Ω b1 b2 b3 f ( xyzdv,, ) = ( ( f( xyzdzdydx,, ) ) ) a1 a2 a3 merk. b1 b2 b3 a1a2 a3 f ( xyzdzdydx,, ) =. Siirtyminen sylinterikoordinaatistoon x = rcos ϕ, y= rsin ϕ, z= z tapahtuu samaan tapaan kuin tasossa napakoordinaatteihin: f ( xyzdv,, ) = f( rcos ϕ, rsin ϕ, zrdrd ) ϕdz, Ω Ωrϕ z missä Ω on muunnettu sylinterikoordinaatein ilmaistuksi alueeksi Ω rϕ z.

15 15 Siirtyminen pallokoordinaatistoon: Pallokoordinaatit ovat x = ρ sinφcos θ, y = ρsinφsin θ, z= ρcosφ, jotka selittyvät oheisesta kuviosta. Alemmassa kuvassa on esitetty pisteen (2 2,2 6,4 2) pallokoordinaatit. Muunnoskaava integraalille on nyt 2 f ( xyzdv,, ) = f( ρ sinφcos θρ, sinφsin θρ, cos φρ ) sinφdρφθ d d. Ω Ωrφθ

16 16 n Integraali avaruudessa määritellään täysin analogisesti edellisten kanssa: Korvataan vain dimensiot 2 tai 3 yleisellä n:llä, väli on n:n reaalivälin karteesinen tulo. Ala ja tilavuus korvautuvat yleisellä Jordanin mitalla. n Lopuksi todettakoon Jordanin mitasta: Se täyttää kaikki :n mitalle yleensä asetetut vaatimukset (tyhjän joukon mitta on 0, ei-negatiivinen, siirto-invariantti, äärellisesti additiivinen) paitsi numeroituvasti additiivisuutta. Erillisten joukkojen yhdisteen mitta on joukkojen mittojen summa äärellisen monelle joukolle, mutta Jordan-mitan tapauksessa ei välttämättä äärettömän monen. Tämä aiheuttaa ongelmia monissa rajaarvokysymyksissä, josta syystä Jordan-mitta ei ole kovin yleisessä käytössä pitemmälle menevissä matemaattisissa tarkasteluissa (sen ja iemannin integraalin on korvannut mm. Lebesguen mitta ja integraali).

17 17 Esimerkkejä 1. I= kolmio. xyda, missä on suorien y=x ja x=4 sekä x-akselin rajaama 4 x Silloin I = xydydx = x 1x dx = 1x dx = 14 = Sama tulos saadaan myös integroimalla toisessa järjestyksessä eli 44 xydxdy. 0 y

18 18 2. Lasketaan sen nelitahokkaan tilavuus, jota rajoittavat taso 2x + y+ z= 2 ja koordinaattitasot. Piirtämällä kuvio nähdään, että tilavuus saadaan funktion z= f( x, y) = 2 2x y integraalina yli xy-tason alueen. V= 12 2x (2 2 x yda ) = (2 2 x ydydx ) 0 0 (2(2 2 x ) 2 x (2 2 x ) (2 2 x ) ) dx = 2/3. 2 = 1 2

19 19 3. Lasketaan sen avaruuden 3 ei-negatiivisessa oktantissa olevan kappaleen tilavuus, jota rajoittavat koordinaattitasot, taso x + y = 2 ja 2 pinta z= 4 x. 2 2 y V= (4 x ) da= (4 x ) dxdy= =. 0 0

20 Lasketaan sen kappaleen tilavuus, jonka sylinteri x + y = 2y leikkaa pallosta x + y + z = 4. π 2sinθ (siirryttiin napakoordinaatistoon) V = 2 4 x y da = 2 4 r rdrdθ 0 0 π /22sinθ 0 0 π π 4 rrdrd 2 θ d d /2 / /2 3/ = 4 = 2 ((4 4sin θ ) 4 ) θ = (cos θ 1) θ taul. = + π

21 21 5. Lasketaan funktion f ( xy, ) = xyavaruusintegraali yli nelitahokkaan, jota rajoittavat koordinaattitasot ja taso 2x + y+ z= x 4 2x y xydv = xydzdydx = = Ω Sama integraali voitaisiin laskea myös esimerkiksi järjestyksessä 4 4 y(4 y z)/2 xydxdzdy (Katso alla olevaa kuvaa.) 0 0 0

22 22

23 Lasketaan pinnan z = 4 y ja tasojen x + z= 4, x= 0, z= 0 rajoittaman kappaleen tilavuus. V= y 4 z dv = dxdzdy = =. 5 Ω 2 0 0

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. 1 Laaja matematiikka 5 Kevät 009 Integrointi n-ulotteisessa avaruudessa Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. Tasointegraali Tasointegraali f voidaan laskea kaksinkertaisena

Lisätiedot

5. Integrointi n-ulotteisessa avaruudessa

5. Integrointi n-ulotteisessa avaruudessa 71 5. Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään edellä esitetty määrätyn integraalin käsite ensin tasoon, 3 n sitten kolmiulotteiseen avaruuteen ja lopuksi yleiseen :ään. Kaikissa

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f, 7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G: 7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

Vektorilaskenta. Luennot / 54

Vektorilaskenta. Luennot / 54 Luennot 22.09.-27.09.2017 1 / 54 Välin mitta Alasumma 1 Alasumma 2 Yläsumma 1 Yläsumma 2 Tihennys 1 Tihennys 2 Integroituvuus Jatkuva 1 Jatkuva 2 Jatkuva 3 Jatkuva 4 Jatkuva 5 Jatkuva 6 2 / 54 Välin mitta

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 / M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän

Lisätiedot

Vektorilaskenta Luennot / 42. Vektorilaskenta Napakoordinaatit

Vektorilaskenta Luennot / 42. Vektorilaskenta Napakoordinaatit Luennot 19.09.-21.09. 1 / 42 Määritelmä (1/3) Määritelmä (2/3) Määritelmä (3/3) 2 / 42 Määritelmä (1/3) Määritelmä (1/3) Määritelmä (2/3) Määritelmä (3/3) Tason pisteen P sijainti voidaan karteesisten

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1]. Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio

Lisätiedot

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on 1. Jordan-joukot Yksinkertaisuuden (ja havainnollisuuden vuoksi) seuraavassa tarkastellaan vain tason osajoukkoja, vaikka päättelyt voitaisiin helposti siirtää yleiseen n-ulotteiseen euklidiseen avaruuteen

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Analyysi I (sivuaineopiskelijoille)

Analyysi I (sivuaineopiskelijoille) Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa

Lisätiedot

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R, Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ 58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Jordanin sisältö ja Lebesguen ulkomitta

Jordanin sisältö ja Lebesguen ulkomitta Jordanin sisältö ja Lebesguen ulkomitta Jennika Ojalehto Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 Tiivistelmä: Jennika Ojalehto, Jordanin sisältö ja

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i

Lisätiedot

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille Harjoitus 1, 30.10.2015 1. Olkoon f : A! [0, 1] mitallinen ja ma) < 1. Näytä, että josonp>1javakio Mt} apple M 2. Olkoon f 2 L 1 A). Näytä, että 2 kaikilla

Lisätiedot

Vektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin.

Vektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin. Luennot 03.10. - 05.10.2018 1 / 66 Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien vaihto 2 / 66 Mitta Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016

Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

3 Määrätty integraali

3 Määrätty integraali Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi

Seuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1. Harjoitus 1, 11.9.2015 1. Näytä, että joukossax on äärettömän monta alkiota jos ja vain jos on joukko X, 6= X, jokaonyhtämahtavakuinx. 2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot