Suoran sovittaminen pistejoukkoon
|
|
- Annemari Kyllönen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja tähä pstejoukkoo yrtetää sovttaa suora y = ax+b, että se kuvas havatoja parhaalla mahdollsella tavalla. Krteerä käytetää yleesä pemmä elösumma krteerä, mkä tarkottaa että suora sop parhate, jos se pstede y-koordaatte ja havatoje y-arvoje erotukse elöde summa (y (ax + b)) 2 o mahdollsmma pe. Ohesessa kuvassa o esmerkks kuude havatopstee joukkoo sovtettu suora, joka mmo pstestä laskettuje pystysuutaste etäsyykse elöde summa. Esmerkks vasemmapuolese pstee etäsyys suorasta o 4,28 (0,60 1,23+2,92) Muut etäsyydet ovat järjestyksessä 0,98, 1,24, 1,31, 1,17 ja 0,74. Etäsyykse elöde summaks tulee ste 6,51. y (5,63, 7,46) (5,38, 7,38) y = 0,60x (6,56, 6,09) (1,23, 4,28) (5,43, 4,86) (2,09, 3,19) x Suora sovttamselle pemmä elösumma krteerllä o olemassa ykskertae geometre tulkta, joho seuraavassa tutustutaa. Esmerkk Tutktaa esmerk vuoks kuvtteellste opskeljode koepstede ja tehtyje harjotuste välstä yhteyttä. Oletetaa, että kokeesta saatava maksmpstemäärä o 60 ja harjotustehtävä o kursslla ollut 100. Jokasesta opskeljasta tedetää häe tekemesä harjotuste määrä sekä koetulos. Tarkotuksea o tutka, oko harjotuste tekemsellä vakutusta koetuloksee. 1
2 Jos havatoje määrä o, o srryttävä -ulottesee avaruutee. Esmerk ykskertastamseks tarkastellaa aluks 3 opskelja joukkoa, jollo käytettävä avaruus o R 3. Olkoo x opskelja tekeme harjotuste määrä ja y koetulos. Oletetaa, että opskeljode tulokset ovat seuraavat: x y Leaaralgebralle tulkta Ilmastaa esmerk koetulokset avaruude R 3 vektora y = (35, 50, 55). Ku suoraa sovtetaa pemmä elösumma krteerllä, mtataa havatopstede etäsyydet suorasta pystysuoraa (ks. esmmäse svu kuva). Tällö suorasta rttää tarkastella va tä pstetä, jotka ovat täsmällee jok havatopstee ylä- ta alapuolella el jode x-koordaatt löytyvät havatojoukosta. Jokae suora y = ax + b vodaa ss ajatella pstejoukkoa {(x 1, ax 1 + b), (x 2, ax 2 + b), (x 3, ax 3 + b)}. Ku suorat ajatellaa kolme pstee joukkoa, e vodaa lmasta avaruude R 3 vektorea samalla tavalla ku koetulokset. Tällä tavo tulkttua kakk mahdollset suorat muodostavat avaruude R 3 osajouko S = {(ax 1 + b, ax 2 + b, ax 3 + b) a, b R} = {a(x 1, x 2, x 3 ) + b(1, 1, 1) a, b R}. Kyseessä o vektore x = (x 1, x 2, x 3 ) = (40, 80, 60) ja = (1, 1, 1) vrttämä taso. Jokasta suoraa y = ax + b vastaa ss jok vektor z R 3, joka kompoett ovat muotoa ax + b. Tällasee suoraa lttyvä havatopstede etäsyykse elösumma vodaa krjottaa avaruude R 3 orm avulla: (y (ax + b)) 2 = (y z ) 2 = y z 2. Koska tämä elösumma yrtetää mmoda, suora sovttame vodaa esttää kysymykseä Mkä taso S vektor z o sellae, että se ja vektor y erotukse orm o pe mahdolle? Leaaralgebrasta tedetää, että vastaus o vektor y kohtsuora projekto tasolle S, el z = proj S (y). Pe elösumma o tällö y proj S (y) 2. Projekto laskeme Määrtetää yt kaava pstejoukkoo sovtettavalle suoralle ylesessä tapauksessa, jossa havatoje määrä o. Käytetää samoja merktöjä ku edellä: x = (x 1,..., x ), 2
3 y = (y 1,..., y ) ja = (1,..., 1) avaruudessa R. Vodaa olettaa, että vektort x ja evät ole yhdesuutaset, sllä muute kakke havatoje x-arvot olsvat dettset, ja havaosta ols mahdotota päätellä tlastollsest mtää. O etsttävä vektor y projekto tasolle S = spa(x, ). Vektort x ja evät välttämättä ole kohtsuorassa tosaa vastaa, jote projekto laskemseks valtaa es tasolle S ortogoaale kata muokkaamalla vektora x: x = x proj (x) = x x = x x Vektorjoo (x, ) o yt taso S ortogoaale kata. Vektor y projekto tasolle S saadaa laskemalla yhtee projektot ortogoaalse kaa vektore suutaa: proj S (y) = proj x (y) + proj (y) = x y x x x + y = x y 1 ( x)( y) x 2 ( x x ) + y. Tässä projektovektor o estetty leaarkombaatoa vektoresta x ja. Koska ämä vektort ovat leaarsest rppumattomat, leaarkombaato kertomet ovat ykskästteset. Ku yt mustetaa, että kutak sovtettavaa suoraa y = ax + b vastaa vektor ax + b, vodaa kertomsta lukea suoraa sopvmma suora kulmakerro ja vakoterm: a = x y 1 ( x)( y) x 2, b = y x y 1 ( x)( y) x x 2. Lasketaa esmerk vuoks koetuloks sovtetu suora kulmakerro ja vakoterm estetystä kaavosta. Alotetaa laskemalla hema vältuloksa: Nä saadaa ja x y = (40, 80, 60) (35, 50, 55) = 8700, x = (1, 1, 1) (40, 80, 60) = 180, y = (1, 1, 1) (35, 50, 55) = 140, x = (40, 80, 60) 180 (1, 1, 1) = ( 20, 20, 0), 3 x 2 = ( 20) = 800. a = = 0, b = , = 24,17. Ohesessa kuvassa o tulokssta prretty pstedagramm sekä edellä johdettu suora, joka mmo y-arvoje pokkeame elösumma. 3
4 y x Tlastollsa suureta Edellä määrtetty kaava vektor y projektolle tasolle S saattaa äyttää momutkaselta, mutta ku se osa tarkastellaa tlastotetee äkökulmasta, kaava saa ykskertasemma asu. Alotetaa toteamalla, että pstetulo x o ykskertasest kakke x-arvoje summa, el x = x. Tarkastellaa tämä valossa projektota vektor suutaselle suoralle: proj (x) = x = x. x o kakke x-arvoje keskarvo. Ku stä merktää E(X), vo- Skalaarkerro 1 daa projekto krjottaa muodossa proj (x) = (E(X),..., E(X)). Samalla tavo ähdää, että proj (y) = (E(Y ),..., E(Y )). Suureesta x tarvtt se orm elötä. Tämä tulee muotoo x 2 = x proj (x) 2 = (x 1,..., x ) (E(X),..., E(X)) 2 = (x E(X)) 2. Kyseessä o x-arvoje keskarvosta laskettuje pokkeame elöde summa. Ku tämä jaetaa arvoje lukumäärällä, saadaa muuttuja X varass, jota merktää Var(X). Sspä x 2 = Var(X). Geometrsest muuttuja X varass o ss verraolle vektor x suorasta spa() mtatu etäsyyde elöö. Varsasta etäsyyttä kuvaa varass elöjuur, s. keskhajota σ(x) (kerrottua luvulla ). Tarkastellaa velä pstetuloa x y = x y. Jos tämä jaetaa luvulla, saadaa x- ja y-arvoje tuloje keskarvo, jota merktää E(XY ). Nä olle x y = E(XY ). Edellee vodaa krjottaa x y 1 ( x)( y) = E(XY ) E(X) E(Y ) = (E(XY ) E(X) E(Y )). 4
5 Suuretta E(XY ) E(X) E(Y ) mtetää muuttuje X ja Y välseks kovarassks ja merktää Cov(X, Y ). Kovarass geometrsee tulktaa palataa jäljempää korrelaato yhteydessä. Lopulta sovtetu suora kulmakerro ja vakoterm vodaa tlastollsa merktöjä käyttäe lmasta muodossa a = Cov(X, Y ) Var(X) ja b = E(Y ) Cov(X, Y ) Var(X) E(X). Korrelaato Ku havatojoukkoo sopv suora o löytyyt, vodaa kysyä, mte vomakasta rppuvuus x- ja y-arvoje välllä o. Leaarse rppuvuude mttaamsee käytetää korrelaatokerrota, joka määrtellää seuraavast: ρ(x, Y ) = Cov(X, Y ) σ(x)σ(y ). Kaavassa σ(x) ja σ(y ) ovat muuttuje X ja Y keskhajoat el varass elöjuuret. Ryhdytää etsmää korrelaatokertomelle geometrsta tulktaa. Palautetaa melee, että Cov(X, Y ) = x y ja σ(x) = x. Merktää lsäks y = y proj (y), jollo y = σ(y ). Lsäks ( x y = x y y ) = x y y x }{{ } = x y. =0 Nyt saadaa ρ(x, Y ) = Cov(X, Y ) 1 σ(x)σ(y ) = x y 1 x 1 y = x y x y. Tästä ähdää, että muuttuje X ja Y väle korrelaato o vektore x ja y välse kulma kos. Etä mllä tavo korrelaatokerro lttyy suora sovttamsee? Kute aemm o ähty, projektovektor proj (y) vastaa vaakasuutasta suoraa y = E(Y ), sllä proj (y) = y = ( 1 ) y = E(Y ). Erotusvektor y proj (y) kuvaa ss y-havatoje pokkeamaa keskarvosta. Osa tästä pokkeamasta selttyy leaarsella rppuvuudella x-havaosta. Leaarsta rppuvuutta kuvaa sovtettu suora, ja tätä puolestaa vastaa proj S (y). Sspä leaarse rppuvuude selttämää osaa pokkeamasta kuvaa erotus proj S (y) proj (y). Jäljelle jäävä, selttämätö ta satuae osa o tällö (y proj (y)) (proj S (y) proj (y)) = y proj S (y). 5
6 Vertalemalla edellä mattuje vektorede ptuukse elötä vodaa määrtellä s. seltyskerro R 2 = proj S(y) proj (y) 2 y proj (y) 2. Seltyskerro kuvaa tlastollsest stä, mte suur osa muuttuja Y varasssta, el vektor y elöllsestä etäsyydestä keskarvovektorsta proj (y), selttyy leaarsella rppuvuudella. Seltyskerro o myös helppo laskea käyttäe hyväks aempa tetoja: R 2 = proj S(y) proj (y) 2 y proj (y) 2 = proj x (y) 2 y 2 = (Cov(X, Y )/ Var(X))2 x 2 y 2 = (Cov(X, Y )/ Var(X))2 Var(X) Var(Y ) = Cov(X, Y )2 Var(X) Var(Y ) = ρ(x, Y )2. Nähdää, että seltyskerro o ykskertasest korrelaatokertome elö. Tämä yhteys vodaa selttää ohesella kuvalla. Kuvassa o kolmo, joka muodostuu vektoresta y proj (y), proj S (y) proj (y) ja y proj S (y). Seltyskerro R 2 o kuva kulma α verese kateet ja hypoteuusa suhtee elö, el kysese kulma kos elö. Korrelaatokerro ρ o puolestaa vektore x ja y välse kulma kos. Koska y proj (y) = y, kyseessä o kuva kulma β. Ku huomataa, että vektor proj S (y) proj (y) = proj x (y) o yhdesuutae vektor x kassa, ähdää, että joko β = α ta β = 90 α. Koska cos(90 α) = cos α, vodaa lopulta päätellä, että cos 2 β = cos 2 α. Nä olle korrelaato elö o yhtä ku seltyskerro. Myös korrelaatokertome lukuarvosta vodaa tehdä johtopäätöksä kuva avulla. Kulma β o ollakulma ja okokulma välllä, jote korrelaato cos β o arvoje 1 ja 1 välllä. Korrelaato o 1 sllo, ku β o ollakulma, ja tämä toteutuu, jos ja va jos y = proj S (y) ja vektort y ja x ovat yhdesuutaset. Tällö sopv suora kulkee kakke havatopstede kautta ja se kulmakerro o postve (sllä kulmakertome merkk määräytyy pstetulosta x y). Vastaavast korrelaato o 1, ku β o okokulma, ja tämä tarkottaa, että havatopsteet ovat kakk samalla suoralla, joka 6
7 kulmakerro o egatve. Lopulta korrelaato o 0, ku kulma β o suora, ja tämä o mahdollsta aoastaa, jos proj S (y) = proj (y). Tässä tlateessa pstejoukkoa kuvaa parhate suora y = E(Y ), el mkäälasta leaarsta rppuvuutta e ole. Jokke Häsä, syksyllä
Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:
Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,
MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN
MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset
13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Tilastollinen riippuvuus ja korrelaatio
Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame
Raja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:
Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,
Turingin kone on kuin äärellinen automaatti, jolla on käytössään
4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa
TKK @ Ilkka Mellin (2008) 1/24
Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,
1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä
Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6
Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Aheet: Tlastolle rppuvuus ja korrelaato Yhde selttäjä leaare regressomall Regressoaalyys
3.5 Generoivat funktiot ja momentit
3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest
Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:
Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,
Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot
TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue
4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten
5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
Baltian Tie 2001 ratkaisuja
Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat
3. Datan käsittely lyhyt katsaus
3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
3 Tilayhtälöiden numeerinen integrointi
3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat-1.361 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.1. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys,
Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot
TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka
10.5 Jaksolliset suoritukset
4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e
Muuttujien välisten riippuvuuksien analysointi
Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus
Monte Carlo -menetelmä
Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla
Mat Koesuunnittelu ja tilastolliset mallit
Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,
7. Modulit Modulit ja lineaarikuvaukset.
7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot
Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.
MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
lueto9.ppt S-38.45 Lkeeteora perusteet Kevät 5 Ykskertae lkeeteoreette mall Puhdas jakojärjestelmä Asakkata saapuu keskmäär opeudella asakasta per akayks. / keskmääräe asakkade välaka Asakkata palvellaa
9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli
Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-
Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus
Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,
Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä
Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste
Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0)
Mat-2.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat Korrelaato ja assosaato Hypotees, Järjestyskorrelaatokertomet, χ 2 -rppumattomuustest, Korrelaatokerro, Pstedagramm, Päätössäätö, Nollahypotees,
Moniulotteiset jakaumat ja havaintoaineistot
Momuuttujameetelmät: Ilkka Mell. Moulotteset jakaumat.. Satuasmuuttujat ja todeäkösyysjakaumat.. Yhtesjakaumat.3. Reuajakaumat ja satuasmuuttuje rumattomuus.4. Ehdollset jakaumat.5. Yhtesjakaume tuusluvut.6.
1. PARAMETRIEN ESTIMOINTI
Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare
Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?
TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet
1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.
BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä
Mat Lineaarinen ohjelmointi
Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:
MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma
Painotetun metriikan ja NBI menetelmä
Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka
6. Stokastiset prosessit (2)
Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst
Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa
Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
HASSEN-WEILIN LAUSE. Kertausta
HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto
Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht
Tilastolliset menetelmät: Lineaarinen regressioanalyysi
Tlastollset meetelmät Leaare regressoaals Tlastollset meetelmät: Leaare regressoaals 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaals 5. Yhde selttäjä leaare regressomall 6. Ylee leaare mall
Jaksolliset ja toistuvat suoritukset
Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e
Mittalaitteet. M. Kuisma, T. Torttila, J. Tyster. Elektroniikan laboratoriotyöt 1 - Mittalaitteet 1
Elektroka laboratorotyöt - Mttalatteet Mttalatteet M. Kusma, T. Torttla, J. Tyster Tvstelmä Laboratorotyössä tutustutaa sovelletu elektroka laboratoroo, laboratorossa olev mttalattes sekä laboratoro työsketelytapoh.
Uuden eläkelaitoslain vaikutus allokaatiovalintaan
TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...
LIITE 2 SUORAN SOVITTAMINEN HAVAINTOPISTEISIIN
Oulun ylopsto Fyskan opetuslaboratoro Fyskan laboratorotyöt LIITE SUORA SOVITTAMIE HAVAITOPISTEISII Tarkastelemme fyskan tössä usen eteen tulevaa tlannetta, jossa olemme mtanneet kpl pstepareja ( X, Y
Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:
Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa
1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia
Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,
Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto
TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde
Mittaustulosten käsittely
Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman
Tchebycheff-menetelmä ja STEM
Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
r i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
Todennäköisyyden aksioomat. Todennäköisyyden aksioomat. Todennäköisyyden aksioomat: Mitä opimme? 2/2. Todennäköisyyden aksioomat: Mitä opimme?
TKK () Ilkka Mell (2004) 1 Todeäkösyyde aksoomat Suhteelle rekvess, klasse todeäkösyys ja ehdolle todeäkösyys Johdatus todeäkösyyslasketaa Todeäkösyyde aksoomat TKK () Ilkka Mell (2004) 2 Todeäkösyyde
FYSA220/2 (FYS222/2) VALON POLARISAATIO
FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron
7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä
Mat.36 Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora 7.. Suurmma uskottavuude estmotmeetelmä Akasarja,
Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?
Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl
Satunnaismuuttujat ja todennäköisyysjakaumat
Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat
Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu
Mat-1.361 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.1. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus,
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella
W Hz. kohinageneraattori. H(f) W Hz. W Hz. ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 5 Sivu 1/7
ELEC-A700 LASKUHARJOIUS 5 Svu /7. Satunnassgnaaln x ( t ) keskarvo on V ja keskhajonta 4 V. Mttaukslla on todettu, että x ( t ) ja x ( t + τ ) ovat rppumattoma, kun τ 5µ s. Lsäks tedetään, että x ( t )
5. Datan käsittely lyhyt katsaus
5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 4..0 Thomas Hackman HTTPK I, kevät 0, luento 5 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus
Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28
Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ
4. A priori menetelmät
4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen
Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet
Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,
Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt
FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]
Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord
ARITMEETTIS-GEOMETRIS-HARMONINEN KESKIARVOEPÄYHTÄLÖ
ARITMEETTIS-GEOMETRIS-HARMONINEN KESKIARVOEPÄYHTÄLÖ Markus Haula Matematka Pro Gradu-tutkelma Jyväskylä ylopsto Matematka ja tlastotetee latos Kesä 2008 Ssältö. Johdato 2 2. Määrtelmä 3 2.. Artmette keskarvo
Mat Sovelletun matematiikan erikoistyöt Spatiaalinen autokorrelaatio viljelykokeiden havainnoissa
Mat-.108 Sovelletun matematkan erkostyöt Spataalnen autokorrelaato vljelykokeden havannossa 5.5.004 Emla Suomalanen emla.suomalanen@hut.f 54755U Ssällys 1 Johdanto 1 Vljelykokeden satodata 3 Spataalsen
Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen
Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun
Monimuuttujamenetelmät: Multinormaalijakauma. Ilkka Mellin. 1. Multinormaalijakauma ja sen ominaisuudet
Momuuttumeetelmät Multormaalkauma Momuuttumeetelmät: Multormaalkauma Ilkka Mell. Multormaalkauma se omasuudet.. Multormaalkauma.. Multormaalkauma omasuudet.3. Multormaalkauma ehdollset kaumat.4. -ulottee
Pyörimisliike. Haarto & Karhunen.
Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma Aheet: Satuasmuuttujat ja todeäkösyysjakaumat Kertymäfukto Jakaume tuusluvut Dskreettejä jakauma Jatkuva jakauma Avasaat: Bomjakauma Desl Dskreett