xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

Koko: px
Aloita esitys sivulta:

Download "xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n ="

Transkriptio

1 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista ominaispaino ja puhkaisulujuus: Arkki i x i y i Testaa korrelaation merkitsevyys tasolla a) α = 0.05 b) α = 0.01 xi = yi = 586 x 2 i = y 2 i = xi y i = n = 10 H 0 : ρ = 0 ja H 1 : ρ 0 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = SS yy = y 2 i ( y i ) 2 /n = r = SS xy SSxx SS yy = = Testisuure t: t = n 2 r = 1 r = H 0 hylätään riskitasolla α, jos t > t 1 α/2 (n 2) a) α = 0.05, kriittinen arvo t (8) = 2.31 H 0 hylätään b) α = 0.01, kriittinen arvo t (8) = 3.36 H 0 hylätään Testisuure t = n 2 r 1 r 2 = = 4.16

2 a) α = 0.05, kriittinen arvo t (8) = 2.31 H 0 hylätään b) α = 0.01, kriittinen arvo t (8) = 3.36 H 0 hylätään 2. Tutkittiin kunnallisvaaliehdokkaiden mainontaan sijoittamien rahamäärien x vaikutusta saatuihin äänimääriin Y. Tutkija oletti, että riippuvuus on lineaarinen eli Y = β 0 + β 1 x + ɛ. Riippuvuuden tutkimiseksi kirjattiin satunnaisesti valittujen 12 ehdokkaan äänimäärät ja mainosmenot ja laskettiin niistä seuraavat summat: Σx i = 88.9 Σy i = 1020 Σx i y i = 9901 Σx 2 i = Σy2 i = Estimoi pienimmän neliösumman menetelmällä regressiomallin kertoimet β 0 ja β 1. SS xx = Σx 2 (Σx) 2 /n = /12 = SS yy = Σy 2 (Σy) 2 /n = /12 = SS xy = /12 = ˆβ 1 = b 1 = SS xy /SS xx = ˆβ 0 = b 0 = ȳ b 1 x = (1020 b )/12 = Sovitettu malli ŷ = x ˆβ 1 = ˆβ 0 = ŷ = x

3 3. Tutki sopivalla testillä, riippuuko (ed. tehtävässä) äänimäärä mainosmenoista merkitsevyystasolla α = 0, 01 TAPA 1 Korrelaatiokertoimen testaus H 0 : ρ = 0 H 1 : ρ 0 r = SS xy SSxx SS yy = T = 10 r 1 r 2 = 5.54 α = 0.01 t 1 α/2 (n 2) = t (10) = 3.17 < 5.54 Korrelaatio on merkitsevä tasolla α = 0.01 TAPA 2 H 0 : β = 0 H 1 : β 0 Testisuure T = b1 0 s b1 t(n 2) TAPA 3 H 0 : β = 0 H 1 : β 0 Testisuure F = SSD SSE/(n 2) F (1, n 2) Korrelaatio on merkitsevä tasolla α = Lentoyhtiö on tutkinut tietyn konetyypin polttoaineen kulutusta. Lennon pituus x (yksikkönä 100 km) ja polttoaineen kulutus y (yksikkönä litra) mitattiin 100 lennolla. Tuloksista on valmiiksi laskettu seuraavat summat:

4 x = 800 x 2 = y = y 2 = xy = Estimoi regressiomallin y = β 0 + β 1 x + ɛ parametrit (myös jäännös varianssi). Laske myös mallin selitysaste. SS xy = xy ( x)( y)/n SS xy = /100 = SS xx = x 2 ( x) 2 /n SS xx = /100 = 1621 SS yy = y 2 ( y) 2 /n SS yy = /100 = b 1 = SS xy /SS xx = b 0 = ȳ b 1 x = (55000 b 1 800)/100 = ˆσ 2 = s 2 = SSE n 2 = SSE 98 = Selitysaste R 2 = SSD SST SSE = b b Selitysaste R 2 = 82.3% = 82.3% Edellisen tehtävän lentokonetyypin polttoainamäärän arvioinnissa on aikaisemmin käytetty kerrointa β 1 = 45. Testaa riskitasolla α = 0.05 hypoteesit H 0 : β 1 = 45 H 1 : β 1 > 45. (Testisuureen arvo on 2.18) H 0 : β 1 = 45 H 1 : β 1 > 45 b 1 =

5 Testisuure T = b1 45 s(b 1) t(n 2) s(b 1 ) = s s SSxx = = Testisuureen arvoksi t = 2.18 valittu α = 0.05 Kriittinen arvo t 1 α (n 2) = t 0.95 (98) 1.66 Koska t > t 0.95, H 0 hylätään. 6. Vedenpuhdistuslaitteen suodatin joudutaan vaihtamaan määrävälein epäpuhtauksien aiheuttaman tukkeutumisen vuoksi. Seuraavassa on pieni otos kalkkipitoisuuden x ja toimintaiän y arvoista: x(%) y(h) a) Laske regressiomallin Y = β 0 + β 1 x + ɛ parametrit, myös jäännösvarianssin, estimaatit. Laske kertoimien b 0 ja b 1 hajontaestimaatit. b) Testaa riskitasolla α = 0.05 hypoteesit H 0 : β 1 = 0 (eli kalkkipitoisuudella ei vaikutusta) H 1 : β 1 < 0 (eli kalkkipitoisuus lyhentää toimintaikää) (Testisuureen arvo on 2.28) x = 7.9 x 2 = n = 6 y = 108 y 2 = 2104 xy = 131 a) = x7.9 x 2 = n = 6 = y108 y 2 = 2104 xy = 131 SS xy = xy ( x)( y)/n = /6 = 11.2 SS xx = x 2 ( x) 2 /n = /6 =

6 SS yy = y 2 ( y) 2 /n = /6 = b 1 = SS xy /SS xx = b 0 = ( y b 1 x)/n = b) Testisuureenarvo t = b1 0 s(b 1 = 2.28 H 0 hylätään, jos t < t 1 α (n 2) = t 0.95 (4) = SST = SS yy = 160 SSD = SS 2 xy/ss xx = SSE = SST SSD = ˆσ 2 = s 2 = SSE n 2 = s s(b 1 ) = 2 SS xx = s(b 0 ) = s 2 x 2 i nss xx 4.96 a) SST = 160 SSD = SSE = ˆσ 2 = s s(b 1 ) 3.54 s(b 0 ) 4.96 b) Johtopäätös: H 0 hylätään, joten kalkkipitoisuus lyhentää toimintaikää. 7. Tutkittiin erään viljan sadon Y lineaarista riippuvuutta neljästä selitettävästä muuttujasta: X 1 = maaperän humuspitoisuus, X 2 = maaperän kosteus, X 3 = maaperän ph ja X 4 = rikkakasvien tiheys. Tehtiin 32 koetta eri olosuhteissa. Lineaarisen regressiomallin

7 y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 4 + ɛ kertoimien merkitsevyyttä eli hypoteeseja H 0 : β j = 0, H 1 : β j 0, j = 0, 1, 2, 3, 4 testattiin t-testisuureilla ja saatiin seuraavat tulokset: Parameter Estimate Std error T-Statistic P-value b b b b b Source Sum of squares DF Mean Square F-ratio P-value model E Residual Total (Corr.) E6 31 r 2 = % r 2 (Adjusted for d.f.) = % Std error of est. = Mean absolute error = Durbin-Watson statistic = a) Poikkeaako vakiotermi β 0 merkittävästi nollasta? b) Mitkä muuttujat ovattviljasadon tärkeimpiä selttäjiä ja millä muuttujilla ei ole merkittävää vaikutusta? Perusteltu vastaus! Periaate: mitä pienempi p-arvo, sitä merkitsevämmin kerroin poikkeaa nollasta. a) β 0 -kerroin ei poikkea merkittävästi nollasta, koska P = > Tosin estimaatin arvoon suuri, mutta jos hajonta on suuri, ei saada riittävästi varmistusta poikkeamalle! b) Mitä pienempi P-arvo, sitä merkitsevämpi riippuvuus ja sitä merkitsevämpi selittäjä. Tärkeimmät, eli merkitsevimmät selittäjät ovat siis järjestyksessä 1) ph = ) kosteus =

8 3) humuspitoisuus = Rikkakasvitiheydellä ei ole tämän aineiston valossa merkittävää vaikutusta, koska P = > Edellisen tehtävän lineaarisen regressiomallin yhteensopivuuden tutkimiseksi havaintoaineistosta laskettiin neliösummat SST = ja SSE = Laske mallin jäännöshajonta s ja selitysaste R 2. Testaa mallin sopivuus (eli mallin tilastollinen merkitsevyys eli selitysasteen merkitsevyys, monisteen luku 7.4.5) tasolla α = Kannattaako mallia käyttää viljasadonennustamiseen? (Testisuureen arvo 26.8) n = 32 k = 4 SST = SSE = s 2 = s = SSE n k 1 = = Selitysaste: R 2 = SSD SST SSE SST = SST R 2 = = % H 0 : β 1 = β 2 = β 3 = β 4 = 0 (Malli ei sopiva) H 1 : β i 0 ainakin yhdellä i = 1, 2, 3, 4, Testisuure: SSD/k F = SSE/(n k 1) = / /27 = α = 0.01 Kriittinen arvo F 1 α (k, n k 1) = F 0.99 (4.27) = 4.11 Koska F > F 0.99, H 0 hylätään:

9 Malli selittää sadon vaihtelua merkittävästi. Mallia siis kannattaa käyttää sadon ennustamiseen.

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 6

031021P Tilastomatematiikka (5 op) viikko 6 031021P Tilastomatematiikka (5 op) viikko 6 Jukka Kemppainen Mathematics Division Satunnaismuuttujien välinen riippuvuus Kokeellisen tutkimuksen keskeinen tehtävä on selvittää mitattavien muuttujien välisiä

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

2. Tietokoneharjoitukset

2. Tietokoneharjoitukset 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 6

031021P Tilastomatematiikka (5 op) viikko 6 031021P Tilastomatematiikka (5 op) viikko 6 Jukka Kemppainen Mathematics Division Odotusarvojen erotuksen testi, hajonnat σ 1 σ 2 tuntemattomia Oletetaan jälleen, että X ja Y ovat normaalijakautuneita.

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

1. Tutkitaan tavallista kahden selittäjän regressiomallia

1. Tutkitaan tavallista kahden selittäjän regressiomallia TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486. Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen

Lisätiedot

Regressiodiagnostiikka ja regressiomallin valinta

Regressiodiagnostiikka ja regressiomallin valinta Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

Yleinen lineaarinen malli

Yleinen lineaarinen malli MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2

Lisätiedot

Kyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen.

Kyllä. Kyllä. Jäitkö vielä epävarmaksi: Selvitä antavatko testit samansuuntaisen tuloksen. Data: järjestysast. Ei Kyllä Jatkuva, normaali Kyllä t-testi Ei Suuria poikkeavia arvoja Ei Mann-Whitney Kyllä Mediaani testi ks. luentomoniste Valintakaavio: Kahden riippumattoman ryhmän jakauman keskikohdan

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro

Leikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Regressiomallin valinta TKK (c) Ilkka Mellin (2007) 1 Regressiomallin valinta >> Regressiomallin valinta: Johdanto Mallinvalintatestit

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio TKK (c) Ilkka Mellin (2005) 1 Tilastollinen riippuvuus ja korrelaatio Tilastollinen riippuvuus, korrelaatio ja regressio Kahden muuttujan

Lisätiedot

Teema 10: Regressio- ja varianssianalyysi

Teema 10: Regressio- ja varianssianalyysi Teema 1: Regressio- ja varianssianalyysi Regressioanalyysi lienee t-testin ohella maailman eniten käytetty tilastollinen menetelmä. Sitä sivuttiin jo alustavasti Teemassa 4. Varianssianalyysi liittyy useallakin

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

1 Johdatus varianssianalyysiin

1 Johdatus varianssianalyysiin Tilastollisia malleja 1 & 2: Varianssianalyysi Jarkko Isotalo Y131A & Y132A 15.1.2013 1 Johdatus varianssianalyysiin 1.1 Milloin varianssianalyysiä käytetään? Varianssianalyysi on tilastotieteellinen menetelmä,

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja:

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja: RISKITASO Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Käytettyjä

Lisätiedot

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP. 22.9.-11.12.2009. Luennoi: yliopisto-opettaja Pekka Pere. Aputuloksia Logaritmin muutos ja suhteellinen muutos Lähtökohta on approksimaatio log(1 + δ) δ,

Lisätiedot

ARVIOINTIPERIAATTEET

ARVIOINTIPERIAATTEET PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa TKK (c) Ilkka Mellin (2007) 1 Erityiskysymyksiä yleisen lineaarisen

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Simuloinnin strategisia kysymyksiä

Simuloinnin strategisia kysymyksiä Simuloinnin strategisia kysymyksiä Timo Tiihonen Tietotekniikan laitos 2010 Simuloinnin strategisia kysymyksiä Miten toimitaan, kun halutaan tietää enemmän kuin yhden simulointimallin tulos. Miten tulos

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

1. Tietokoneharjoitukset

1. Tietokoneharjoitukset 1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen

Lisätiedot

Simuloinnin strategisia kysymyksiä

Simuloinnin strategisia kysymyksiä Simuloinnin strategisia kysymyksiä Miten toimitaan, kun halutaan tietää enemmän kuin yhden simulointimallin tulos. Miten tulos riippuu mallin syöttötiedoista. Miten tulos riippuu mallin rakenteellisista

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Regressiomallin valinta TKK (c) Ilkka Mellin (2004) 1 Regressiomallin valinta Regressiomallin valinta: Johdanto Mallinvalintatestit Mallinvalintakriteerit Epälineaaristen riippuvuuksien

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot