Keskeisliikkeen liikeyhtälö
|
|
- Tuomas Parviainen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+ ϕ)e ϕ { m( ϕ 2 ) = f() m(2ṙ ϕ + ϕ) = 0 Integoidaan alemi m 2 ϕ = vakio l L m l2 m 3 = f() F m Kokonaisenegia E = T + U = 1 2 mṙ m 2 + U = vakio l 2 t t 0 = ϕ ϕ 0 = m d E U() d l2 2m 2 2 2m l 2 [E U()] 1 2
2 Efektiivinen otentiaali ja voima E = T + U = 1 2 mṙ2 + U () Efektiivinen otentiaali U () = U() + 2m 2 atatyyit Efektiivinen voima = U = l2 m 3 U U l2 U m = U Ymyäata = a = vakio vain, jos U = 0. =a Ymyäata stabiili, jos kyseessä minimi! Ol. U = k 1+n U = l2 m 3 k(n + 1)n = 0 3+n = (n + 1)mk 2 U 2 = 3 l2 kn(n + 1)n 1 m4 jonka siis itää olla minimikohdassa ositiivinen, jotta ymyäata on stabiili l 2 0 < 3 l2 m kn(n + 1)3+n = 3 l2 m + n l2 m n > 3
3 Kelein lait Tycho Bahe ( ): havainnot t + dt 2 t 2 Johannes Kele ( ): t 1 t + dt 1 K-I Planeettojen adat ellisejä, joiden toisessa olttoisteessä Auinko on. K-II Auingosta laneettaan iietty jana kietää siten, että sen aikayksikössä yyhkäisemä inta-ala on vakio. K-III Kietoaikojen neliöt suhtautuvat kuten isoakselien kuutiot. (esim. T Maa = 1 a, T Ju = /2 a = 11.9 a) K-I ja K-II vuodelta 1609, ja K-III vuodelta 1619 Lait emiiisiä! Kelein lait Newtonin mekaniikka ja ainovoimalaki N-G kahden kaaleen välinen vetovoima on veannollinen niiden massojen tuloon ja kääntäen veannollinen niiden välisen etäisyyden neliöön: F = GMm 2 e. Tässä G = 6, N m 2 kg 2 on gavitaatiovakio. G eätakimmin tunnettu luonnonvakio! (HT: miksi?) F saadaan otentiaalista U() = k/, missä k = GM m.
4 Pallokuoen otentiaalienegia Renkaan muotoinen kuoen osa: θ θ + θ enkaan säde = a sin θ θ enkaan leveys = a θ Jokainen iste enkaalla s:n etäisyydellä m:stä Kontibuutio otentiaalienegiaan: Gm M U = s z m s θ 00 11a y Renkaan massa (M s ja A s kuoen massa ja inta-ala) M = A (2πa sin θ) (a θ) M s = A s 4πa 2 M s = 1 2 sin θ θ M s U = 1 2 Gm M sin θ θ s s Integoidaan kaikkien enkaiden yli, θ : 0 π: U = 1 2 G m M s π 0 sin θ dθ s(θ) Nyt s 2 = a a cos θ 2s ds dθ s ds = 2a sin θ sin θ dθ = a U = G m M s 2a s(π) s(0) ds
5 Pallokuoen otentiaalienegia: U = G m M s 2a s(π) s(0) ds 1) > a : s(0) = a, s(π) = + a U = G m M s 2a 2a = G m M s Sama tulos kuin jos allokuoen massa olisi oigossa! m z s a θ y 2) < a : s(0) = a, s(π) = a + U = G m M s 2a 2 = G m M s a = vakio z s m a θ Voima F = U e F = G m M s 2 e, a 0 < a y
6 Homogeenisen allon gavitaatioenegia Massa M tiheys ρ = M a 4π 3 πa3 säde a Pallonkuoi m = ρ V = ρ 4π 2 U = G M sis() m ; M sis () = 4π 3 ρ3 U = 16π2 Gρ 2 4 ; integoidaan 3 a U = du = 16π2 Gρ 2 a 4 d 3 0 = 16π2 Gρ 2 3 U on allon gavitaatioenegia. 0 a 5 5 = 3 GM 2 5 a Tämä enegia vaautuu, jos koko avauuteen tasan jakautunut massa M luhistuu a-säteiseksi alloksi. U Auingon enegialähteenä T 20 Ma (!) Maaallo: M kg, m U Maa J
7 Kelein adan lauseke Ratayhtälö määäämättömänä integaalina: ϕ = ϕ d + ; ϕ 2m integoimisvakio 2 [E U()] 1 l 2 2 Muuttujan vaihto = 1/u; N-G: U = k/ = ku ϕ = ϕ du 2m(E + ku) u l 2 2 ( dx ax = 1 2 +bx+c a accos ϕ = ϕ accos u = 1 = mk l 2 ( l 2 u mk El2 mk b+2ax b 2 4ac ), joten 1 + 2El2 mk 2 cos(ϕ ϕ ) ) eli = ε = 1 + ε cos θ ; katioleikkaus, θ ϕ ϕ, = l2 mk ε = 0 ymyä 1 + 2El2 mk 2 ; eksentisyys 0 < ε < 1 ellisi ε = 1 aaabeli ε > 1 hyebeli
8 Katioleikkaukset ellisi aaabeli hyebeli Ellisissä leikkaava taso on ienemmässä kulmassa vaakatasoon nähden kuin kation vaia. Paaabelissa kation vaia ja leikkaava taso ovat samassa kulmassa vaakatasoon nähden. Hyebelissä leikkaava taso on suuemmassa kulmassa vaakatasoon nähden kuin kation vaia ymyä ellisi aaa beli hyebeli
9 Pakonoeus Millä noeudella kaaleen tulee liikkua, jotta se akenee toisen kaaleen ainovoimakentästä? Tällöin ε = 1 + 2El2 mm 1; missä µ = µk2 m + M eli E 0. Pakenee T + U 0 : 1 2 µv2 e = GMm ; 2GMm v e = µ = 2G(M + m) 2GM Esim. 1 Maan inta v e = 11.2 km/s Auingon inta v e = 618 km/s Esim. 2 Lähtö geostationaaiselta adalta, = 6.6 R E : vauhti aluksi v ϕ0 = 2π/(24 h) = 3.06 km/s; tavitaan yhteensä v e = 11.2 km/s/ 6.6 = 4.36 km/s eli lisäotku liikkeen suuntaan v = v e v ϕ0 = 1.3 km/s
10 Kelein lait atayhtälöstä K-I Suljettu laneettaata = 1 + ε cos ϕ on ellisi eli sille ε = 1 + 2El2 < 1; mk 2 osoittaa laneetasta toiseen olttoisteeseen. Isoakselin uolikas a; ikkuakselin uolikas b; 2a = 1 ε ε = 2 1 ε 2 c = a /(1 + ε) = εa b 2 = a 2 c 2 = a 2 (1 ε 2 ) = a K-II Pienellä aikavälillä dt a c c + = 2a da = 1 2 dϕ Ȧ =1 2 2 ϕ = l 2m = vakio K-III Yllä b 2 a = = l2 al mk b =. mk Ellisin inta-ala A = πab. Toisaalta b ϕ a c A = T 0 A dt = lt 2m = πa al T = 2π mk m k a3/2 Huom. T ei iiu ellisin muodosta vaan ainoastaan isoakselin ituudesta.
11 Lalace-Runge-Lentz -vektoi R L = L mk ṘL = ṗ L mk v + mk ṙ 2 = F L mk v ϕe ϕ F = (k/ 3 ) ja L = m 2 ϕe z, joten (e e z = e ϕ ) F L = mk ϕ e ϕ = mk v ϕe ϕ ṘL = 0. R L on siis liikevakio. Selvästi R L on atatasossa. Johdetaan vielä yhtälö :lle; lasketaan R L = ( L) mk R L cos ϕ = L ( ) mk = l 2 mk ( 1 + R ) L mk cos ϕ = l2 mk eli jälleen saadaan = 1 + ε cos ϕ ; = l2 mk, ε = R L mk RL 2 = 2 l 2 + m 2 k 2 2 mk ( l2 = m 2 k m 2 mv2 k = m 2 k 2 + 2mEl 2 ε = 1 + 2El2 mk 2 ) l 2
12 R L = L mk R L mk e R L R O L L L mk e R L mk e L
13 Riiumattomat liikevakiot ja ataelementit :llä 3 komonenttia LY (N-II) on 2. kl. DY 6 integoimisvakiota Löydetyt liikevakiot: L, R L, E, t 0 (yhteensä 8 kl) näistä kaikki eivät voi olla iiumattomia! Riiuvuudet: R L = mkε = mk 1 + 2El2 mk 2 ja L R L = 0 Riiumattomia esim. L, ε, t 0 ja R L :n kulma L:n ymäi. Mek. (, R L ) ϕ = 1 + ε cos ϕ :llä minimi, kun ϕ = 0 R L osoittaa oigosta kohti eiasista (l. eisentiä) Vastakohta (:n maksimi, ϕ = π) aoasis (l. aosenti) Rataelementit (laneettaliike) isoakselin uolikas a eksentisyys ε (tai e) inklinaatio i (tai ι) nousevan solmun ituus Ω (kevättasausisteestä Υ) eihelin agumentti ω; t. eihelin ituus ϖ eiheliaika τ
Ratayhtälö ja Keplerin lait
Ratayhtälö ja Kelerin lait ε = LY r = 1 + 2El2 mk 2 K-I Planeettarata on ellisi eli sille ε = 1 + ε cos ϕ ; = l2 mk ε = 0 ymyrä = eksentrisyys; 0 < ε < 1 ellisi ε = 1 araabeli ε > 1 hyerbeli r on etäisyys
Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat
ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki
2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta
Taivaanmekaniikkaa Kahden kappaleen liikeyhtälö
Taivaanmekaniikkaa kaavojen johto, yksityiskohdat yms. ks. Kattunen, Johdatus taivaanmekaniikkaan tai Kattunen, Donne, Köge, Oja, Poutanen: Tähtitieteen peusteet tai joku muu tähtitieteen/taivaanmekaniikan
Tilavuusintegroin3. Tilavuusintegroin3
/5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
2.7.4 Numeerinen esimerkki
2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun
x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz
/9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Luento 12: Keskeisvoimat ja gravitaatio. Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä
Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä 1 / 46 Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja
LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA
LUENTO 3: KERTAUS EDELLISELTÄ LUENNOLTA Kahden kappaleen suhteellisen liikkeen yhtälö: R m 2 R = µ R r 3 jossa µ = G(m 1 + m 2 ) Liikeyhtälön integraalit m 1 R 1 R 2 k = R R suhteellisen liikkeen imp.mom/massayksikkö
Luento 10: Keskeisvoimat ja gravitaatio
Luento 10: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä
Jakso 5. Johteet ja eristeet Johteista
Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)
1.4. VIRIAALITEOREEMA
1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
Luento 4: kertaus edelliseltä luennolta
Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ
5 Kentät ja energia (fields and energy)
5 Kentät ja energia (fields and energy) Mansfield and O Sullivan: Understanding Physics, kappaleen 5 alkuosa 5.1 Newtonin gravitaatiolaki Newton: vetovoima kahden kappaleen välillä on tai tarkemmin F m
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
Liike keskeisvoimakentässä
Luku 2 Liike keskeisvoimakentässä Keskeisvoimat ja keskeisliike ovat olleet varsin keskeisessä osassa klassisen mekaniikan kehityksessä ja sovellutuksissa. Newton johti mekaniikkansa suurelta osin selittääkseen
Kertausta: Vapausasteet
Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
Luento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
Suhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Gaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
L a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Luento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
Kertausta: Hamiltonin periaate
Maanantai 15.9.2014 1/19 Kertausta: Hamiltonin periaate Hamilton: Kaikkien pisteiden {q 1 } ja {q 2 } välisten mahdollisten ratojen joukosta valikoituu se, jolle (Hamiltonin) vaikutusintegraali I = t2
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,
Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
j = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA
Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan
SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä
ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,
6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen
6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition
x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia
10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Klassisen mekaniikan historiasta
Torstai 4.9.2014 1/18 Klassisen mekaniikan historiasta Nikolaus Kopernikus (puolalainen pappi 1473-1543): aurinkokeskeinen maailmankuva Johannes Kepler (saksalainen tähtitieteilijä 1571-1630): planeettojen
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
NESTEIDEN ja ja KAASUJEN MEKANIIKKA
NESTEIDEN ja KSUJEN MEKNIIKK Väliaineen astus Kaaleen liikkuessa nesteessä tai kaasussa, kaaleeseen törmääät molekyylit ja aine-erot erot aiheuttaat siihen liikkeen suunnalle astakkaisen astusoiman, jonka
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä
Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi
Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä
risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Mekaniikka. Hannu Koskinen
Mekaniikka Hannu Koskinen Syksy 2002 2 Kurssin tavoitteista Nämä luentomuistiinpanot kattavat 6 opintoviikon kurssin Mekaniikka, joka on pakollinen kurssi teoreettisessa fysiikan cum laude-tasolla ja varsin
ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
LC C21 SÄHKÖTKNKKA JA LKTONKKA Kimmo Silvonen 2. välikoe 8.12.21. Tehtävät 1 5. Saat vastata vain neljään tehtävään! Sallitut: Kako, [gr.] laskin, [MAOL], [sanakirjan käytöstä on sovittava valvojan kanssa!]
4 Kaksi- ja kolmiulotteinen liike
Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike
Varatun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )
BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo 16.00 (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Tämä laskuharjoitus ei ole pakollinen, eikä sen pisteitä
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.
KEPLERIN LAI: (Ks. Physic 5, s. 5) Johnnes Keple (57-60) yhtyi yko Bhen (546-60) hintoineiston pohjlt etsimään tinmekniikn linlisuuksi. Keple tiiisti tutkimustyönsä kolmeen lkiins (Keplein lit). I LAKI
dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
Varatun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
F-y. mrmz. - kappaleiden (vetovoima) OVE LI-TJ TT HTAVIA G HÅVITAATI O LAI TA. ltll. kappaleiden massat ovat mr ja mz (kg)
N' tö OVE L-TJ TT HTAVA G HÅVTAAT O LA TA ltll - kappaleiden (vetovoima) 111 ja ffiz vä!inen gavitaatiovoima Fon F-y mmz kappaleiden massat ovat m ja mz (kg) on kappaleiden keskipisteiden välinen etäisyys
Työ ja kineettinen energia
Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016