arvon askelfunktion kautta tulokseksi. Verkko käyttää ainoastaan kaksiarvoisia tiloja, joko binäärisiä 0 ja 1 tai

Koko: px
Aloita esitys sivulta:

Download "arvon askelfunktion kautta tulokseksi. Verkko käyttää ainoastaan kaksiarvoisia tiloja, joko binäärisiä 0 ja 1 tai"

Transkriptio

1 96 6. Hopfeldn verkot 6.. Johdanto John Hopfeld ett 980-luvun alkupuolella nyttemmn nmeään kantavan verkkomalln analyyeneen. Snä ol ekä yhtymäkohta perceptronn että uua deota. Hän kehtt energafunktoden käyttöä a tarkatel verkkoa muden fykaalten kätteden valoa. Hopfeldn neuroverkon olmut on yhdtetty kakkn muhn olmuhn t. verkko on täyn yhdtetty. Verkko on etetty kuvaa 6.. a heman ton kuvaa 6.. Kuva 6.. Hopfeldn verkko. Kuva 6.. Hopfeldn verkon vahtoehtonen etymuoto. 97 Hopfeldn verkko on ymmetret panotettu llä panoarvot ovat amat molempn uuntn okaen olmuparn välllä. Ykkerroken perceptronn kaltaet okaella olmulla on kynnyarvo a akelfunkto ekä olmu lakee yöttedenä panotetun umman vähennettynä kynnyarvolla välttäen tämän arvon akelfunkton kautta tulokek. Verkko käyttää anoataan kakarvoa tloa oko bnäärä 0 a ta bpolaara a +. Jälkmmäet uovat hvenen edellä yknkertaemman matemaatten perutan oten euraavaa käytetään bpolaara. Kuven 6.. a 6.. noalla on elvää että verkoa e ole mtään erllä yöte- ta tuloyhteykä. Jokanen olmu on nätä molempa. Tämä on Hopfeldn verkon pääomnauu a eroavuu aemmn etettyhn verkkohn nähden. Jokaeen olmuun yötetään tetoa alkuarvoen a + oukko amalla hetkellä. Neuroverkko ätetään tten proeomaan eteenpän tloen euratea toaan kunne e uppenee tabln ratkauun. Tää tlaa olmuen arvot evät enää muutu. Kun verkko on aavuttanut tabln vakaan tlan olmuen arvot ovat verkon tulo. Tämä ohtuu tä että okaen olmun ollea yhdtetty kakkn muhn olmun arvo vakuttaa kakken nden arvohn. Alkutla edutaa mona erlaa arvoa otka pyrkvät vakuttamaan tona. Tämä on todennäköet epätabl koka okn arvo vo yrttää kääntää toa päälle kun taa okn muu vo yrttää kääntää ntä po päältä. Neuroverkon rtyeä tlota ton e yrttää aavuttaa kompromn kakken arvoena välllä a lopullnen vakaa tla edutaa parata kompromratkaua onka verkko kykenee löytämään. Tää tlaa on yhtä monta yötettä otka yrttävät kääntää ykkön päälle kun ellaa otka yrttävät kääntää tä po päältä. Täten yteem ää tabln tlaana.

2 98 Neuroverkon tomnta on radkaalt erlanen perceptronn verrattuna oa yöttetä ovelletaan a verkko tuottaa ratkaua edutavan tuloken. Hopfeldn verkoa tämä enmmänen tulo otetaan uudek yötteek oka tuottaa uuden tuloken ne. Ratkau aadaan kun akoen tuloten välllä e ole enää muutoka. Onko oppmproeduur erlanen perceptronn verrattuna? Onko melekätä tapaa tallettaa hahmooukko Hopfeldn verkkoon? Jo nän on nn mkä e on a mk e tom? Jatkoa pyrtään vataamaan nähn kyymykn. 6.. Hopfeldn mall Hopfeldn neuroverkon tomnnan määrttelevä algortm on euraava. Hopfeldn verkon algortm. Määrää yhteyken panoarvot. w = M = 0 x x 0 = a = 0... N Tää w on olmuen a välen yhteyden panoarvo ekä x on luokan emerkkhahmon komponentt ollen oko ta +. Kakkaan on M hahmoa. Ykkköen kynnyarvot ovat nolla.. Aluta tuntemattomalla hahmolla µ (0) = = 0... N x oa µ(t) on olmun tulo hetkellä t Itero kunne uppenee. µ ( N t + ) = f h ( w µ = 0 ( t )) = 0... N Funkto fh on vomakkaat raottava epälneaar kynnyfunkto akelfunkto kuvan 3.3. mukaet. Iteronta totetaan kunne olmuen tuloket evät enää muutu. Neuronen välet panoarvot aetetaan käyttäen algortma annettua kaavaa a kunkn luokan emerkkhahmoa. Tämä on algortmn opetuvahe oka lttää hahmon teenä. Tunntuvaheea verkon tulo ovtetaan tuntemattoman hahmon kana. Verkon annetaan tten teroda vapaat kunne e aavuttaa tabln tlan ollon tulo e enää muutu. Verkko uppenee ratkauun. Hahmoen autoaoaato merktee että väärtyneen yötehahmon ety ohtaa okeellen hahmon uudelleentuottamen tulokek. Hopfeldn verkon tomnta vodaan tvtää euraavat. Aluta verkko. Syötä tuntematon hahmo. Itero kunne uppenee Energapnta Hopfeldn verkko on parhaten ymmärrettävä energapntoen avulla. Perceptronn tapaukea e anto vuaalen analogan oka muodot ntutven kuvan proeta. Hopfeldn verkon tapaukea energapnnalla on kuoppa ta yväntetä otka vataavat verkkoon talletettua hahmoa. Tuntematon yötehahmo edutaa energapnnan määrättyä ptettä. Kun verkko tero tetään koht ratkaua pte rtyy pnnalla koht otakn yvännettä.

3 00 Vetovomayvänteet vataavat verkon tablea tloa. Ratkau aavutetaan kun pte rtyy yvänteen almpaan alueeeen. Kakk lähalueet ovat eltä katoen ylämäkeen oten proe ää nne. Tämä on uoraan analognen fykaalelle kolmdmenoelle tlanteelle oa epätaaelle pnnalle aetettu pallo pyör koht lähntä yvännettä aettuen tabln tlaan. Tämä e muutu pallon aavutettua pohan. Perceptronn energafunkto ol muotoa E = ( t p o ) oa p ol hahmo a a verkon olmua. Tämä rppu verkon ekä halututa että aaduta tuloketa. Hopfeldn verkon tapaukea tarvttavat välvaheet evät ole tunnettua a k tää verkkoarkktehtuura tarvtaan otakn edelltä opvampaa. On lt melekätä älyttää perceptronn otakn prtetä energafunktoa. Sen tulee olla uur uurlle vrhelle a pen penlle vrhelle. Verkon panoarvoen täytyy vakuttaa energaan amon kun etettyen hahmoenkn ota vaatmuka energafunkton on heatettava. Sopva energafunkto Hopfeldn verkkoa varten on muotoa (6.) E = w x x + x T oa w on olmuen a välnen panoarvo a x on olmun tulo. T on olmun kynnyarvo. Kun tulo yötetään takan verkkoon tuloket edutavat euraavaa yöteoukkoa. Nän ekä panoarvot että yötteet on ekplttet etetty. Panoarvot ältävät hahmonformaatota a kakk hahmot on ällytetty tähän energafunktoon. Solmua e ole uoraan yhdtetty teenä ollon termt w ovat nolla. Koka yhteydet ovat ymmeträ on w=w. 0 Kun on määrtelty vrhefunkto vodaan vatata kyymykn hahmoen tallettameta a mutta palauttameta. Jo hahmot aadaan energapnnan mataln kohtn vodaan oveltaa lakeutuvaa gradentta energapnnalla onkn tällaen mnmn löytämek mkä antaa ratkaun Hahmoen talletu Hahmon tallettamta varten tämän energafunkton arvoa ptää mnmoda otta e aettuu energapnnan mnmkohtaan. Aemmn talletetut halutaan luonnollet myö älyttää oma yvänteään oten uuen hahmoen läämnen e aa tuhota kakkea aempaa nformaatota. Panoarvomatr ältää nformaatota talletetuta hahmota. Halutaan nän ollen löytää panoarvoen ety oka tuottaa mnmn energafunktoon. Mnmodaan energafunktota E = w x x + x T määrätylle hahmolle olla on yötekomponentten oukko x0 x xn-. Jokaen termn on oltava negatvnen oten umman x T on oltava negatvnen. Tämä aadaan akaan määrätylle hahmolle aettamalla T vatakkamerkkek kun x. Er hahmolla on kutenkn er arvoa x a llon kynnyterm vo myö kavattaa vrhefunkton E arvoa. Tämän välttämek on parata aettaa kynny nollak oka e vähennä ekä kavata energafunkton arvoa mllekään hahmota.

4 0 Krotetaan x tarkottamaan yötehahmon komponentta arvoltaan oko + ta. Tällön w on olmuen a välnen panoarvo enteen tapaan a ältää hahmonformaatota kakta opetetuta hahmota. Panoarvomatr vodaan akaa nän ollen kahteen oaan. Tonen ettää kakken hahmoen vakututa pat hahmon ohon vtataan panolla w a tonen on pelkätään hahmon ouu ohon vtataan panolla w. Energafunkto vodaan nyt krottaa uudelleen kahteen oaan el E = w x x (6.) w x x = E p S + E mä S on kakken hahmoen p oukko. Energafunkton ouudet erotettn nän hahmon uhteen. Vodaaan aatella energaa gnaalna lättynä kohnalla. Sgnaal on tää hahmon aheuttama energa kun taa kohna ohtuu kakken muden hahmoen vakutuketa. Yo. hahmon tallettamnen vataa energafunkton tekemtä mahdollmman penek. Kaavan (6.) enmmänen term vataa kohnaa ekä tä voda uurkaan muuttaa. Toen termn gnaaln vakututa vodaan vähentää. Nän ollen hahmon tallettamek mnmodaan :nnen energatermn vakututa energafunktoon tekemällä arvo (6.3) mahdollmman penek. x x E = w 03 Eo. vataa arvon w x x tekemtä mahdollmman uurek kaavan (6.3.) negatven etumerkn taka. Komponentt x ovat arvoltaan oko + ta. Sllon x on ana potvnen. Jo energaterm aetetaan rppuvak tulota x x e on ana potvnen a umma aadaan nn uurek kun mahdollta. Em. aadaan aettamalla x x = x x w a huomaamalla että haluttu tulo tulee merkttäeä panoarvot euraavan yhtälön mukaan. w = x x Nyt haluttu tulo on käytettävä. Edellnen panoarvoen yhtäuurk merktemnen mnmo energafunktota hahmolle. Kakken hahmoen panoarvoen lakemta varten laketaan yhteen tämä yhtälö kakken hahmoen yl. Saadaan laue olmuen vällle aetetulle kokonapanoarvolle: = w = x x w Verrattaea tätä algortmn enmmäeen akeleeeen nähdään että ne ovat denttä. Nyt ymmärretään enmmäen akeleen todella tallettavan kakk alkuhahmot neuroverkkoon.

5 04 Panoarvon w muuttamnen muuttaa arvoa Ep S- onkn verran kaavan (6.3) mukaan. Täten hahmoen läämnen haottaa oan määrn aempaa talletuta mutta tätä e vo välttää. Hopfeldn verkolla e ole teään mtään teratvta oppmalgortma. Hahmot talletetaan yknkertaet lakemalla nden energaa. Verkolla e ole ploykkötä ollen ten kykenemätön koodaamaan dataa Mutta palauttamnen Kun hahmot on talletettu verkkoon ptää ne aada palautettua eltä tarvttaea. Tämä uortetaan lakeutuvalla gradentlla energafunkton uhteen. Kätellään kaavan (6.) energafunktota. On lakettava määrätyn olmun arvon vakutu energafunktoon. Stten käydään verkko läp vähentäen okaen olmun vakututa kunne energa-arvo on mnmään. Energafunkto on lmatava kahdea oaa akamalla olmun k vakutu euraavat. E = w k k x x + x T k (6.4) x + k x w k x k x w k x k T k Nyt k: neuron vahtaa tulotlana arvota xk arvoon xk. Energaerotu E = E E onka tlan vahto x = x k k x k 05 aheuttaa aadaan kehttämällä yhtälö (6.4) arvolle xk a xk ekä tten vähentämällä. Erotu vodaan krottaa euraavat. (6.5) E = ( x ) k x w k + x k x w k + x k T k Neuronn k muuto e vakuta kaavan (6.4) enmmäeen kahteen termn oten ne äävät ennalleen a tämän taka eventyvät po. Matrn w ollea ymmetrnen vodaan ndekeä vahtaa a eventää laueke euraavaan muotoon. (6.6) E = x k ( x w k T k ) Lauekkeen ummaterm on yötteden olmuun k umma a Tk on ykkön k kynnyarvo. Kunkn olmun kynnyarvo aetettn nollak talletuvaheea otta taattan hahmoen muodotavan mnmeä energafunktoon. Kun olmun tulo on oko + ta arvon Ek penentämnen merktee tuloken + tuottamta mkäl panotettu umma on uuremp kun nolla a tuottamta mkäl tämä on penemp kun nolla. Molemmat penentävät arvoa Ek. Verrattaea tätä Hopfeldn verkon olmuen pävtyfunktoon > 0 x + w x = = 0 tla pyyy k < 0 x entellään nähdään että pävtyfunkto uorttaa tämän operaaton a toteuttaa ten lakeutuvaa gradentta E:ä. Tämä mahdolltaa hahmoen palauttamen verkota käytäeä peräkkän läp tloa olla kullakn on matalamp energa kun edeltäällä ta o panotettu umma on yhtä uur kun kynnyarvo yhtä uur energa. Tämä lentymnen el relakaato enttä matalampaan

6 06 energatlaan atkuu matalan energan vakaaeen tlaan at ollon verkko on löytänyt tenä mnmn a tuottanut hahmon. Pävty vodaan tehdä kahdella heman totaan pokkeavalla tavalla. Pävty on tehtävä kaklle olmulle amanakaet mä verkon arvot äädytetään välakaet a tten laketaan kaklle olmulle euraava tla. Uu tla vataa yhtä pävtytä pokk koko verkon. Tämä operaato on ynkronnen pävty. Vahtoehtonen menettely aynkronnen pävty on kyymykeä kun olmu valtaan atunnaet a pävtetään en tulo yöttedenä mukaan. Proea totetaan. Pääero menetelmen välllä on että aynkronen pävtyken tapaukea ykttäen olmun tuloken muuto vakuttaa yteemn tlaan a vo k vakuttaa euraavan olmun muutokeen. Nän ollen olmuen pävtyärety vakuttaa oan määrn verkon käyttäytymeen. Vakutuket ovat lmeä palauttamvaheea llä euraavan pävtettävän olmun valnnan atunnauu muuttaa hahmoonoa onka verkko kehttää. Sykronea pävtykeä kakk olmut pävtetään yhdeä oten vältlanteden hahmot evät muutu. Aynkronnen pävty lää heman epävarmuutta ta epädetermnmä kulettavaan polkuun yötteetä lopulleen vakaaeen tlaan. Molemmlla menetelmllä on lt ama ylenen luonne a e kumpaa käytetään on harvon ertyen tärkeä ekka. Tärkeä Hopfeldn verkon tomnnalle on verkon panoarvomatrn ymmetryy nolla-alkoen halkaan uhteen. Jopa vähänen pokkeama tätä ymmetrata vo tehdä verkota epätabln ollon verkko e aetu mhnkään vakaaeen lopputlaan. Malla on ttemmn laaennettu tutkmalla erlaten yhteyken käyttöä a taaten kynnyfunktoden kuten gmodfunkto käyttöä akelfunkton ata Emerkk Kuva 6.3. ettää hahmoen oukkoa ota käytettn erään Hopfeldn verkon opetukea. Kuva 6.4. oottaa mten verkko tom. Kuva 6.3. Hopfeldn verkon opetuoukko. Kuva 6.4. Verkolle annetaan väärtynyt yötehahmo. Hahmoono ettää mten verkko kulkee peräkkäten tloen kautta kunne tabl tulo on aatu kehtettyä.

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

MONIKAPPALEMEKANIIKAN MALLINTAMINEN PARAMETRISOIMALLA SIDOSMONISTO

MONIKAPPALEMEKANIIKAN MALLINTAMINEN PARAMETRISOIMALLA SIDOSMONISTO IIVISELMÄ MONIKAPPALEMEKANIIKAN MALLINAMINEN PARAMERISOIMALLA SIDOSMONISO J. MÄKINEN & H. MARJAMÄKI eknllen ekankan a optonnn lato apereen teknllnen ylopto PL 589 33101 AMPERE ää etykeä kuvataan lyhyet

Lisätiedot

1. välikoe

1. välikoe Jan Loto TA7 Ekonometan johdantok Nm: Opkeljanmeo: välkoe 77 Vataa alla olevn kyymykn ympäömällä okea vahtoehto Kakn tehtävää on neljä vahtoehtoa, jota yk on oken Okeata vataketa aa pteen ja vääätä vataketa

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita

Vuoden Beauceron -säännöt (voimassa alkaen) Yleisiä periaatteita Vuoden Beauceron -äännöt (vomaa 1.1.2017 alkaen) Yleä peraatteta Klpalukau on kalentervuo. Mukaan hyväkytään van KoraNetta löytyvät tuloket pl. erkeen pteytetyt arvoklpalut. Yhden uortuken pteet muodotuvat

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

/If# Lu.ErTeL.a It?.?. /~.3

/If# Lu.ErTeL.a It?.?. /~.3 040/Magn.omna./SMOY/73 /f# Lu.ErTeL.a t?.?. /~.3 ~~,u~~ - ~,~ ()~.4~~- ~ ;(t-1 ~ ~ tf*#?~/ ~ #~. ~ KVNAYTTEDEN MAGNEETTSTEN OMNASUUKSEN. MAARTYKSA v. 1973 Otanem 28.1 2.1 973 Pea Lappaa nen Rautaruu Oy:n

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Tarkastellaan esimerkiksi metaanikaasun täydellisen palamisen yhtälöä ilmakertoimella l = 1.2

Tarkastellaan esimerkiksi metaanikaasun täydellisen palamisen yhtälöä ilmakertoimella l = 1.2 204 14. TASAPAINON MÄÄRITTÄMINEN TIETOKONE- OHJELMILLA Tarkatelemme tää luvua kemallten taapan-hjelmen lakentamenetelmen pääperaatteta ekä etämme lakentaemerkkejä hjelmtjen käytötä. 14.1 Lakentamenetelmät

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia. Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA. välkoe 9.3.2007. Saat vatata van neljään tehtävään!. ake pteden A ja B välnen potentaalero el jännte AB. =4Ω, 2 =2Ω, =0 V, 2 =4V, =2A, =3A A + 2 2 B + 2. Kytkn ljetaan hetkellä.

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 7: Vaihtovirta-analyysin perusteet

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 7: Vaihtovirta-analyysin perusteet ,,4,6,8,,4,6,8,,4,6,8 SATE4 Pranalyy, oa kevät 8 /8 akharjot 7: ahtovrta-analyyn perteet Tehtävä. Olkoon nmotonen jännte (t) = 8 co(t 6º). Tehtävä / 8 6 4 - -4-6 -8 - t / m Kva. Jännte (t) = 8 co(t 6º).

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.

S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen. T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden

Lisätiedot

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15 A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

Telecommunication engineering I A Exercise 3

Telecommunication engineering I A Exercise 3 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset SMG-4200 Sähkömagneettiten järjetelmien lämmöniirto Harjoituken 1 ratkaiuehdotuket Vata 1800-luvun puoliväliä ymmärrettiin että lämpöenergia on atomien ja molekyylien atunnaieen liikkeeeen värähtelyyn

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi S-11436 FYSIIKKA IV (S), Kulutukeku Dipli, Kevät 003, LH LH-1 Ftni, jnka energia n 10,0 kev, törmää leva levaan vapaaeen elektrniin ja irttuu uuntaan, jka mudtaa 60,0 kulman ftnin alkuperäien liikeuunnan

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely

Valuma-aluetason kuormituksen hallintataulukon vaatimusmäärittely Valuma-aluetaon kuormituken hallintataulukon vaatimumäärittely Verio 4.11.2011 1. Tavoitteet Veienhoidon äädöten toteutu edellyttää veitöihin kohdituvan kuormituken vähentämitä n, että veden laatu paranee

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit

SYNKRONIKONEET RELUKTANS- SIKONEET RM RM RM + >>L q. L d >>L q. Harjalliset -pyörivä PMSM upotetu magneetit 7.48 TY Juha Pyrhönen 7. Tahtikone Tahtikoneet muootavat kokonaien ähkökoneperheen. Päätyyppejä ovat vieramagnetoiut tahtikoneet, ynkroniet reluktanikoneet ja ketomagneettitahtikoneet. Vieramagnetoiut

Lisätiedot

Tutkimus terveyden- ja vanhustenhuollon tarve- ja valtionosuuskriteereistä

Tutkimus terveyden- ja vanhustenhuollon tarve- ja valtionosuuskriteereistä Unto Hänen Len Nguyen Maru Peurnen Mo Peltola Tutmu terveyden- ja vanhutenhuollon tarve- ja valtonouurteeretä RAPORTTI 3 2009 Krjottajat ja Terveyden ja hyvnvonnn lato Tatto: Mnna Komppa / Tattotalo Prntone

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.

Tässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa. DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q

Lisätiedot

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2017

Palkanlaskennan vuodenvaihdemuistio 2017 Palkanlaskennan vuodenvahdemusto 2017 Tarkstuslsta Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe

Lisätiedot

PD-säädin PID PID-säädin

PD-säädin PID PID-säädin -äädin - äätö on ykinkertainen äätömuoto, jota voidaan kutua myö uhteuttavaki äädöki. Sinä lähtöignaali on uoraa uhteea tuloignaalin. -äätimen uhdealue kertoo kuinka paljon mittauuure aa muuttua ennen

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

9. Muuttuva hiukkasluku

9. Muuttuva hiukkasluku Statstnen fyskka, osa B (FYSA242) Tuomas Lapp tuomas.v.v.lapp@jyu.f Huone: FL240. E kntetä vastaanottoakoja. kl 2016 9. Muuttuva hukkasluku 1 Kertaus: lämpökylpy Mustetaan kurssn A-osasta Mkrokanonnen

Lisätiedot

Viherlassilan kevätlehdestä saat ilmaiset VINKIT ja myymälästämme ILMAISET NEUVOT kaupanpäälle! i t. t ä. o k. ...ja maailmasi kasvaa

Viherlassilan kevätlehdestä saat ilmaiset VINKIT ja myymälästämme ILMAISET NEUVOT kaupanpäälle! i t. t ä. o k. ...ja maailmasi kasvaa Vherlasslan kevätlehdestä saat lmaset VNKT ja myymälästämme MET NEUVOT kaupanpäälle! Hae kev! s t o k t ä...ja maalmas kasvaa Tästä se alkaa! Kevät! mmattlasen neuvot helpottavat juur snulle sopvan phan

Lisätiedot

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus

METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

HIFI-KOMPONENTTIJÄRJESTELMÄ

HIFI-KOMPONENTTIJÄRJESTELMÄ HUOMIO: Kauttmes (e tomteta latteen mukana) vovat erota tässä ohjekrjassa estetystä. mall RNV70 HIFI-KOMPONENTTIJÄRJESTELMÄ Huolto ja teknset tedot LUE käyttöohjeet, ennen kun yrtät käyttää latetta. VARMISTA,

Lisätiedot

Viikkotehtävät IV, ratkaisut

Viikkotehtävät IV, ratkaisut Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää

Lisätiedot

PERUSSARJA. Tasapainossa punnusten painovoima on kumilangan venymistä vastustavan voiman suuruinen, mutta vastakkaissuuntainen.

PERUSSARJA. Tasapainossa punnusten painovoima on kumilangan venymistä vastustavan voiman suuruinen, mutta vastakkaissuuntainen. Fykkaklpalu 6.11.007, peuajan atkaut PERUSSARJA Kjota tektaten koepapen oa ne, kotoottee, ähköpotoottee, opettaja n ekä koulu n. Klpaluakaa on 100 nuutta. Sekä tehtävä- että koepapet palautetaan klpalun

Lisätiedot

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet

FYSI1162 Sähkö / Piirianalyysi syksy kevät /7 Laskuharjoitus 6: Vaihtovirta-analyysin perusteet FYSI116 Sähkö / Pranalyy yky 14 - kevät 15 1 /7 akharjot 6: ahtovrta-analyyn perteet Tehtävä 1. Olkoon nmotonen jännte (t) = 8 co(1t 6º). Tehtävä 1 / 1 8 6 4 - -4-6 -8-1,,4,6,8 1 1, 1,4 1,6 1,8,,4,6,8

Lisätiedot

Ravintoloiden tupakansavuhaittojen vähentäminen. Raportti TUR B013

Ravintoloiden tupakansavuhaittojen vähentäminen. Raportti TUR B013 Rantoloden tupaanauhattojen ähentämnen Raportt TUR B13 Seppo Enbom Lamnaarpuhallu.19 m³/ dt - C Baarmetar 1 8 6 4 Paallpoto.38 m³/ Aaaat 18 16 14 1 1 8 6 4 47 Tulolmaäleö.19 m³/, dt -5 C Julatu Työuojelurahaton

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot