A250A0100 Finanssi-investoinnit Harjoitukset

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15"

Transkriptio

1 A50A000 Fnanss-nvestonnt Hajotukset ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60 cov( va(, A B ,66 0,94 C ,44

2 ehtävä. akknapotolon tuotto-odotus on 7 %, sktön kokokanta 4 % ja osakkeden A ja B betat ovat 0,7 ja,. a Pä avopapemakknasuoa b llasa olsvat osakkeden A ja B tuotto-odotukset takastelupeodlla CAP-malln mukaan? c Sjota osakkeet a kohdan gaan a Avopapemakknasuoa E(R 5 0 B E(R m 5 0 A Avopape makknasu oa 5 R 0 0 0,5,5 Beta b CAP: ( A 0,04 0,7 (0,7 0,04 0,3(3,% B 0,04, (0,7 0,04 0,96(9,6% c A: tuotto 3, % ja beta 0,7 B: tuotto 9,6 % ja beta, (osuvat suoalle.

3 ehtävä.3 uotto-odotus Koelaato makkna- Volatlteett potolon kanssa Osake 9,5 % 0,9 7,0 % Osake 0,0 % 0,7 8,0 % akkna- 7,0 %,0 4,0 % potolo Rsktön kokokanta 4,0 % 0,0 0,0 % Vastaa yllä olevan taulukon peusteella seuaavn kysymyksn: a Pä pääoma- ja avopapemakknasuoat b tkä ovat osakkeden beta-ketomet? c Vetaa osakkeden skn suhteutettua tuottoa makknapotolon skn suhteutettuun tuottoon (avo tätä sekä systemaattsella että kokonasskllä. kä yllä mantusta kolmesta sksjotuksesta vakuttaa houkuttelevmmalta? a Pääomamakknasuoa E(R E(R 0 5 Pääomamak knasuoa 0 5 E(R 0 m p

4 Avopapemakknasuoa E(R 5 E(R m O O Avopape makknasu oa 5 R 0 Beta 0 0,5,5 ( m 9,5 4,9 7 4 (lman koelaatota makknapotolon kanssa 0 4 0,46 7 4

5 b cov(, cov( va(,, 0,9 0,4 0,7 0,4,09 0,7 0,40,08 0,4 0,40 c Systemaattnen sk: Jensen: CAP: ( ( ( ( (0,95 0,04,09 (0,7 0,04 0,09(,9% (0,0 0,04 0,40 (0,7 0,04 0,008(0,80% 0 Osake paas

6 eyno: 0,95 0,04,09 0,4 0,0 0,04 0,40 0,50 0,7 0,04 0,30 Osake paas Kokonassk: Shape: S S 0,95 0,04 0,7 0,9 S 0,0 0,04 0,08 0,750 S 0,7 0,04 0,4 0,99 akknapotolo paas

7 ehtävä.4 Sjottajat odottavat makknatuotoks 6 % seuaavalle vuodelle. Osakkeen, jonka beta on 0,80 vastaava tuotto-odotus on 3,5 %. Jos seuaavan vuoden makknatuotto jääkn 0 %:n, paljonko osakkeen vos tällön odottaa tuottavan? CAP: ( Ratkastaan yhtälö skttömän koon suhteen: ( ( 0,35 0,80 0,6 ( 0,80 0,035 Jos makknatuotto 0 %: ( 0,035 0,80 (0,0 0,035 0,087(8,70%

8 ehtävä.5 Kolme sjotussalkkua koostuu kukn vdestä osakesajasta seuaavn - ketomn ja potolopanon: Salkku Salkku Salkku 3 osake Potolopano osake potolopano osake potolopano A 0 % A, 35 % A 0,6 5 % B 0,8 5 % B,5 0 % B 0,75 0 % C,5 0 % C,0 5 % C 0,5 35 % D 0,9 0 % D,8 5 % D 0,8 30 % E 0,75 5 % E, 35 % E 0,9 0 % Salkkujen keskmäääset vuotuset tuottoposentt takastelupeodlta ovat vastaavast 6.00,.00 sekä Aseta salkut paemmuusjäjestykseen a eynon ndeksllä, sktön kokotuotto on 3.0 %. b Jensenn ndeksllä, kun osakemakknoden vastaava tuotto on 5.0 %. c Jos osakemakknoden tedettäsn nousevan seuaavana vuonna, mtkä vs annetusta vdestätosta osakesajasta atonaalnen sjottaja ssällyttäs salkkuunsa? d kä ols c-kohdan salkun odotettu tuotto, mkäl salkku ols tasapanotettu ja sktön koko 3,0 % sekä odotettu makknatuotto 5 %? a eyno: P 0, 0,5 0,8 0,,5 0, 0,9 0,5 0,75 0,975 6,00 3,0 0,975 4, 0,35, 0,,5 0,05 0,5,8 0,35, P P,00 3,0,750 4,, ,05 0,6 0, 0,75 0,35 0,5 0,3 0,8 0, 0,9 0,6850

9 4,00 3,0 0, , Paemmuusjäjestys: salkku 3, salkku ja salkku b Jensen: ( ( (6 3,0 0,975 (5 3,0,99 (,00 3,0,750 (5 3,0 (4,00 3,0 0,6850 (5 3,0 3,70,78 Paemmuusjäjestys: salkku 3, salkku ja salkku c Jos osakekussen tedettäsn nousevan suumman betan omaavat osakkeet salkkuun. D, B, C, A ja E d Valtun salkun beta: P 0,,8 0,,5 0,,5 0,, 0,,,3700 Odotettu tuotto (CAP: E ( 3,0,37 (5 3,0 9,44%

10 ehtävä.6 Sjottaja haktsee sjottamsta joko osakeahastoon ta osakendeksahastoon, joka pyk eplkomaan makknapotolondeksn koostumusta. Vs vuotta kattavan kuukaustuottoaneston peusteella ahastolle on laskettu seuaavat tunnusluvut: Osakeahasto Osakendeksahasto Keskmääänen skttömän 0,6 % 0,5 % kokotuoton ylttävä tuotto (yltuotto/kk Kuukausttasen yltuoton 9 % 7 % keskhajonta Beta, Kumman ahaston valntaa suosttelst sjottajalle olettaen, että suostukses peustuu anoastaan menestyshstoaan? Peustele suostukses käyttäen vähntään kahta salkkusjotusten menestysmttaa. Shape: S Osak. ah. S 0,006 0,09 0,067 0,005 0,07 0,07 S Osak. nd. ah. eyno: Osak. ah. Osak 0,6%, 0,5455% 0,5% 0,5000%. nd. ah. -Jos anut sksjotuskohde osakend. ahasto, koska Shape sop sllon kun sjotus on sjottajan anut sjotuskohde -Jos useta sksjotuskohteta luota enemmän eynon suhdelukuun (osakeahasto

11 ehtävä.7 (Excel-tehtävä Kusssvulta ladattavssa olevaan taulukkoon on koottu 4 suomalasen sjotusahaston ahasto-osuuksen votto-osuus- ja splttokastut makknaavot, osakemakkna- ja valtonoblgaatondeksn avot 5-vuotspeodlta kunkn kuukauden vmesltä kaupankäyntpävltä. a Laske ensmmäselle ahastolle CAP-malln pohjautuva beta-keon kuukaustuottoanestosta kovaanssn ja vaanssn avulla. -Lasketaan ahastolle tuotot kk havannosta sekä vähennetään tästä sktön kokokanta. Vastaava Hex-tuottondekslle, joka kuvaa makknatuottoa. Nästä avosta lasketaan beta ahaston ja makknatuoton välsestä kovaansssta (cova ja makknatuoton vaansssta (vap. b aksta vastaukses okeellsuus laskemalla beta OLS-egessoyhtälön avulla. Exceln ptää olla asennettuna Analyss oolpak. ämän vo asentaa tse Excelssä 003: valkosta ools Add-Ins (ast kohtaan Analyss oolpak. Valkosta: ools Data analyss Regesson (ja OK Input Y Range: E4:E63 (ahaston tuotto vähennettynä skttömällä koolla Input X Range: AV4:AV63 (makknand. tuotto vähen. skt. koolla Excelssä 007: Pana cosot Oce Button Excel Optons Pana Add-Ins Valtse Excel Addns kohdassa anage ja pana Go Valtse Analyss oolpack Pana OK Valkosta: Analyss Data analyss Regesson (ja OK Input Y Range: E4:E63 (ahaston tuotto vähennettynä skttömällä koolla Input X Range: AV4:AV63 (makknand. tuotto vähen. skt. koolla Kts. Excel ehtävä.8 (Excel tehtävä a Vetaa tehtävässä.7 saamaas betaa muden ahastojen betohn. -Lasketaan mulle ahastolle betat vastaavast kun ensmmäselle ahastolle.

12 b Avo makknoden tehokkuutta vetaamalla tutkmas ahaston menestystä avopapemakknasuoan slle antamaan tuottoennusteeseen. -ässä lasketaan ahastolle Jensenn alat käyttämällä keskavoja ahastojen tuotosta, josta on vähennetty sktön kokokanta sekä makknandeksn vastaavaa tuottoa sekä jo aemmn laskettuja betoja. c kä kaksta aneston ahastosta on tällä mttalla paas? Se jolla on suun ala. d Jos lasket saman menestysmttan avot kovaamalla osakemakknandeksn tuottoakasajan ahastojen atmeettsn keskavotuottohn peustuvalla akasajalla, muuttuuko c-kohdan vastaus? Kts. Excel e Entä, jos kteenä käytetään Shapen ndeksä? Kts. Excel kä on d-kohdan mukasest laskettujen menestysmttaen keskavo koko ahastoanestolle? Koska alat lasketaan tässä tapauksessa suhteessa ahastojen keskmäääsn tuottohn, täytyy nden keskavoks tulla 0. Kts. Excel g kä 4 sjotusahastosta vakuttaa olevan hekommn hajautettu? Se, jolla epäsystemaattnen sk on penemp Kts. Excel

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

6. Capital Asset Pricing Model

6. Capital Asset Pricing Model 6. Captal Asset cg odel Ivestotpäätökset edustavat use seuaava ogelmatyyppejä:. te sjotuspotolo kaattaa aketaa? vt. kassavtoje täsmääme ks. lueto 3. kä o sjotuskohtee okea hta? vt. abtaasvapaus jvk-hottelu

Lisätiedot

Yksinkertainen korkolasku

Yksinkertainen korkolasku Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat

Lisätiedot

Asennus- ja käyttöohjeet. Videoterminaali 2600..

Asennus- ja käyttöohjeet. Videoterminaali 2600.. Asennus- ja käyttöohjeet Vdeotermnaal 2600.. Ssällysluettelo Latekuvaus...3 Asennus...4 Lassuojuksen rrottamnen...5 Käyttö...5 Normaal puhekäyttö...6 Kutsun vastaanotto... 6 Puheen suunnan ohjaus... 7

Lisätiedot

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN DANSKE BANK A/S 2017: NOUSEVA KIINA Lanakohtaset ehdot A. Sopmusehdot Nämä lanakohtaset ehdot muodostavat yhdessä 28.6.2012 pävättyyn sekä 8.8.2012, 5.11.2013 ja 13.2.2013 täydennettyyn ohjelmaestteeseen

Lisätiedot

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005.

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005. TAMPEREEN YLIOPISTO Talousteteden latos JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: emprnen tutkmus kotmassta ptkän koron rahastosta vuoslta 2001 2005. Kansantaloustede Pro gradu

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan

Lisätiedot

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta SUOMEN SÄÄDÖSKOKOELMA 2000 ulkastu Helsngssä 22 päänä joulukuuta 2000 N:o 1138 1143 SISÄLLYS N:o Su 1138 altoneuoston asetus teeydenhuollon okeustuakeskuksesta annetun asetuksen eäden säännösten kumoamsesta...

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

Webbihaku /indeksointi

Webbihaku /indeksointi Tedonhakumenetelmät Helsngn ylopsto/ TKTL, k 2014 Webbhaku Tedonhakumenetelmät Hakuobott (cawle) Indeksoja Indekst Manosndekst Webbhaku /ndeksont Hakukone Hae 1 2 Hakuobott Robotn elämää Hakuobotn (cawle,

Lisätiedot

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 9 (viikko 16) Ratkaisuehdotuksia (Laura Tuohilampi)

Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 9 (viikko 16) Ratkaisuehdotuksia (Laura Tuohilampi) Tilastotieteen jatkokussi Sosiaalitieteiden laitos Hajoitus 9 (viikko 16) Ratkaisuehdotuksia (Laua Tuohilampi) 1. Alla mainituissa testitilanteissa saatiin otoskeskiavoon peustuvan testisuueen avoksi z

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607 046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta. VUOKRSOPMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALM Hallan Sauna Oy (y-tunnus: 18765087) CO Tl-Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde Hallan

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

KÄYTTÖOPAS MALLI: RN-100

KÄYTTÖOPAS MALLI: RN-100 Vdeonauhur Fnnsh KÄYTTÖOPAS MALLI: RN-100 PAL Ennen tämän tuotteen kytkemstä, käyttöä ta säätöä pyydämme snua lukemaan tämän opaskrjasen huolellsest ja kokonaan. Varotomet & omnasuudet Tedoks käyttäjälle

Lisätiedot

HIFI-KOMPONENTTIJÄRJESTELMÄ

HIFI-KOMPONENTTIJÄRJESTELMÄ HUOMIO: Kauttmes (e tomteta latteen mukana) vovat erota tässä ohjekrjassa estetystä. mall RNV70 HIFI-KOMPONENTTIJÄRJESTELMÄ Huolto ja teknset tedot LUE käyttöohjeet, ennen kun yrtät käyttää latetta. VARMISTA,

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2.

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2. l u T p Kla ö t t e k Teho a j s m a koko e j h o s u asenn KlapTul-palotla KlapTul-palotlan osat, kokoams- ja turvaiisuusohje 1. Nupp 2. HoIkk 3. Kans 4. Ruuv Knntä holkk ja nupp ruuvlla kannen läp ja

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI 06 07 11 12 13 14 UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS 15 16 17 18 19 19 YLEISKUVAUS VASEN panke

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

P S. Va r äi n. m m2 2. e a / puistossa säilyvät puut. korko muuttuu, kansi uusitaan SVK asv.

P S. Va r äi n. m m2 2. e a / puistossa säilyvät puut. korko muuttuu, kansi uusitaan SVK asv. TI E f as 8 5 5 pu ke lu pi ip iv - le / te AP 1 4 KI +8 8 +8 9 O le lem ht a ip ss uu a st ol oa ev aa rk ki ip met A L 31 6 L AP P LE IK S E T ei l y tu pu r u va liu m k u at m to äk i in u hl M 22

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Harjoitukset (KOMPRIMOINTI)

Harjoitukset (KOMPRIMOINTI) Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

Eufex Rahastohallinto Oy Y-tunnus 2179399-4 Eteläesplanadi 22 A, 00130 Helsinki 09-86761413 www.eufex.fi/rahastohallinto

Eufex Rahastohallinto Oy Y-tunnus 2179399-4 Eteläesplanadi 22 A, 00130 Helsinki 09-86761413 www.eufex.fi/rahastohallinto EPL 100 Erikoissijoitusrahasto Vuosikertomus 2011.12.27-2012.12.31 EPL 100 2012.12.31 Rahaston perustiedot Tuotto A1 D1 Rahastotyyppi Osakerahasto 1 kuukausi 2.83% 2.83% Toiminta alkanut 2011.12.27 3 kuukautta

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Eufex Rahastohallinto Oy Y-tunnus 2179399-4 Eteläesplanadi 22 A, 00130 Helsinki 09-86761413 www.eufex.fi/rahastohallinto

Eufex Rahastohallinto Oy Y-tunnus 2179399-4 Eteläesplanadi 22 A, 00130 Helsinki 09-86761413 www.eufex.fi/rahastohallinto EPL Hyödyke Erikoissijoitusrahasto Vuosikertomus 17.6.-31.12.2013 EPL Hyödyke 2013.12.31 Rahaston perustiedot Tuotto A1 Rahastotyyppi Raaka-ainerahasto 1 kuukausi 0.57% Toiminta alkanut 2009.06.01 3 kuukautta

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Yhdistä kodinkoneesi tulevaisuuteen. Pikaopas

Yhdistä kodinkoneesi tulevaisuuteen. Pikaopas Yhdstä kodnkonees tulevasuuteen. Pkaopas 1 Kots tulevasuus alkaa nyt! Henoa, että käytät Home onnect -sovellusta * Onneks olkoon käytät tulevasuuden kodnkonetta, joka jo tänään helpottaa arkeas. Mukavamp.

Lisätiedot

PUTKIKAKSOISNIPPA MUSTA

PUTKIKAKSOISNIPPA MUSTA Takorauta Tuote LVI-numero Pikakoodi 0753007 RU33 KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS KESKIRASKAS DN 65 KESKIRASKAS 0 KESKIRASKAS 0 KESKIRASKAS SK/UK SK/UK

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2

Lisätiedot

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

ANALYYSIKÄSIKIRJA ANALYYSIKÄSIKIRJA 1 29.8.2012

ANALYYSIKÄSIKIRJA ANALYYSIKÄSIKIRJA 1 29.8.2012 ANALYYSIKÄSIKIRJA 1 ANALYYSIKÄSIKIRJA ANALYYSIKÄSIKIRJA 2 Sisällysluettelo 1 JOHDANTO... 3 2 TUOTTOLUVUT... 3 3 JENSENIN MALLI... 3 4 RISKILUVUT... 3 4.1 Volatiliteetti... 3 4.2 Riskiluokka... 4 4.3 Beta...

Lisätiedot

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ Suomen Ammattn Opskeleven Ltto - SAKKI ry AMMATILLINEN KOULUTUS MUUTOKSEN KOURISSA Suomalasen ammatllsen koulutuksen vahvuus on sen laaja-alasuudessa

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

- Kuinka erotan jyvät akanoista. Petri Kärkkäinen salkunhoitaja

- Kuinka erotan jyvät akanoista. Petri Kärkkäinen salkunhoitaja - Kuinka erotan jyvät akanoista Petri Kärkkäinen salkunhoitaja eq Suomiliiga eq Suomiliiga on Suomeen sijoittava osakerahasto Rahasto sijoittaa varansa suomalaisiin ja Suomessa noteerattujen yhtiöiden

Lisätiedot

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit A50A000 Finanssi-investoinnit 6. harjoitukset.4.05 Futuuri, termiinit ja swapit Tehtävä 6. Mikä on kahden vuoden bonditermiinin käypä markkinahinta, kun kohdeetuutena on viitelaina, jonka nimellisarvo

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

POHJOISMAAT, SUOMALAISEN OSAKESIJOITTAJAN UUSI KOTIMARKKINA! JAN BRÄNNBACK AKTIA VARAINHOITO

POHJOISMAAT, SUOMALAISEN OSAKESIJOITTAJAN UUSI KOTIMARKKINA! JAN BRÄNNBACK AKTIA VARAINHOITO POHJOISMAAT, SUOMALAISEN OSAKESIJOITTAJAN UUSI KOTIMARKKINA! JAN BRÄNNBACK AKTIA VARAINHOITO Miljardia Aktian hoidossa oleva asiakasvarallisuus 9 8 7 6 5 4 3 2 1 0 2005 2006 2007 2008 2009 2010 2011 2012

Lisätiedot

Sijoituspolitiikka. Lahden Seudun Ekonomit ry Hyväksytty vaalikokouksessa

Sijoituspolitiikka. Lahden Seudun Ekonomit ry Hyväksytty vaalikokouksessa Sijoituspolitiikka Lahden Seudun Ekonomit ry Hyväksytty vaalikokouksessa 8.11.2017 Sijoitustoiminnan perusperiaatteet 1/4 Lahden Seudun ekonomit ryn sijoitustoiminnan perusperiaatteet ovat yhdistyksen

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Osavuosikatsaus 1.1.-30.6.2005. Veritas-ryhmä

Osavuosikatsaus 1.1.-30.6.2005. Veritas-ryhmä Osavuosikatsaus 1.1.-30.6.2005 Veritas-ryhmä Veritas-ryhmä Osavuosikatsaus 2005 AVAINLUVUT 1-6/2005 1-6/2004 2004 Vakuutusmaksutulo, milj. 196,9 184,2 388,9 Sijoitustoiminnan nettotuotto, käyvin arvoin,

Lisätiedot

KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA

KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA Ssältää 3% aneosa, joden vaaroja vesympärstölle e tunneta. Lsätetoja Vaaralauseketta H304 e sovelleta aerosolelle. Nota P: 64742-48-9. 2.3 Muut vaarat E tunneta. KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

8 9 Kopionti ehdottomasti kielletty.

8 9 Kopionti ehdottomasti kielletty. Nä-mä jo o-saam-me. Kir-joi-ta sa-nat so-pi-van ku-van al-le. Li-sää puut-tu-vat ta-vut. Piir-rä ju-tus-ta ku-va. Kek-si pen-nuil-le ni-met.... 8 9 Kirjoita ku-vaan: Piir-rä ku-vaan: Lu-mi-u-kol-le hat-tu

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Viiteopas. 2 Kokoa ja kiinnitä uusi natronkalkkikolonni. 1 Poista vanha natronkalkki. Esitäyttö esiliitetyn letkuston avulla

Viiteopas. 2 Kokoa ja kiinnitä uusi natronkalkkikolonni. 1 Poista vanha natronkalkki. Esitäyttö esiliitetyn letkuston avulla Vteopas Valmstelu ja estäyttö esltetyllä letkustolla Kerää seuraavat tarvkkeet ennen valmstelua: Yks 500 ml:n ta 1 000 ml:n puss/pullo tavallsta kettosuolaluosta, jossa on yks (1) ykskkö (U) heparna kettosuolaluoksen

Lisätiedot

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot