3Työ. 3.1 Yleinen määritelmä
|
|
- Juha-Pekka Heino
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 3Työ Edellisessä luvussa käsittelimme systeemin sisäenergian muutosta termisen energiansiirron myötä, joka tapahtuu spontaanisti kahden eri lämpötilassa olevan kappaleen välillä. Toisena mekanismina systeemin sisäenergian muutokselle tarkastelemme nyt työtä, joka on seurausta systeemin ja ympäristön toisiinsa kohdistavista voimista ja näistä seuraavista muutoksista makroskooppisissa tilanfunktioissa. 3.1 Yleinen määritelmä Palautetaan mieleen ensin työn käsite klassisen mekaniikan kautta. Mikäli kappale kokee siirtymän d s jonkin voiman F vaikutuksesta tai kappaleen siirtymässä siihen vaikuttaa jokin voima, tapahtunutta kappaleen energian muutosta kutsutaan työksi, dw = F d s = F d s cos θ, (3.1) jossa θ on vektorien F ja d s välinen kulma. Siirtyneen energian määrän antaa siis siirtymän suuruuden ja voiman siirtymän suuntaisen komponentin tulo. Tiettyä reittiä pisteiden A ja B välillä tehty työ saadaan siten voiman F viivaintegraalina (kts. kuva 3.1) W A B = B A F d s. (3.2) 30
2 Termodynamiikka, syksy B F B W A B = F d s A A d s Kuva 3.1: Systeemin kulkiessa reittiä pisteestä A pisteeseen B saadaan tehty työ (energian muutos) systeemiin vaikuttavan voiman F hetkellisen siirtymän d s suuntaisen komponentin integraalina valitun reitin yli. Koska F voi olla riippuvainen paikasta, tehty työ yleisesti ottaen siis riippuu valitusta reitistä pisteiden A ja B välillä. Termodynaamiseen systeemiin tehty työ voidaan yleisemmin ilmaista muodossa dw = f i dx i, (3.3) i jossa f i on yleinen voima (intensiivinen) ja d X i yleinen siirtymä (ekstensiivinen), jotka molemmat ovat makroskooppisia suureita. Koska kukin summan termi yhtälössä 3.3 kuvaa makroskooppisten vapausasteiden kautta siirtynyttä energiaa, on niilä oltava energian yksikkö, [f i X i ] = [U]. (3.4) 3.2 Kvasistaattinen prosessi Mikäli termodynaaminen tilan muutos tehdään niin, että systeemi on minä tahansa prosessin hetkenä termodynaamisessa tasapainossa, kutsutaan prosessia kvasistaattisesti ("näennäisesti muuttumaton"). Tällöin vaatimuksena on, että systeemin muutosta ajava tekijä (esimerkiksi paine tai lämpötila) eroaa systeemin ja ympäristön välillä vain infinitesimaalisen määrän. Äärelliset erot tilan muutoksen aiheuttavissa suureissa vuorostaan johtavat havaittaviin virtauksiin 1, jolloin systeemi ei enää ole termodynaamisessa tasapainotilassa. Kvasistaattiset prosessit ovat tärkeä ideaalisaatio termodynamiikassa. Vaikka tarkalleen ottaen kvasistaattiset prosessit ovat äärettömän hitaita (tilan muutokset tehdään inifinitesimaalisin pienin askelin), voidaan niiden avulla 1 Nämä voivat olla esimerkiksi ääni- tai shokkiaallot fluideissa, turbulentit virtaukset, kemialliset muutokset, lämpötilan gradientit systeemin eri osien välillä jne.
3 Termodynamiikka, syksy F A d x p,v,n Kuva 3.2: Fluidisysteemiin tehty työ tilavuuden muutoksessa. Fluidi (sininen alue) on suljettuna sylinterimäiseen säiliöön, jonka toisessa päässä on kitkaton mäntä (merkitty harmaalla). Mäntään, jonka poikkipinta-ala on A, kohdistuu ympäristön voima F työntäen sitä pienen siirtymän d x alaspäin. Tällöin fluidin tilavuus pienenee määrän Adx. laskea tilanfunktioiden muutoksia, kun prosessin alku- ja loppupisteet on määrätty. Tämän lisäksi termodynaaminen prosessi tilasta toiseen voidaan esittää kuvan 3.1 mukaisena jatkuvana käyränä, jonka kukin piste vastaa systeemin hetkellistä termodynaamista tilaa tehdyn prosessin aikana. Monia todellisia prosesseja voidaan käsitellä likimäärin kvasistaattisina mikäli muutos systeemin tilassa tehdään niin hitaasti, että systeemi ehtii kaikkien käytännön tarkastelujen kannalta asettua kyllin lähelle tasapainotilaa. Pienten äärellisten tilanmuuttujien muutosten jälkeistä termodynaamiseen tasapainoon hakeutumisen aikaskaalaa kutsutaan systeemin relaksaatioajaksi. Mieti edellisen luvun valossa mikä on lämpösiirron "ajava voima"ja mikä on tässä tapauksessa ehto kvasistaattiselle prosessille? Paineen tekemä työ tilavuuden muutoksessa Keskeinen esimerkki kvasistaattisesta työstä termodynaamikassa on paineen tekemä työ systeemin tilavuuden muutoksessa. Tarkastellaan esimerkkinä fluidia, joka on suljettu sylinterimäiseen säiliöön, jonka toisessa päässä on kitkaton mäntä. Mäntää, jonka poikkipinta-ala on A, painetaan alas voimalla F, kts. kuva 3.2. Tässa tapauksessa yhtälön (3.3) mukainen yleinen voima on juuri mäntää työntävä voima ja yleinen siirtymä d X männän siirtymä d x alkuasemastaan. Valitsemme siirtymän d x akselin niin, että positiivinen
4 Termodynamiikka, syksy arvo vastaa männän laskemista (fluidin puristumista) ja negatiivinen männän nostamista (fluidin laajenemista). Tehdyn työn differentiaalin lauseke on yhtälön (3.3) mukaisesti dw = F d x = F dx. (3.5) Jotta prosessin olisi kvasistaattinen, tulee mäntää laskevan voiman aiheuttaman paineen p F = F/A olla vain infinitesimaalisen verran suurempi kuin fluidin paine, p F = p + dp. Tällöin yhtälö (3.5) voidaan kirjoittaa dw = A(p + dp)dx = Apdx + Adpdx padx, (3.6) sillä jälkimmäinen painetermi on häviävän pieni ensimmäiseen verrattuna. Lopuksi toteamalla, että kaasun tilavuuden muutos on dv = Adx, saadaan differentiaalinen työn lauseke muotoon dw = pdv. (3.7) Nyt siis fluidin puristaminen kokoon (dv < 0) vastaa systeemin tehtyä työtä ja fluidin sisäenergian kasvua prosessin aikana. Yhtälö (3.7) on tärkeä tulos. Systeemiin tehty työ ilmaistaan suoraan systeemin ominaisuuksien kautta sillä ehdolla, että työhön liittyvä prosessi on kvasistaattinen. Vastaavanlainen tarkastelu voidaan tehdä siinä tapauksessa, että fluidi laajenee, kun mäntään kohdistuva ympäristön paine on infinitesimaalisen määrän kaasun painetta pienempi, p F = p dp. Nyt siis systeemi tekee työtä mäntään kohdistamansa paineen kautta 2 ( dw ) = F dx = padx (3.8) johon jälleen sijoittamalla tilavuuden muutoksen dv = Adx saadaan tehdyn työn dw lausekkeeksi jälleen dw = pdv. (3.9) Saamamme tulos on yleinen, nk. hydrostaattisen paineen tekemän työn lauseke Rajapinnan luomiseen tehty työ Toinen tärkeä esimerkkki kvasistaattisen työn lausekkeesta liittyy faasien välisen rajapinnan pinta-alan muutokseen. Yleisesti tällaisen rajapinnan kasvattaminen vaatii energiaa, jonka määrää yksikköpinta-alaa kohden kutsutaan pintaenergiaksi (yksikkö J/m 2 ). Tämän ilmiön taustalla on epäsymmetria rajapinnassa olevien faasien rakennehiukkasten (atomit, molekyylit) ja vuorostaan kaukana rajapinnasta olevien hiukkasten keskinäisissä vuorovaikutuksissa. Kaukana rajapinnasta olevat hiukkaset vuorovaikuttavat ensisijaisesti vain kyseisen faasin 2 Muista että valitsemamme etumerkkikonvention mukaisesti dw on systeemiin tehty työ ja systeemin tekemä työ puolestaan on tällöin ( dw ).
5 Termodynamiikka, syksy L γ F y da=l dx x a) d x z γ F b) γ x Kuva 3.3: Pintajännityksen γ tarkastelua kehyksen avulla, jonka sisälle on muodostettu ohut nestekalvo. (a) Nestekalvo pyrkii pienentämään epäenergeettisen rajapintaansa kaasun kanssa voimalla, joka on suoraan verrannollinen kehyksen liikuteltavan sivun pituuteen L. (b) Sama koelaite sivulta kuvattuna, havainnollistaen että tarkastellussa systeemissä (nestekalvo) on kaksi neste/kaasu-rajapintaa. omien rakennehiukkasten kanssa. Rajapinnassa puolestaan vuorovaikutukset ovat osittain eri faasien rakennehiukkasten välillä. Erityisesti kiinteän aineen tai nesteen ja kaasun rajapinnassa tiiviin faasin hiukkasilla ei käytännössä ole juuri ollenkaan vuorovaikutuspareja kaasufaasin puolella. Nesteiden tapauksessa pintaenergiasta käytetään myös nimitystä pintajännitys (yksikkö N/m = J/m 2 ) syystä joka selviää seuraavan esimerkin kautta. Tarkastellaan neste/kaasu-rajapintaa (esim. vesi/ilma), joka on luotu kuvan 3.3 mukaisella koelaitteella. Neste on ohuena kalvona suorakulmaisessa kehyksessä, jonka yhtä sivua voidaan liikuttaa. Koska neste/kaasu-rajapinnassa olevat molekyylit ovat systeemin kannalta epäenergeettisiä, pyrkii nestekalvo pienentämään pinta-alaansa. Tämä havaitaan voimana F 0, joka on suoraan verrannollinen kehyksen liikultetavan sivun pituuteen L, F 0 = 2γL, (3.10) jossa tekijä 2 tulee nestekalvon kahdesta rajapinnasta kaasufaasin kanssa ja γ on voiman verrannollisuuskerroin, joka on juuri edellä mainittu pintajännitys. Mikäli haluamme nyt liikuttaa kehyksen sivua matkan dx nestekalvon pintaalaa suurentavasti kvasistaattisen prosessin avulla, on sivuun kohdistettava
6 Termodynamiikka, syksy voima F = 2(γ + dγ)l 2γL, (3.11) josta tehty työ yhtä neste/kaasu-rajapintaa kohden on dw = 1 (2γL)dx = γldx. (3.12) 2 Koska termi Ldx on sama kuin rajapinnan pinta-alan muutos, da = Ldx, voidaan tehty työ kirjoittaa lopuksi muodossa dw = γda. (3.13) Sama tarkastelu voidaan tehdä tapauksessa, jossa rajapinnan pinta-ala pienenee systeemin tehdessä työtä kvasistaattisesti, jolloin saamme työn lausekkeeksi jälleen yhtälön (3.13). Saatu tulos on yleinen rajapinnan muodosta riippumatta. Tästä syystä esimerkiksi vesi, jolla on suhteellisen korkea pintajännitys ilman kanssa, haluaa muodostaa pallomaisia pisaroita, sillä tällöin faasien välisen rajapinnan ala suhteessa tiettyyn veden tilavuuteen on mahdollisimman pieni Muita työn laatuja Edellä tarkastellut systeemin tilavuuden ja pinta-alan muutoksiin liittyvät työn lausekkeet ovat tämän kurssin kannalta keskeisimmät. On kuitenkin syytä pitää mielessä, että yleisesti ottaen termodynaamiseen systeemin liittyviä mahdollisia työn lausekkeita on suuri määrä. Tässä muutamia esimerkkejä. Lauseke f dx f dl E d u Φdq B d m Työn laatu Elastisen sauvan pituuden l muutos jännityksen f vaikuttaessa Sähköisen dipolimomentin u muutos sähkökentän E vaikuttaessa Sähkövarauksen q siirto sähköstaattisen potentiaalieron Φ yli Paramagneettisen materiaalin magneettisen dipolimomentin m muutos magneettikentän B vaikuttaessa 3.3 Ei-kvasistaattiset prosessit Huolimatta siitä, että käytännössä kyllin hitaita prosesseja voidaan käsitellä likimäärin kvasistaattisina, kaikki luonnolliset prosessit ovat periaatteessa kuitenkin ei-kvasistaattisia. Tarkastellaan nyt lopuksi vielä mitä tämä luonnon asettama rajoitus tarkoittaa systeemin tehtävän tai systeemin tekemän työn
7 Termodynamiikka, syksy suuruuden kannalta. Käytetään esimerkkinämme kohdan tilavuuden muutokseen liittyvää työtä. Otetaan ensin tapaus, jossa fluidia puristetaan kasaan. Nyt mäntää painavan voiman aiheuttama paine p F on selvästi havaittavan, äärellisen määrän systeemin painetta suurempi. Pienessä tilavuuden muutoksessa dv mäntää painavan voiman tekemä työ on nyt p F dv > pdv, (3.14) koska p F > p ja dv < 0. Ei-kvasistaattisen prosessin tapauksessa tietyn systeemin tilavuuden muutokseen liittyvä työ on siis kvasistaattista työn määrää [yhtälö (3.7)] suurempi. Entä jos fluidi laajenee äkillisesti? Tämän voi kuvitella tapahtuvan niin, että nostamme mäntää nopeasti tai fluidin laajenemiseen liittyy äkillinen männän nousu esimerkiksi paineaallon vaikutuksesta. Tarkasta mekanismista riippumatta fluidin tilavuus muuttuu kuitenkin niin äkillisesti, että se ei ehdi asettua uuteen tasapainotilaansa. Tässä tapauksessa lähellä mäntää fluidissa on harventuma eli sen paikallinen tiheys ρ(x) poikkeaa tiheydestä kaukana männästä. Harventuman seurauksena fluidi työntää mäntää jollain voimalla F, jonka avulla voimme laskea efektiivisen paineen arvon p = F /A. Huomaa, että p ei ole systeemin tilaa kuvaava suure (tilanmuuttujan arvo) vaan puhtaasti hetkellisestä voimasta laskettu arvo. Fluidin harventumasta johtuen hetkellinen efektiivinen paine on pienempi kuin paine tasapainotilassa p < p. Tällöin siis fluidin tekemän työn suuruus 3 tilavuuden muutoksessa dv on ( dw ) = pdv < pdv (3.15) tai dw = pdv > pdv. (3.16) Edellä olevien tarkastelujen pohjalta voimme kirjoittaa yhteyden tehdyn työn ja systeemin tilanmuuttujiin liittyvän lausekkeen pdv muodossa dw pdv, (3.17) jossa siis epäsuuruus on voimassa kun prosessi on ei-kvasistaattinen ja yhtäsuuruus vuorostaan silloin kun prosessi on kvasistaattinen. Samanlainen tarkastelu voidaan tehdä muillekin työn laaduille, jolloin aina toteamme, että ei-kvasistaattisissa prosesseissa 1) systeemin tehty työ on suurempi kuin kvasistaattisessa prosessissa; ja 2) systeemin tekemä työ on pienempi kuin kvasistaattisessa prosessissa. Kvasistaattinen prosessi antaa siis luonnon asettamat rajat termodynaamiseen systeemiin liittyvän työn suuruudelle. 3 Huomaa dw :n etumerkki: positiivinen arvo vastaa fluidiin tehtyä työtä, negatiivinen fluidin tekemää työtä.
8 Termodynamiikka, syksy Kitkan vaikutus tehdyn työn suuruuteen Aiemmassa työn käsittelyssä olemme jättäneet huomioimatta kitkan vaikutuksen esim. sylinterin männän tai nestekalvoa rajaavan kehyksen sivun liikuttamisessa. Todellisuudessa energian häviötä kitkan vaikutuksesta kuitenkin tapahtuu. Miten tämä vaikuttaa tehdyn työn suuruuteen? Otetaan esimerkiksi jälleen kohdan fluidia puristaminen ja laajeneminen sylinterissä. Nyt ulkoisen voiman tulee olla merkittävästi suurempi kuin pa, koska kitkan voittamiseksi tarvitaan myös jokin voima F µ. Tällöin tilavuuden muutoksessa dv ulkoisen voiman tulee kohdistaa mäntään paine p F, joka on suurempi kuin fluidin paine p. Päädymme jälleen epäyhtälöön (3.14). Sama pätee fluidin laajentumiseen. Nyt osa fluidin tekemästä työstä menee kitkan voittamiseen, joten ympäristöön tehty työ on suuruudeltaan pienempi kuin kvasistaattisen työn mukainen pdv. Osa fluidin prosessissa menettämästä sisäenergiasta menee työhön kitkaa vastaan.
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)
2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja
IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208
IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
Clausiuksen epäyhtälö
1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot
1 Clausiuksen epäyhtälö
1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
FYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
Ch 19-1&2 Lämpö ja sisäenergia
Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit
Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia
Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......
T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):
1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus
782630S Pintakemia I, 3 op
782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus
Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
PHYS-A0120 Termodynamiikka. Emppu Salonen
PHYS-A0120 Termodynamiikka Emppu Salonen 27. lokakuuta 2017 Termodynamiikka, syksy 2017 1 Thermodynamics is easy I ve learned it many times. Harvey S. Leff 1 Johdanto Tässä luvussa teemme yleiskatsauksen
y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.
Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
PHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
Potentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
Luku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
Ekvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
Luvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?
Teddy 1. harjoituksen malliratkaisu kevät 2011
Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x
energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt
14 2 Ensimmäinen pääsääntö 2-1 Lämpömäärä ja työ Termodynaaminen systeemi on jokin maailmankaikkeuden osa, jota rajoittaa todellinen tai kuviteltu rajapinta (engl. boundary). Systeemi voi olla esimerkiksi
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina
PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ
II LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ 7. Lämpö ja työ... 70 7.2 Kaasun tekemä laajenemistyö... 7 7.3 Laajenemistyön erityistapauksia... 73 7.3. Työ isobaarisessa tilanmuutoksessa... 73 7.3.2 Työ isotermisessä
Elektrodynamiikka, kevät 2008
Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä
4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
Molaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
W el = W = 1 2 kx2 1
7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon
Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
RATKAISUT: 19. Magneettikenttä
Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee
Termodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
Lämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
Luku6 Tilanyhtälö. Ideaalikaasun N V. Yleinen aineen. paine vakio. tilavuus vakio
Luku6 Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät saadaan leikkaamalla painepinta pv suuntaisilla
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission
kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
Elastisuus: Siirtymä
Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit
Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan
Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
Magnetismi Mitä tiedämme magnetismista?
Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten
Luento 16: Fluidien mekaniikka
Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot