Jaollisuus kymmenjärjestelmässä
|
|
- Marjatta Lehtonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Jaollisuus kymmenjärjestelmässä Lauseen 4.5 mukaan jokaiselle n N on yksikäsitteiset kokonaisluvut s 0 ja a 0, a 1,..., a s, joille n = a s 10 s + a s 1 10 s a a 0 = a s a a 1... a 0, (1) 0 a i 9 kaikilla i = 0, 1,..., s ja a s > 0. Jaollisuussäännöt luvuille 2, 5 ja 10 saadaan kaavasta (1) Jaollisuuslauseen 1.2. avulla. Muista, että jos n a ja n b, niin n (ka + lb) kaikilla k, l Z.
2 Jaollisuus kymmenjärjestelmässä Lauseen 4.5 mukaan jokaiselle n N on yksikäsitteiset kokonaisluvut s 0 ja a 0, a 1,..., a s, joille n = a s 10 s + a s 1 10 s a a 0 = a s a a 1... a 0, (1) 0 a i 9 kaikilla i = 0, 1,..., s ja a s > 0. Jaollisuussäännöt luvuille 2, 5 ja 10 saadaan kaavasta (1) Jaollisuuslauseen 1.2. avulla. Muista, että jos n a ja n b, niin n (ka + lb) kaikilla k, l Z.
3 1. jaollisuuslause Lause (1. jaollisuuslause) Olkoon n N. Luku n on jaollinen 1 luvulla 2 (eli parillinen) jos ja vain jos a 0 on jaollinen luvulla 2 eli jos ja vain jos a 0 {0, 2, 4, 6, 8}, 2 luvulla 5 jos ja vain jos a 0 = 0 tai a 0 = 5, 3 luvulla 10 jos ja vain jos a 0 = 0. Todistus. Lause 1.2 (3).
4 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
5 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
6 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
7 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
8 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
9 1. jaollisuuslause Esimerkki Luku 1035 = on jaollinen luvulla 5 ei ole jaollinen luvulla 2 eikä luvulla 10. Luku = on jaollinen luvulla 2 ei ole jaollinen luvulla 5 eikä luvulla 10.
10 Lohkaisuperiaate Onko luku n N jaollinen luvulla t N? Etsitään luvut k, l N, jolle n = l + k ja t l. (2) Lukua l sanotaan lohkaisutermiksi ja lukua k kriittiseksi termiksi. Jaollisuuslauseen 1.2. perusteella n on jaollinen luvulla t jos ja vain jos t k. Käyttökelpoinen esimerkiksi silloin, kun t on jonkin kymmenen potenssin 10, 100, 1000,... tekijä.
11 Lohkaisuperiaate Onko luku n N jaollinen luvulla t N? Etsitään luvut k, l N, jolle n = l + k ja t l. (2) Lukua l sanotaan lohkaisutermiksi ja lukua k kriittiseksi termiksi. Jaollisuuslauseen 1.2. perusteella n on jaollinen luvulla t jos ja vain jos t k. Käyttökelpoinen esimerkiksi silloin, kun t on jonkin kymmenen potenssin 10, 100, 1000,... tekijä.
12 Lohkaisuperiaate Onko luku n N jaollinen luvulla t N? Etsitään luvut k, l N, jolle n = l + k ja t l. (2) Lukua l sanotaan lohkaisutermiksi ja lukua k kriittiseksi termiksi. Jaollisuuslauseen 1.2. perusteella n on jaollinen luvulla t jos ja vain jos t k. Käyttökelpoinen esimerkiksi silloin, kun t on jonkin kymmenen potenssin 10, 100, 1000,... tekijä.
13 Lohkaisuperiaate Onko luku n N jaollinen luvulla t N? Etsitään luvut k, l N, jolle n = l + k ja t l. (2) Lukua l sanotaan lohkaisutermiksi ja lukua k kriittiseksi termiksi. Jaollisuuslauseen 1.2. perusteella n on jaollinen luvulla t jos ja vain jos t k. Käyttökelpoinen esimerkiksi silloin, kun t on jonkin kymmenen potenssin 10, 100, 1000,... tekijä.
14 2. jaollisuuslause Lause (2. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 4 jos ja vain jos luku a 1 a 0 on jaollinen luvulla 4. Todistus ja Lause 1.2 (3). Esimerkki Luvut 324 ja 2008 ovat jaollisia luvulla 4. Luvut 941 ja 2011 eivät ole jaollisia luvulla 4.
15 2. jaollisuuslause Lause (2. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 4 jos ja vain jos luku a 1 a 0 on jaollinen luvulla 4. Todistus ja Lause 1.2 (3). Esimerkki Luvut 324 ja 2008 ovat jaollisia luvulla 4. Luvut 941 ja 2011 eivät ole jaollisia luvulla 4.
16 3. ja 4. jaollisuuslause Lause (3. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 50 jos ja vain jos a 1 = 0 ja a 0 = 0 tai a 1 a 0 = 50. Luku n on jaollinen luvulla 25 jos ja vain jos a 1 = 0 ja a 0 = 0 tai a 1 a 0 {25, 50, 75}. Lause (4. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 8 jos ja vain jos luku a 2 a 1 a 0 on jaollinen luvulla 8.
17 3. ja 4. jaollisuuslause Lause (3. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 50 jos ja vain jos a 1 = 0 ja a 0 = 0 tai a 1 a 0 = 50. Luku n on jaollinen luvulla 25 jos ja vain jos a 1 = 0 ja a 0 = 0 tai a 1 a 0 {25, 50, 75}. Lause (4. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 8 jos ja vain jos luku a 2 a 1 a 0 on jaollinen luvulla 8.
18 Esimerkki Luvut ja 2300 ovat jaollisia sekä luvulla 50 että luvulla 25. Luku 1205 ei ole jaollinen luvulla 25 eikä luvulla 50. Luvut 4032 ja 1160 ovat jaollisia luvulla 8, mutta Onko lukujen ja summa jaollinen luvulla 8? Riittää tarkastella summan kolmea viimeistä numeroa eli lukua = 160. Koska 160 = 20 8, niin 8 ( ).
19 Esimerkki Luvut ja 2300 ovat jaollisia sekä luvulla 50 että luvulla 25. Luku 1205 ei ole jaollinen luvulla 25 eikä luvulla 50. Luvut 4032 ja 1160 ovat jaollisia luvulla 8, mutta Onko lukujen ja summa jaollinen luvulla 8? Riittää tarkastella summan kolmea viimeistä numeroa eli lukua = 160. Koska 160 = 20 8, niin 8 ( ).
20 Esimerkki Luvut ja 2300 ovat jaollisia sekä luvulla 50 että luvulla 25. Luku 1205 ei ole jaollinen luvulla 25 eikä luvulla 50. Luvut 4032 ja 1160 ovat jaollisia luvulla 8, mutta Onko lukujen ja summa jaollinen luvulla 8? Riittää tarkastella summan kolmea viimeistä numeroa eli lukua = 160. Koska 160 = 20 8, niin 8 ( ).
21 Esimerkki Luvut ja 2300 ovat jaollisia sekä luvulla 50 että luvulla 25. Luku 1205 ei ole jaollinen luvulla 25 eikä luvulla 50. Luvut 4032 ja 1160 ovat jaollisia luvulla 8, mutta Onko lukujen ja summa jaollinen luvulla 8? Riittää tarkastella summan kolmea viimeistä numeroa eli lukua = 160. Koska 160 = 20 8, niin 8 ( ).
22 5. jaollisuuslause Entäpä jaollisuus luvuilla 3 ja 9? Lohkaisutermi saadaan kolmella ja yhdeksällä jaollisten lukujen 9 = 10 1, 99 = 100 1, 999 = ,... avulla, esimerkiksi 2481 = 2( ) + 4(99 + 1) + 8(9 + 1) + 1 = ( ) + ( ) = ( ) Koska 3 15 ja 9 15, niin 2481 on jaollinen luvulla 3 mutta ei luvulla 9.
23 5. jaollisuuslause Entäpä jaollisuus luvuilla 3 ja 9? Lohkaisutermi saadaan kolmella ja yhdeksällä jaollisten lukujen 9 = 10 1, 99 = 100 1, 999 = ,... avulla, esimerkiksi 2481 = 2( ) + 4(99 + 1) + 8(9 + 1) + 1 = ( ) + ( ) = ( ) Koska 3 15 ja 9 15, niin 2481 on jaollinen luvulla 3 mutta ei luvulla 9.
24 5. jaollisuuslause Jos lohkaisutermiksi valitaan luvuilla 3 ja 9 jaollinen summa a s (10 s 1) + + a 1 9, niin kriittinen termi on luvun n = a s a s 1... a 0 = a s (10 s 1 + 1) + + a 1 (9 + 1) + a 0, numerosumma a s + a s a 0.
25 5. jaollisuuslause Jos lohkaisutermiksi valitaan luvuilla 3 ja 9 jaollinen summa a s (10 s 1) + + a 1 9, niin kriittinen termi on luvun n = a s a s 1... a 0 = a s (10 s 1 + 1) + + a 1 (9 + 1) + a 0, numerosumma a s + a s a 0.
26 5. jaollisuuslause Lause (5. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 3 (9) jos ja vain jos sen numerosumma on jaollinen luvulla 3 (9). Esimerkki Luvun 3006 numerosumma on = 9, joten 3006 on jaollinen luvuilla 3 ja 9 Luvun numerosumma = 15 on jaollinen luvulla 3, mutta ei luvulla 9. Siten ja
27 5. jaollisuuslause Lause (5. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 3 (9) jos ja vain jos sen numerosumma on jaollinen luvulla 3 (9). Esimerkki Luvun 3006 numerosumma on = 9, joten 3006 on jaollinen luvuilla 3 ja 9 Luvun numerosumma = 15 on jaollinen luvulla 3, mutta ei luvulla 9. Siten ja
28 6. jaollisuuslause Entäpä jaollisuus luvulla 11? Lohkaisutermi saadaan luvulla 11 jaollisten lukujen 11 = , 99 = 100 1, 1001 = ,... avulla, esimerkiksi 2849 = 2 (1001 1) + 8 (99 + 1) + 4 (11 1) + 9 = ( ) + ( ) = ( ) + 11 Koska 11 11, niin 2849 on jaollinen luvulla 11.
29 6. jaollisuuslause Entäpä jaollisuus luvulla 11? Lohkaisutermi saadaan luvulla 11 jaollisten lukujen 11 = , 99 = 100 1, 1001 = ,... avulla, esimerkiksi 2849 = 2 (1001 1) + 8 (99 + 1) + 4 (11 1) + 9 = ( ) + ( ) = ( ) + 11 Koska 11 11, niin 2849 on jaollinen luvulla 11.
30 6. jaollisuuslause Kun a, b Z ja m N, niin a m b m = (a b)(a m 1 + a m 2 b + + ab m 2 + b m 1 ). Valitsemalla a = 10 ja b = 1, nähdään, että luku on jaollinen luvulla m ( 1) m Koska ( 1) m = 1 parittomilla m ja ( 1) m = 1 parillisilla m, niin luvut ovat jaollisia luvulla m + 1, kun m on pariton 10 m 1, kun m on parillinen
31 6. jaollisuuslause Kun a, b Z ja m N, niin a m b m = (a b)(a m 1 + a m 2 b + + ab m 2 + b m 1 ). Valitsemalla a = 10 ja b = 1, nähdään, että luku on jaollinen luvulla m ( 1) m Koska ( 1) m = 1 parittomilla m ja ( 1) m = 1 parillisilla m, niin luvut ovat jaollisia luvulla m + 1, kun m on pariton 10 m 1, kun m on parillinen
32 6. jaollisuuslause Kun a, b Z ja m N, niin a m b m = (a b)(a m 1 + a m 2 b + + ab m 2 + b m 1 ). Valitsemalla a = 10 ja b = 1, nähdään, että luku on jaollinen luvulla m ( 1) m Koska ( 1) m = 1 parittomilla m ja ( 1) m = 1 parillisilla m, niin luvut ovat jaollisia luvulla m + 1, kun m on pariton 10 m 1, kun m on parillinen
33 6. jaollisuuslause Jos lohkaisutermiksi valitaan luvulla 11 jaollinen summa niin kriittinen termi on luvun a s (10 s ( 1) s ) + + a a 1 11, n = a s (10 s ( 1) s +( 1) s )+ +(99+1)a 2 +a 1 (11 1)+a 0, vuorotteleva numerosumma a 0 a 1 + a 2 + ( 1) s a s. Huomaa, että vuorottelevan numerosumman laskeminen kannattaa aloittaa termistä a 0!
34 6. jaollisuuslause Jos lohkaisutermiksi valitaan luvulla 11 jaollinen summa niin kriittinen termi on luvun a s (10 s ( 1) s ) + + a a 1 11, n = a s (10 s ( 1) s +( 1) s )+ +(99+1)a 2 +a 1 (11 1)+a 0, vuorotteleva numerosumma a 0 a 1 + a 2 + ( 1) s a s. Huomaa, että vuorottelevan numerosumman laskeminen kannattaa aloittaa termistä a 0!
35 6. jaollisuuslause Jos lohkaisutermiksi valitaan luvulla 11 jaollinen summa niin kriittinen termi on luvun a s (10 s ( 1) s ) + + a a 1 11, n = a s (10 s ( 1) s +( 1) s )+ +(99+1)a 2 +a 1 (11 1)+a 0, vuorotteleva numerosumma a 0 a 1 + a 2 + ( 1) s a s. Huomaa, että vuorottelevan numerosumman laskeminen kannattaa aloittaa termistä a 0!
36 6. jaollisuuslause Lause (6. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 11 jos ja vain jos sen vuorotteleva numerosumma on jaollinen luvulla 11. Esimerkki sillä vuorotteleva numerosumma = 2 ei ole jaollinen luvulla sillä vuorotteleva numerosumma = 22 on jaollinen luvulla 11.
37 6. jaollisuuslause Lause (6. jaollisuuslause) Olkoon n N. Luku n on jaollinen luvulla 11 jos ja vain jos sen vuorotteleva numerosumma on jaollinen luvulla 11. Esimerkki sillä vuorotteleva numerosumma = 2 ei ole jaollinen luvulla sillä vuorotteleva numerosumma = 22 on jaollinen luvulla 11.
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
LisätiedotLUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut
LUKUTEORIAN ALKEET Alkusanat Tässä on Heli Tuomisen luentomonisteeseen perustuvat muistiinpanot kevään 2013 Lukuteorian alkeet -kurssista. Kurssi on suunnattu erityisesti aineenopettajiksi opiskeleville
LisätiedotLUKUTEORIAN ALKEET KL 2007
LUKUTEORIAN ALKEET KL 2007 HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 5 2.1. Jaollisuus 6 2.2. Suurin
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Lisätiedot+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain
Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain
LisätiedotLUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
LisätiedotLUKUTEORIAN ALKEET HELI TUOMINEN
LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen
LisätiedotMatematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
LisätiedotValitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.
MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
LisätiedotTekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
Lisätiedota b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
Lisätiedot= = = 1 3.
9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala
LisätiedotMatematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Lisätiedot(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
LisätiedotTestaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
LisätiedotKongruenssin sovelluksia
TAMPEREEN YLIOPISTO Filosofian maisterin tutkielma Tiina Vuorimaa Kongruenssin sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Toukokuu 006 Tampereen yliopisto Matematiikan,
LisätiedotYhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).
Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta
LisätiedotXXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut
XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki
LisätiedotRatkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...
Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.
LisätiedotALKULUKUJA JA MELKEIN ALKULUKUJA
ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja
LisätiedotSuurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.)
Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.) LUKUTEORIA JA TODISTAMINEN, MAA11 Määritelmä, yhteinen tekijä ja suurin yhteinen tekijä: Annettujen lukujen a ja b yhteinen tekijä
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
LisätiedotALKULUVUISTA (mod 6)
Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen
LisätiedotTehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
LisätiedotMerkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
Lisätiedot3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
Lisätiedot(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)
1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)
LisätiedotMääritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki
Alkuluvut LUKUTEORIA JA TODISTAMINEN, MAA11 Jokainen luku 0 on jaollinen ainakin itsellään, vastaluvullaan ja luvuilla ±1. Kun muita eri ole, niin kyseinen luku on alkuluku. Määritelmä, alkuluku/yhdistetty
Lisätiedot41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema,
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis luonnontieteellinen tiedekunta Tekijä/Författare Author Katja Niemistö Työn nimi / Arbetets titel Title Täydelliset luvut Oppiaine /Läroämne Subject
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Lisätiedota b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Lisätiedot1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?
Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotMatematiikan olympiavalmennus
Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotKontraharmonisesta keskiarvosta ja Pythagoraan luvuista
J Pahikkala Kontraharmonisesta keskiarvosta ja Pythagoraan luvuista Erilaisia lukujen keskiarvoja on useita tunnetuimmat ovat tavallinen eli aritmeettinen keskiarvo ja keskiverto eli geometrinen keskiarvo
LisätiedotKenguru 2019 Student Ratkaisut
sivu 0 / 22 3 pistettä TEHTÄVÄ 1 2 3 4 5 6 7 8 VASTAUS C B D C B E C A 4 pistettä TEHTÄVÄ 9 10 11 12 13 14 15 16 VASTAUS B B E D A E A A 5 pistettä TEHTÄVÄ 17 18 19 20 21 22 23 24 VASTAUS E E D D C C B
Lisätiedot= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotTörmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä
Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden
LisätiedotJokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Lisätiedot6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
Lisätiedot3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
LisätiedotKerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma:
Kerta 2 Kerta 3 Kerta 4 Kerta 5 Kerta 2 1. Toteuta Pythonilla seuraava ohjelma: 2. Tulosta Pythonilla seuraavat luvut allekkain a. 0 10 (eli, näyttää tältä: 0 1 2 3 4 5 6 7 8 9 10 b. 0 100 c. 50 100 3.
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
LisätiedotLUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän
LisätiedotMatematiikan olympiavalmennus: Diofantoksen yht al oit a
Matematiikan olympiavalmennus: Diofantoksen yht al oit a Heikki M antysaari 25. helmikuuta 2007 V ah an teoriaa Diofantoksen yht al o: tuntemattomia enemm an kuin yht al oit a. Lukiossa esim. 4x + 8y =
LisätiedotKansainväliset matematiikkaolympialaiset 2012
Kansainväliset matematiikkaolympialaiset 01 Tehtävien ratkaisuja 1. Olkoot kolmion kulmat α, β ja γ ja olkoon ω ympyrä, jonka halkaisija on AJ. Koska kulmat JKA ja JLA ovat suoria, niin K ja L ovat tällä
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
LisätiedotHelsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
LisätiedotOulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut
Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
Lisätiedot1.11. 1. Kun luku 5 140 8 47 kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141
%% % 1.11.!#"$ 2011 1. Kun luku 5 140 8 47 kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141 2. Oheinen kuvio muodostuu yhdeksästä neliöstä, joista jokaisen
Lisätiedot27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
LisätiedotLUONNOLLISTEN LUKUJEN JAOLLISUUS
Luonnollisten lukujen jaollisuus 0 Calculus Lukion Täydentävä aineisto Alkuluv,,,,,,,..., ut 11 1 1 1 411609 -, 4 6 8 9 10 11 1 1 14 1 16 1 18 19 0 1 4 6 8 9 0 1 4 6 8 9 40 41 4 4 44 4 46 4 48 49 0 1 4
LisätiedotMatematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
Lisätiedotsitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
Lisätiedot2 j =
1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).
LisätiedotLUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016
LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
LisätiedotMitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
LisätiedotTekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
LisätiedotLUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
LisätiedotMatematiikan olympiavalmennus
Matematiikan olympiavalmennus Syyskuun 014 helpommat valmennustehtävät, ratkaisuja 1. Kuinka monen 014-numeroisen positiivisen kokonaisluvun numeroiden summa on parillinen? Ratkaisu. 014-numeroisen luvun
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa
LisätiedotSarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
LisätiedotKokonaisluvut. eivät ole kokonaislukuja!
Luvut Lähdetään liikkeelle kertaamalla mitä tiedämme luvuista. Mitä erilaiset luvut kuvaavat ja millaisia ominaisuuksia niillä on? Mikä voisi olla luonnollisin luku aloittaa? Luonnolliset luvut Luonnolliset
Lisätiedoty + z. z + xyz
2. 11. 2010 Kuusi ensimmäistä tehtävää ovat monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Monivalintatehtävien vastauksia varten on erillinen lomakkeensa. Tehtävät 7 ja 8 ovat perinteisiä tehtäviä,
LisätiedotLuonnolliset vs. muodolliset kielet
Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma
LisätiedotH = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
LisätiedotSimilaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotLAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
LisätiedotAritmeettinen summa Laske. a) b) 23 + ( 24) + ( 25) + ( 26) + ( 27) + ( 28) Ratkaisu.
Aritmeettinen summa 403. Laske. a) 101 + 103 + 105 + 107 + 109 + 111 b) 3 + ( 4) + ( 5) + ( 6) + ( 7) + ( 8) a) 636 b) 153 404. ijoita ensimmäinen yhteenlaskettava a1, viimeinen yhteenlaskettava an sekä
LisätiedotEsitysmuotoa kutsutaan kantaluvun paikkamerkinnäksi, sillä merkinnässä jokainen numero liittyy sijaintinsa mukaan tiettyyn kantaluvun potenssiin.
POHDIN projekti TIETOTURVA LUVUISSA ja TUNNUKSISSA (1/2) LUKUJÄRJESTELMISTÄ Lukujärjestelmällä tarkoitetaan kokonaisvaltaista tapaa, jolla luvut sanotaan, kirjoitetaan tai koodataan. Muinaisina aikakausina
LisätiedotKenguru 2015 Ecolier (4. ja 5. luokka)
sivu 1 / 13 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
LisätiedotLyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen
yhyt johdatus alkeelliseen lukuteoriaan Esa V. Vesalainen Sisällysluettelo 1 Aritmetiikan peruslause 0 Jakoyhtälö.................................. 0 Jaollisuus.................................. 0 Alkuluvut..................................
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
LisätiedotPistetulo eli skalaaritulo
Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit
Lisätiedot0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
LisätiedotKenguru 2013 Junior sivu 1 / 19 (lukion 1. vuosikurssi) Ratkaisut
Kenguru 2013 Junior sivu 1 / 19 3 pistettä 1. Sannalla oli neliön muotoisia paperiarkkeja, joille hän piirsi kuvioita. Kuinka monella näistä kuvioista on yhtä suuri piiri kuin paperiarkilla? (A) 2 (B)
Lisätiedot