Hz = 277 Hz 3.8 SHOKKIAALTO

Koko: px
Aloita esitys sivulta:

Download "Hz = 277 Hz 3.8 SHOKKIAALTO"

Transkriptio

1 59 Esimerkki IV: Poliisiauto ajaa nopeudella v S = 45 m/s havaitsijan auton edellä. Havaitsijan nopeus on vl = 15m/s. Laske havaittu taajuus? Ratkaisu: Merkkisääntö sanoo, että molemmat nopeudet ovat positiivisia, ts. saman suuntaisia kuin etäisyys havaitsijasta lähteeseen. Tulee f L v + vl = fs = 3 v + v S Hz = 277 Hz 3.8 SHOKKIAALTO Tarkastellaan kuvan mukaista tilannetta, jossa lentokone liikkuu nopeudella v S synnyttäen ääniaaltoja, joiden nopeus on v. Lentokoneen edessä ääniaallot pakkautuvat yhteen ja niiden aallonpituus on Doppler-ilmiöstä tutun tarkastelun perusteella l = ( v -v S)/ fs. Tässä vs < v, ts. lentokone lentää ääntä hitaammin. Mitä tapahtuu, kun lähestytään äänen nopeutta? Kaavan mukaan aallonpituus lähenee nollaa ja aallot pakkautuvat yhä lähemmäksi toisiaan. Lentokone puristaa ilmaa kokoon edessään kohdis-

2 6 taen siihen suuren voiman. Ilma kohdistaa puolestaan lentokoneeseen yhtä suuren, mutta vastakkaissuuntaisen voiman. Ilman vastus kasvaa näin voimakkaasti lentokoneen nopeuden lähestyessä äänen nopeutta. Tätä kutsutaan äänivalliksi. Kun lentokone on ylittänyt äänivallin ja sen nopeus on suurempi kuin äänen nopeus, ei koneen edessä olevan ääniaallon aallonpituutta ja taajuutta enää voida kuvata Doppler-ilmiön yhtälöillä. Kuvassa on esitetty poikkileikkauksena, mitä tällaisessa tilanteessa tapahtuu. Lentokoneen edetessä syntyy edelleen ääniaaltoja. Ääniaallot etenevät palloaaltoina siten, että jokaisen "äänipallon" keskipiste on siinä kohdassa, missä lentokone oli sillä hetkellä kun ääni syntyi. Ajan t kuluttua pisteestä S 1 matkaan lähtenyt aalto on levinnyt v t -säteiselle pallopinnalle ja lentokone on kulkenut matkan v S t paikkaan S 2. Eri kohdista matkaan lähteneet palloaallot ovat samassa vaiheessa pitkin kuvaan merkittyä viivaa ja näin vahvistavat toisiaan (konstruktiivinen interferenssi). Muodostuu hyvin voimakas ns. shokkiaalto-rintama, joka etenee äänen nopeudella.

3 61 Kuvan perusteella saadaan yhtälö vt v sina = = vst v. (3.5.1) S Suhdetta vs / v, joka kertoo lentokoneen nopeuden äänennopeuksina, sanotaan Machin luvuksi. Jos lentokone liikkuu ääntä nopeammin, Machin luku on suurempi kuin yksi. Esimerkki: Lentokone lentää ylitsesi (hetkellä t = ) 8 m:n korkeudella 1.75 Machin nopeudella. Kuinka pitkän ajan kuluttua kuulet shokkiaallon pamauksen, kun oletetaan, että äänen nopeus on 32 m/s ja se pysyy vakiona korkeudesta riippumatta. Ratkaisu: Shokkiaalto muodostaa lentokoneen taakse kartion ja pamaus kuuluu, kun shokkiaalto ohittaa kuulijan L. Kuva näyttää tilanteen sillä hetkellä, kun shokkiaalto saavuttaa kuulijan pisteessä L. Nopeudella v S lentävä lentokone on ehtinyt edetä ohituskohdasta matkan v. S t Kuvan geometrian ja yhtälön (3.5.1) avulla laskemme: 1 a = arcsin = Lentokoneen nopeus on ja kuvasta v S = m/s = 56 m/s, 8m tana =, v S t

4 josta 62 8m t = = 2.5s. (56m/s) tan 34.8 Pamaus siis kuuluu 2.5 sekuntia sen jälkeen, kun lentokone on ohittanut kuulijan. Tänä aikana kone on lentänyt matkan (56m/s) (2.5s) = 11.5km. Muita shokkiaaltoja: - veneen keula-aallot - Cherenkov-säteily 3.9 RESONANSSI Käsite resonanssi liittyy energian siirtymiseen värähtelevien systeemien välillä. Värähtelevät systeemit värähtelevät niille ominaisilla normaalitaajuuksilla (normaalimuodoilla). Esimerkiksi kitaran kielen normaalimuotoja ja -taajuuksia tarkastelimme sivulla 31 ja vastaavia urkupillien normaalivärähdysmuotoja sivulla 51. Jos systeemiin syötetään lisäenergiaa muulla kuin systeemin omalla normaalitaajuudella, systeemi ei ota sitä vastaan. Resonanssitilanteessa syöttötaajuus on systeemin jokin normaalitaajuuksista ja energia siirtyy helposti systeemiin. Yksinkertainen koe kaiuttimella ja urkupillillä valaisee asiaa:

5 63 Viereisessä kuvassa avoin urkupilli on sijoitettu kaiuttimen viereen siten, että ääni kaiuttimesta voi edetä pillin sisään. Kaiutin lähettää puhdasta siniaaltoa, jonka taajuutta f voidaan säätää. Ilmapatsas pillin sisällä pakotetaan näin värähtelemään kaiuttimen lähettämällä taajuudella. Kun kaiuttimen taajuutta säädetään, äänen amplitudi putkessa on melko alhainen, paitsi silloin kun taajuus sattuu olemaan jokin putken normaalivärähdystaajuuksista (kuva b). Normaalivärähtystaajuuksilla putkessa oleva ilmapatsas on resonanssissa ulkoisen äänilähteen kanssa. Resonanssi-ilmiöitä havaitaan jatkuvasti jokapäiväisessä elämässä. Esimerkiksi Koskilinjan bussin jokin penkeistä saattaa moottorin kierrosluvun vähetessä aloittaa yhtäkkiä hillittömän värähtelyn ja tärinän. Moottorin taajuus vastaa tällöin penkin normaalitaajuutta ja penkkiin siirtyy värähdysenergiaa tehokkaasti. Esimerkki: Suljettua urkupilliä soitetaan lähellä kitaraa, jolloin eräs kielistä alkaa värähdellä. Kielen pituus on 8% pillin pituudesta ja molemmat värähtelevät perustaajuuksillaan. Laske kielessä etenevän aallon nopeuden suhde äänen nopeuteen ilmassa.

6 64 Ratkaisu: æ v ö K Kieli ç fn = n 2 LK : è ø v = 2L f Pilli æ v ö Ä ç fn = n 4 LP : è ø v Ä = 4L P f P Resonanssi: fk = fp K K K n = 1, K = kieli n = 1, Ä = ääni, P = pilli vk 2LK fk 2 LK 1.8LP Lasketaan: = = = =.4 vä 4LPfP 4 LP 2 LP Esimerkki: Säädettävän pituinen suljettu pilli soi lähellä kitaran kieltä, jonka massa on 7.25 g ja pituus 85. cm. Kielen jännitys on 411 N. Kuinka pitkäksi pilli on säädettävä, jotta sen soidessa perusvärähdystaajuudella kielen toinen yliääni virittyisi soimaan. Oleta äänen nopeudeksi ilmassa 34 m/s. Ratkaisu: vk 3 F 3 F Kieli: f3 = 3 = =, n = 3 2 L 2 L m / L 2 ml Ä Pilli: f1 = v, n = 1 4LP Resonanssi: f1 = f3 vä 3 F Lasketaan: = 4L 2 ml P K K K K K -3 Þ L P 1 mlk = v 6 F Sijoitetaan: m = kg L K =.85 m F = 411 N v = 34 Ä Tulee L P = m» 6.9 cm Ä

7 65 4 VALO Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valon luonne on kaksijakoinen: 1. Klassillisessa optiikassa valoa käsitellään sähkömagneettisena aaltona. Aaltokuvan avulla voidaan helposti selittää valon käyttäytyminen väliaineissa ja niiden rajapinnoilla. Myös interferenssi- ja diffraktioilmiöt ymmärretään helpommin aaltomallilla. 2. Hiukkasluonne, fotoni-kuva, on käyttökelpoinen, kun tarkastellaan valon ja materiaalin vuorovaikutusta atomaarisella tasolla. Atomien ja molekyylien energiat ovat kvantittuneita ja on käytännöllistä ajatella myös valon muodostuvan energiakvanteista. 4.1 HISTORIAA LYHYESTI Neljä ajanjaksoa: Antiikista keskiaikaan 16- ja 17-luku 18-luku 19-luvulta nykyaikaan Antiikista keskiaikaan Optiikan ja optisten laitteiden historiaa voidaan seurata aina varhaisantiikkiselle ajalle asti. Esimerkiksi hyväkuntoisia peilejä on löydetty Niilin laaksosta, muinaisen Egyptin ajalta jo 19 luvulta ekr. Kreikkalaiset filosofit, kuten Pythagoras ( ), Demokritus (46-37), Platon ( ) ja Aristoteles ( ) kehittivät teorioita näkemisen luonteesta. Valon suoraviivainen eteneminen tun-

8 66 nettiin ja Euklides ( ) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista kulmista. Joitakin esimerkkejä kehityksestä: - Roomalaiset käyttivät polttolaseja - Arabioppineet kehittivät heijastuslakia - 13-luvun maalauksissa esiintyy silmälasipäisiä munkkeja - Leonardo da Vinci ( ) keksi camera obscuran - Giovanni Della Porta ( ) tutki linssikombinaatioita Tähän päättyi optiikan kehityksen ensimmäinen aikakausi. Valon luonteeseen liittyviä keksintöjä ja ajatuksia syntyi enemmän tai vähemmän satunnaisesti aina silloin tällöin. 16- ja 17-luku Optiikan teorian ja sovellutusten myötätuuli alkoi modernin tieteen kehityksen ja modernien filosofien myötä 16-luvulla. Keksittiin kaukoputki ja mikroskooppi. Nimiä: Lippershey ( ), Galilei ( ), Jansen ( ), Fontana ( ), Kepler ( ). Willebrord Snell ( ) esitti (keksi uudelleen) taittumislain. René Descartes( ): valo on eetterissä etenevä painehäiriö. Vuonna 1637 hän kirjoitti: Valo ei ole mitään muuta kuin hyvin hienon aineen tietynlaista liikettä tai vastetta. Tämä aine on läsnä kaikkialla ja täyttää kappaleiden huokoset. Pierre de Fermat ( ) esitti lyhimmän ajan periaatteen. Francesco Grimaldi ( ) tutki diffraktiota.

9 67 Robert Hooke ( ) ehdotti, että valo olisi hyvin nopeasti etenevää väliaineen värähdysliikettä. Hookea pidetään valon aaltoteorian isänä. Newton ( ) pohti onko valo kiukkassäteilyä vai onko se kaiken täyttävän eetterin aaltoilua. Dispersiotutkimustensa perusteella hän päätyi aluksi lähes nykykäsitykseen: Valkoinen valo koostuu väreistä ja tiettyyn väriin liittyvät valohiukkaset virittävät eetterin värähtelemään tälle värille ominaisella tavalla. Myöhemmin Newton hylkäsi aaltomallin. Syynä oli ratkaisematon ongelma selittää valon suoraviivainen eteneminen aalloilla, jotka tunnetusti leviävät kaikkiin suuntiin. Newton kehitti peilikaukoputken. Samaan aikaan, kun Newton työskenteli Englannissa, Euroopan mantereella vaikutti suuri aaltoteorian kehittäjä hollantilainen Christian Huygens ( ). Huygensin valon etenemisen periaate: Aaltorintaman AB jokainen piste toimii sekundäärisenä palloaaltojen lähteenä niin että myöhemmän ajanhetken uusi aaltorintama A'B' muodostuu sekundääristen aaltojen verhokäyrästä. Huygensin malli ei sisällä aallonpituuskäsitettä. Ole Christensen Römer ( ) mittasi valon nopeuden (2.4 x 1 8 m/s) Jupiterin kuun Ion avulla. Newton oli arvostettu tiedemies ja hänen mielipiteensä valon luonteesta vaikeutti aaltoteorian kehittymistä koko 17-luvun ajan. Valon aaltoteoria pääsi kehittymään tehokkaasti vasta 18-luvulla, jota pidetäänkin aaltoteorian vuosisatana.

10 18-luku 68 Thomas Young ( ) tutki interferenssiä. Augustin Jean Fresnel ( ) kehitti diffraktioteoriaa. Hän lisäsi Hyugensin valon etenemismalliin mm. aallonpituuskäsitteen ja interferenssin. Hän ratkaisi myös taaksepäin etenevän aaltorintaman ongelman. Armand Fizeau ( ) mittasi (1849) pyörivään hammasrattaaseen perustuvalla laitteellaan valon nopeudeksi 3153 km/s. Myös sähkö- ja magnetismioppi kehittyi. Michael Faraday ( ) löysi yhteyden sähkömagnetismin ja valon välille. James Clerk Maxwell ( ) kokosi ja laajensi sähkömagneettisen tietämyksen neljä yhtälöön. Osoitti teoreettisesti, että sähkömagneettinen kenttä voi edetä poikittaisena aaltona eetterissä 1/2 nopeudella 1/( em ). Kun tähän sijoitettiin permittiivisyyden e ja permeabiliteetin m tunnetut arvot, päädyttiin yllättäen valon nopeuteen. Juuri tämä havainto johti Maxwellin päätelmään, että valo olisi sähkömagneettista säteilyä. Valon hyväksyminen aaltoliikkeeksi pakotti hyväksymään myös eetterin olemassaolon. Tuohonkin aikaan ajateltiin vielä, että aaltoliike tarvitsee ilman muuta väliaineen jossa edetä. Eetterin ominaisuuksia tutkittiin paljon ja vuonna 1879 Maxwell esitti koejärjestelyn, jolla maan nopeus eetterin suhteen pystyttäisiin mittaamaan. Koska valon nopeus eetterin suhteen on vakio ja maa oletettavasti liikkuu eetterin suhteen, tulisi maan liikkeen vaikuttaa valon nopeuteen, kun se mitataan maan suhteen.

11 69 Albert Michelson ( ) ja Edward Morley ( ) suorittivat kokeen erittäin tarkasti, mutta eivät havainneet ennustettua efektiä. Negatiivinen tulos julkaistiin vuonna Maa ei liikkunut eetterin suhteen ja tiedemiehet olivat ymmällään. 19 luvulta nykyaikaan Jules Poincaré ( ) kyseenalaisti eetterin olemassaolon. Albert Einstein ( ) julkaisi vuonna 195 suppeamman suhteellisuusteoriansa, jossa myös hän hylkäsi eetterihypoteesin. Einstein postuloi: "...tyhjässä avaruudessa valo etenee aina samalla nopeudella c riippumatta valon emittoiman kappaleen liiketilasta". Vuonna 19 Max Planck ( ) esitti Saksan fyysikkoseuralle tutkimuksen, josta nykyisen valon kvanttiteorian katsotaan alkavan. Planck pystyi selittämään mustankappaleen säteilijän spektrin olettamalla, että valo muodostuu energiapaketeista eli kvanteista. Energiakvantin eli fotonin energia E on suoraan verrannollinen sen taajuuteen n (= f) siten, että E = hn, missä verrannollisuuskerroin h on ns. Planckin vakio. Einstein selitti valosähköisen ilmiön valon kvanttimallilla. 192-luvun loppuun mennessä Bohrin, Bornin, Heisenbergin, Schrödingerin, de Broglien, Paulin, Diracin ym. töiden seurauksena kvanttimekaniikasta oli tullut yleisesti hyväksytty teoria. Vähitellen kävi ilmeiseksi, että hiukkas- ja aaltokäsitteitä, jotka makroskooppisessa maailmassa ovat selvästi erillisiä asioita, ei atomaarisessa maailmassa voida erottaa toisistaan. Mielikuva atomista pienenä massajakautumana ei enää ollut riittävä.

12 7 Havaittiin myös, että hiukkaset aivan aaltojen tapaan pystyvät tuottamaan interferenssi ja diffraktiokuvioita. Siten fotoneilla, protoneilla, elektroneilla, neutroneilla, jne. on sekä materiaalisia että aaltoluonteisia ominaisuuksia. Sekä materiaalisen hiukkasen että sähkömagneettisen kvantin liikemäärä p, aallonpituus l ja nopeus v saadaan samoista yhtälöistä: E - mc p =, c h l =, p 2 pc v =. E Näissä c on valon tyhjiönopeus, h on Planckin vakio, m on hiukkasen lepomassa ja E = mc on hiukkasen kokonaisenergia. Tässä 2 ns. relativistinen massa on m m= =gm 2, 1 -( v/ c) missä on käytetty merkintää g = ( v / c) 2. Sähkömagneettinen kvantti on massaton ( m = ), joten 2 E h hc p =, c l = p = E ja pc v = = c, E ja esimerkiksi keskimmäisestä tuloksesta saamme sähkömagneettisen kvantin energialle tutun lausekkeen hc E = = hn, l missä n = c / l on taajuus. Sähkömagneettisella säteilyllä on siis kahtalainen luonne: hiukkasluonne (energiapaketti, fotoni, kvantti) ja aaltoluonne (taajuus, aallonpituus).

13 SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 18- luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. Maxwellin yhtälöt osoittavat, että muuttuva magneettikenttä toimii sähkökentän lähteenä ja päinvastoin, muuttuva sähkökenttä synnyttää magneettikentän. Sähkökenttä E (sähkökentän voimakkuus, V/m) ja magneettikenttä B (magneettivuon tiheys, Vs/m 2 = T) voivat siis ylläpitää toisiaan ja muodostaa näin sähkömagneettisen aallon, joka etenee avaruudessa. Sähkömagneettinen aalto on poikittaista aaltoliikettä. Aalto muodostuu kahdesta komponentista, sähkökentästä E ja magneettikentästä B. Molemmat komponentit ovat kohtisuorassa aallon etenemissuuntaan nähden ja vielä siten, että ristitulo E B osoittaa aallon etenemissuuntaan. Komponentit ovat kohtisuorassa myös toisiaan vastaan. Esimerkiksi positiivisen x-akselin suuntaan etenevä harmoninen (sinimuotoinen) sähkömagneettinen aalto on ïì E( x, t) = E sin( kx-w t) ˆj í ïî B( x, t) = B ˆ sin( kx-w t) k, missä sähkökenttä on valittu värähtelemään xy-tasossa ja magneettikenttä xz-tasossa. Vektori ĵ on y-akselin suuntainen yksikkövektori ja ˆk z-akselin suuntainen. Värähtelevän sähkökentän amplitudi on E ja magneettikentän B.

14 72 Sähkömagneettisessa aallossa kentät ovat samassa vaiheessa (sama argumentti sinin sisällä) ja kenttien suuruudet E = E ja B = B kytkeytyvät toisiinsa yhtälöllä 1 B= E, (4.2.1) c missä c on valon tyhjiönopeus m/s. Näin edellä esitetyssä aallossa myös amplitudeille pätee B = E/ c. Esimerkki: Hiilidioksidi(CO 2 )laser emittoi sinimuotoista sähkömagneettista aaltoa aallonpituudella 1.6 m m siten, että sähkökentän maksimiarvo on V/m. Kirjoita lasersäteen sähkö- 6 ja magneettikentät E ja B ajan ja paikan funktiona, kun laser on käännetty sellaiseen asentoon, että E- kenttä värähtelee z-akselin suunnassa ja säde etenee negatiivisen x-akselin suuntaan. Ratkaisu: Sähkökenttä värähtelee z-suunnassa ja aalto etenee negatiivisen x-akselin suuntaan, joten r E= E = E sin( kx+w t) kˆ, missä Lisäksi E B osoittaa aallon etenemissuuntaan, ts. -i ˆ-suuntaan, joten magneettikentälle (magneettivuon tiheydelle) voimme kirjoittaa r B= B= B sin( kx+w t)ˆj, koska kˆ ˆj=-ˆi. Magneettikentän amplitudiksi laskemme B 6 E V/m -3 Vs = = = c 3. 1 m/s m 6 E = V/m. = 5. mt ja lisäksi aallon aaltoluvulle ja kulmataajuudelle saamme 2p 2p k = = = l m 5 m -1

15 73 8 c 3. 1 m/s m w = pn = p = p l 14 = s -1. CO 2 -laserin aallonpituus sijoittuu infrapuna-alueelle eikä siten ole silmin nähtävää. Huom! Sähkömagneettisten aaltojen yhteydessä taajuuden symboli on n. Sähkömagneettinen aalto eristeessä Edellä tarkastelimme sähkömagneettista aaltoa tyhjiössä. Totesimme, että aallon kuvaamiseen riittää tarkastella vain esim. sähkökenttää, joka suuruus ( E = E ) harmonisen aallon tapauksessa on E( x, t) = E sin( kx- w t), missä aallon tyhjiönopeus saadaan laskemalla c= w / k. Sähkömagneettinen aalto voi edetä myös aineessa. Tavalliset optiset läpinäkyvät materiaalit (ilma, lasi, vesi, ) ovat eristeitä, joissa aalto on muodoltaan sama kuin tyhjiössä E( x, t) = E sin( kx- wt), mutta nopeus on muuttunut arvoon w c v = =, (4.2.2) k n missä c =v on valon nopeuden tyhjiöarvo ja n on väliaineen ns. taitekerroin. Valon nopeus tavallisissa eristeissa on aina pienempi kuin tyhjiönopeus, joten taitekerroin n on aina > 1. Voidaan kirjoittaa (laske nämä tulokset): nopeus on v = v / n= c/ n taajuus n = n ei muutu

16 74 aallonpituus l = l / n lyhenee aaltoluku k = nk kasvaa kulmataajuus w = w ei muutu. Näissä alaindeksi viittaa tyhjiöarvoon Esimerkki: Natrium(Na)-lamppu emittoi keltaista valoa taajuudella Hz. Laske nopeus ja aallonpituus seuraavissa 14 optisissa materiaaleissa: Tyhjiö n = 1 Ilma n = 1.27 Vesi n = 1.33 Lasi n = 1.5 Timantti n = 2.42 Ratkaisu: v c = n ja l = v 8 ì c = m/s, missä í n 14 în = /s v/() c 8 v /(1 m/s) l/ nm Tyhjiö Ilma Vesi Lasi Timantti Sähkömagneettinen aalto johteessa Johteessa taitekerroin n on kompleksinen ja aalto absorboituu materiaaliin sitä nopeammin mitä suurempi materiaalin johtavuus on.

Tarkastellaan kahta x-akselin suuntaan etenevää ääniaaltoa (huomaa esitystapa) ja kuunnellaan niiden summaa kiinnitetyssä kohdassa x = 0 :

Tarkastellaan kahta x-akselin suuntaan etenevää ääniaaltoa (huomaa esitystapa) ja kuunnellaan niiden summaa kiinnitetyssä kohdassa x = 0 : 52 3.6 HUOJUNTA Äänen huojunta (beats) havaitaan äänen amplitudin (ja siten myös voimakkuuden) säännöllisenä vaihteluna. Huojuntaa esiintyy kun ääni syntyy kahden, lähes samataajuisen äänen summana. Esimerkkinä

Lisätiedot

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön.

jonka peruslait tiivistyvät neljään ns. Maxwellin yhtälöön. 71 4. SÄHKÖMAGNEETTINEN AALTO Sähköön ja magnetismiin liittyvät havainnot yhdistettiin noin 1800luvun puolessa välissä yhtenäiseksi sähkömagnetismin teoriaksi, jonka peruslait tiivistyvät neljään ns. Maxwellin

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

3 ÄÄNI. Sovelletaan nytkin impulssiteoreemaa. Liikkuvaan nesteosaan vaikuttava A ja sen aiheuttama liikemäärän muutos, on nesteosan massa.

3 ÄÄNI. Sovelletaan nytkin impulssiteoreemaa. Liikkuvaan nesteosaan vaikuttava A ja sen aiheuttama liikemäärän muutos, on nesteosan massa. 37 3 ÄÄNI Yksi ihmisen kannalta tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves). Tarkastelemme nyt ääntä lähinnä

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.

Ihmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz. 3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kaaleissa olemme tutkineet valon heijastumista eileissä ja taittumista linsseissä geometrisen otiikan aroksimaation avulla Aroksimaatiossa valon aaltoluonnetta

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

e =tyhjiön permittiivisyys

e =tyhjiön permittiivisyys 75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

16 ÄÄNI JA KUULEMINEN (Sound and Hearing)

16 ÄÄNI JA KUULEMINEN (Sound and Hearing) 8 16 ÄÄNI JA KUULEMINEN (Sound and Hearing) Ihmisen kannalta yksi tärkeimmistä luonnossa esiintyvistä aaltoilmiöistä muodostuu ilmassa etenevistä pitkittäisistä aalloista eli ääniaalloista (sound waves)

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio

FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Bohr Einstein -väittelyt. Petteri Mäntymäki Timo Kärkkäinen

Bohr Einstein -väittelyt. Petteri Mäntymäki Timo Kärkkäinen Bohr Einstein -väittelyt Petteri Mäntymäki Timo Kärkkäinen Esityksen sisältö Kvanttivallankumous Epätarkkuusperiaate Väittelyt Yhteenveto 24.4.2013 2 Kvanttivallankumous Alkoi 1900-luvulla (Einstein, Planck,

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

, tulee. Käyttämällä identiteettiä

, tulee. Käyttämällä identiteettiä 44 euraavaksi käytämme tilavuusmodulin B määritelmää (katso sivu 4) B =- dp /( dv / V ). Tässä dp on paineen muutos, joka nyt on pxt (,). aamme siten dv yxt (,) p(,) x t =- B =-B. (3.3.3) V x Kun tähän

Lisätiedot

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä).

Kuva 1. Valon polarisoituminen. P = polarisaattori, A = analysaattori (kierrettävä). P O L A R I S A A T I O VALON POLARISAATIO = ilmiö, jossa valon sähkökentän värähtelyt tapahtuvat vain yhdessä tasossa (= polarisaatiotasossa) kohtisuorasti etenemissuuntaa vastaan Kuva 1. Valon polarisoituminen.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! 6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista 65 4 VALO Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valon luonne on kaksijakoinen: 1. Klassillisessa optiikassa valoa käsitellään sähkömagneettisena aaltona.

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).

2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot

Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

Luento 15: Mekaaniset aallot

Luento 15: Mekaaniset aallot Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot