Säätötekniikan ja signaalinkäsittelyn työkurssi

Koko: px
Aloita esitys sivulta:

Download "Säätötekniikan ja signaalinkäsittelyn työkurssi"

Transkriptio

1 Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

2 Sisältö 1 Johdanto 1 2 Työn sisältö 1 3 Työn tausta FIR-suodattimet FIR-suodatinten taajuusvaste Harjoitustyön osat Lämmittelyosa Harjoitusosa Ensimmäinen differenssi -suodatin Suodattimen lineaarisuus Suodattimen aikainvarianssi Kahden järjestelmän kaskadi Tämä versio: 5. toukokuuta 2006 kello 9:01 i

3 1 Johdanto Työssä tarkastellaan LTI-järjestelmien ominaisuuksia ja FIR-suodatinten toimintaa. Työssä tarvittavat teoreettiset perusteet löytyvät oppikirjan [1] luvuista 2-4. Työn laajuus on 0.4 opintopistettä. Tämä työohje löytyy html-muodossa osoitteesta sekä pdf-muodossa osoitteesta D102/D102.pdf. 2 Työn sisältö Työ jakaantuu kahteen osaan, lämmittelyyn ja harjoitusosaan. Lämmittelyosan tarkoituksena on kerrata Matlabin perusominaisuuksia. Harjoitusosassa tarkastellaan signaalien esittämistä Matlabilla. Lämmittelyosa suoritetaan hyväksymismenettelyllä ja harjoitusosasta palautetaan raportti, joka arvostellaan. Lämmittelyosan suorittamisen varmistamiseksi ohjaaja täyttää tämän ohjeen liitteenä olevan varmistuslomakkeen. Varmistuslomake liitetään harjoitusosan raporttiin. 3 Työn tausta 3.1 FIR-suodattimet FIR-suodatin on diskreettiaikainen järjestelmä, joka voidaan kuvata differenssiyhtälöllä M 1 y(n) = b k x(n k) (3.1) k=0 Yhtälö 3.1 kertoo, miten lasketaan ulostulon y n:s arvo y(n) tietystä joukosta sisäänmenon arvoja. Suodattimen kertoimet {b k } ovat vakioita, jotka määräävät suodattimen toiminnan. Tarkastellaan esimerkiksi järjestelmää, jonka ulostulo on y(n) = 1 3 x(n) x(n 1) + 1 x(n 2) 3 = 1 (3.2) 3 [x(n) + x(n 1) + x(n 2)] Yhtälön mukaan ulostulon n:s arvo on keskiarvo sisäänmenon n:nnestä arvosta x(n) ja kahta sitä edeltävästä arvosta x(n 1) ja x(n 2). Tässä esimerkissä siis kertoimet b k ovat b 0 = 1/3, b 1 = 1/3 ja b 2 = 1/3. Matlabissa on sisäänrakennettu funktio (ei siis osa Signal Processing Toolboxia) filter, jolla voidaan laskea suodattimen ulostulo. filter toimii myös IIR- Tämä versio: 5. toukokuuta 2006 kello 9:01 1

4 tyyppisille suodattimille, ts. järjestelmille, jotka voidaan kuvata differenssiyhtälöllä N 1 M 1 a k y(n k) = b k x(n k). (3.3) k=0 Funktiota filter käytetään seuraavasti y = filter(b,a,x); k=0 missä b on kertoimet {b k } ja a kertoimet {a k } sisältävä rivivektori. FIR-suodatin on erikoistapaus yleisestä differenssiyhtälöstä siten, että kertoimet {a k } = 1. Matlabilla FIR-suodattimen ulostulo lasketaan siksi seuraavasti y = filter(b,1,x); FIR-suodattimen ulostulo voidaan laskea myös kahden sekvenssin konvoluution laskevalla funktiolla conv. Tähän palataan lämmittelyosassa. 3.2 FIR-suodatinten taajuusvaste Suodattimen ulostulo eli vaste kompleksisella eksponenttifunktioherätteellä e jωn riippuu taajuudesta ω. Usein suodattimen ominaisuuksia kuvataan juuri siten, miten se vaikuttaa eri taajuuksisiin signaaleihin. Tätä kuvataan taajuusvasteella. Otetaan esimerkiksi 2:n pisteen liukuvankeskiarvon suodatin, jonka differenssiyhtälö on y(n) = 1 2 x(n) + 1 x(n 1). (3.4) 2 Suodattimen taajuusvaste saadaan selville, kun suodattimeen syötetään kompleksinen eksponenttifunktio yleisessä muodossa ja laskemalla ulostulo x(n) = Ae jωn+φ (3.5) y(n) = 1 2 Aejωn+φ Aejω(n 1)+φ = = Ae jωn+φ 1 2 ( 1 + e jω) (3.6) Ulostulon havaitaan muodostuvan kahdesta termistä, alkuperäisestä sisäänmenosta x(n) = Ae jωn+φ sekä termistä, joka on kulmataajuden ω funktio. Tämä toinen termi on suodattimen taajuusvaste ja sitä merkitään H(ω). Tässä esimerkin tapauksessa siis H(ω) = 1 2 ( 1 + e jω) (3.7) Kun taajuusvastefunktio on määritetty kulmataajuuden ω funktiona, suodattimen vaikutus minkä tahansa taajuiseen signaaliin voidaan määrittää laskemalla H(ω):n arvo vastaavalla taajuudella. Tulos on kompleksiluku, jonka kulma kompleksitasossa ilmaisee, kuinka suuren vaihesiirron suodatin aiheuttaa kyseisen taajuiselle signaalille. Kompleksiluvun pituus (amplitudi) ilmaisee suodattimen aiheuttaman vahvistuksen kyseisen taajuiselle signaalille. Tämä versio: 5. toukokuuta 2006 kello 9:01 2

5 Yleisessä tapauksessa taajuusvasteen määritelmä saaadaan tarkastelemalla yleistä LTI-järjestelmää y(n) = k= h(k)x(n k), (3.8) missä {h(k)} on järjestelmän yksikköimpulssivaste. Syötetään järjestelmään heräte x(n) = Ae jωn+φ ja lasketaan ulostulo y(n) = [ ] h(k) e jω(n k) + φ k= ] (3.9) h(k)e jωk e jωn+φ = A [ k= Taas havaitaan, että vaste muodostuu alkuperäisestä herätteestä sekä termistä, joka on järjestelmän taajuusvastefunktio H(ω) = h(k)e jωk. (3.10) k= Kausaalisen FIR-suodattimen tapauksessa yhtälö supistuu muotoon H(ω) = M 1 h(k)e jωk. (3.11) k=0 Matlabin Signal Processing Toolboxissa on funktio freqz, joka piirtää LTI-järjestelmän taajuusvasteen suoraan kertoimien {a k }, {b k } perusteella. Piirretään esimerkkinä edellä olleen 2:n pisteen liukuvan keskiarvon suodattimen taajuusvaste kulmataajuusvälillä π ω π: b = [1/2 1/2]; w = -pi:(pi/100):pi; H = freqz(b,1,w); plot(w, abs(h)) FIR-suodattimilla freqz:n toinen parametri on aina 1 vastaavalla tavalla kuin filter-funktion kanssa. 4 Harjoitustyön osat 4.1 Lämmittelyosa Tässä osassa kerrataan taajuusvasteen käsitettä sekä taajuusvasteen piirtämistä Matlabilla. Edellä on esimerkkeinä käytetty liukuvan keskiarvon suodattimia, jotka siis laskevat ulostulon arvoksi sisäänmenon nykyisen arvon ja tietyn määrän edellisiä arvoja keskiarvon. Tällaisen suodattimen kertoimet {b k } ovat aina yhtä Tämä versio: 5. toukokuuta 2006 kello 9:01 3

6 suuria. Yleisessä muodossa tällaisen suodattimen differenssiyhtälö on muotoa y(n) = 1 L L 1 x(n k). (4.1) k=0 1. Osoita, että kolmen pisteen liukuvan keskiarvon suodattimen taajuusvaste on H(ω) = 2 cos ω + 1 e jω (4.2) 3 2. Laske yhtälön 4.2 arvo suoraan Matlabilla. Käytä taajuutena vektoria, joka sisältää 401 pistettä väliltä π... π. (a) Piirrä taajuusvasteen kuvaaja käyttämällä funktiota plot. Erota amplitudi ja vaihe funktioilla abs ja angle. (b) Piirrä taajuusvaste funktiolla freqz kirjoittamalla suoraan freqz(b,1). (c) Miten voit itse piirtää funktiolla plot samanlaisen kuvaajan kuin saat funktiolla freqz, mutta suomenkielisillä teksteillä? 3. Mikä on suodattimen vaimennus taajuudella π/3. Katso ensin kuvaajasta ja laske sitten sekä suoraan yhtälöä 4.2 käyttäen että Matlabin funktiolla freqz. 4. Osoita, että FIR-suodattimen ulostulo voidaan laskea konvoluutiolla y(n) = h(n) x(n) (4.3) Miksi IIR-suodattimen ulostuloa ei käytännössä voi laskea konvoluutiolla? 5. Luo kosinisignaalin sisältävä vektori seuraavasti n = 0:99; x = cos( 0.08*pi*n); b = 1/3*ones(1,3); Suodata x vektoriin yf funktiolla filter ja vektoriin yc funktiolla conv. Ovatko yf ja yc yhtä pitkiä. Jos eivät, niin miksi eivät? 4.2 Harjoitusosa Harjoitusosassa tutustutaan siihen, miten suodattimet vaikuttavat sinimuotoisiin (tai kosini-) sisäänmenoihin. Tavoitteena on ymmärtää seuraavat asiat: 1. Yhtälön 3.1 muotoiset suodattimet voivat muuttaa sinisignaalin amplitudia ja vaihetta, mutta eivät taajuutta. 2. Suodatin käsittelee siniaaltojen summan kutakin komponenttia toisista komponenteista riippumatta. 3. Suodattimet voivat kokonaan poistaa tietyn taajuisia siniaaltoja. Tämä versio: 5. toukokuuta 2006 kello 9:01 4

7 4.2.1 Ensimmäinen differenssi -suodatin Seuraavassa tarkastellaan diskreettiaikaisia sinisignaaleita, jotka ovat muotoa x(n) = A cos (ωn + φ), n = 0, 1,..., L 1 (4.4) Signaalin diskreetti kulmataajuus ω on aina välillä 0 ω π. Jos signaali saadaan aikaan näytteistämällä jatkuva-aikaista signaalia, on diskreettiaikaisen ja jatkuva-aikaisen signaalin taajuuksien välillä yhteys ω = 2πF F s (4.5) missä F on jatkuva-aikaisen signaalin taajuus ja F s näytteenottotaajuus. Luo 50 näytettä pitkä kosiniaalto yhtälön 4.4 mukaisesti arvoilla A = 7, φ = π/3 ja ω = 0.125π. Talleta signaali vektoriin x, jotta sitä voidaan käyttää jatkossa. Käytä funktiota conv seuraavalla differenssiyhtälöllä ilmaistun suodattimen toteuttamiseen y(n) = 5x(n) 5x(n 1). (4.6) Tällainen suodatin on nimeltään ensimmäinen differenssi, mutta tässä vahvistuksella Suodata x vektoriin y. Mikä on suodatetun sekvenssin pituus? Miksi? 2. Piirrä ensimmäiset 50 näytettä molemmista signaaleista samaan kuvaan komennon subplot avulla. Käytä varsinaiseen piirtämiseen funktiota stem funktion plot sijasta. Piirrä sekvenssit siten, että x-akselilla on arvot 0 x Piirrä toiseen kuvaan samalla tavalla signaalien kuvaajat funktiolla plot. 4. Havainnoi kuvista, että jos ensimmäinen näyte jätetään huomiotta, suodatettu sekvenssi y näyttäisi olevan skaalattu ja vaihesiirretty versio suodattimen sisäänmenosekvenssistä x. Selitä, miksi ensimmäinen näyte poikkeaa. 5. Selvitä kuvan ja Matlabin funktion max avulla, mikä on sekvenssien x ja y amplitudi ja diskreetti taajuus. 6. Selvitä sekvenssien välinen vaihe-ero. Onko vaihe-ero negatiivinen vai positiivinen? Vihje: Etsi kaksi toisiaan vastaavaa näytettä ja laske niiden vaiheero ensin näytteissä. Laske sitten sama kulmana asteina tai radiaaneina. 7. Luonnehdi suodattimen toimintaa taajuudella ω = 0.125π laskemalla ulostulon suhteellinen amplitudi (ulostulon amplitudin suhde sisäänmenon amplitudiin) ja kertomalla sen aiheuttama vaihe-ero ko. taajuudella (selvitettiin jo edellä). 8. Johda suodattimen vahvistuksen ja vaihe-eron lausekkeet teoreettisesti. Laske vahvistuksen ja vaihe-eron arvot taajuudella ω = 0.125π ja vertaa niitä edellä selvittämiisi tuloksiin. Jos tulokset poikkeavat, selitä miksi. Tämä versio: 5. toukokuuta 2006 kello 9:01 5

8 4.2.2 Suodattimen lineaarisuus 1. Kerro edellä luomasi vektori x kahdella ja talleta tulos vektoriin xa, siis xa=2*x. Suodata signaali vektoriin ya samalla suodattimella kuin edellä. 2. Luo uusi sisäänmenosignaali, joka vastaa diskreettiaikaista signaalia x b (n) = 8 cos (0.25πn) (4.7) Talleta tulos vektoriin xb. Suodata signaali convilla vektoriin yb. Toista edellisen kohdan numerot 5 ja 6 xb:lle ja yb:lle. 3. Muodosta vielä yksi sisäänmenosignaali xc, joka on xa:n ja xb:n summa. Suodata signaali convilla vektoriin yc. Vertaa yc:tä summaan ya+yb. Havaitsetko mitään eroa? Selitä mahdollisesti havaitsemasi ero. Voitko olettaa suodattimen olevan lineaarinen havaintojesi perusteella? Suodattimen aikainvarianssi Viivästä signaali x kolmella näytteellä eli luo vektori xs, joka vastaa signaalia x s (n) = 7 cos (0.125π(n 3) + π/3). (4.8) Suodata signaali vektoriin ys. Vertaa ys:ää ja y:tä. Kuinka monta näytettä y:tä on viivästettävä, jotta y ja ys ovat yhtenevät? (jätä ensimmäinen ja viimeinen näyte huomiotta) Onko suodatin tällä perusteella aikainvariantti? Kahden järjestelmän kaskadi Monimutkaisempia järjestelmiä kootaan usein yksinkertaisista osista. Otetaan esimerkiksi järjestelmä, jossa epälineaarinen järjestelmä (toiseen potenssiin korotus) on kytketty kaskadiin FIR-suodattimen kanssa. x(n) w(n) = (x(n)) 2 y(n) ( ) 2 FIR Kuva 1: Järjestelmä, jossa epälineaarinen järjestelmä on kaskadissa FIR-suodattimen kanssa. 1. Järjestelmää kuvaa kaksi yhtälöä: w(n) = [x(n)] 2 (4.9) y(n) = w(n) w(n 1) (4.10) Toteuta tämä järjestelmä Matlabilla. Käytä sisäänmenona vektoria x. 2. Piirrä vektorit x, w ja y samaan kuvaan (subplot). Tämä versio: 5. toukokuuta 2006 kello 9:01 6

9 3. Mitä taajuuksia signaalit sisältävät? Tee päätelmiä järjestelmän eri osien lineaarisuudesta. Onko koko järjestelmä lineaarinen vai epälineaarinen? 4. Selitä lineaarisuusominaisuuden perusteella, mitä tapahtuu signaalille w FIR-suodattimessa. Vihje: Tarkastele, miten eri taajuuskomponentit menevät suodattimen läpi. 5. Korvaa FIR-suodatin toisen kertaluvun FIR-suodattimella, jonka differenssiyhtälö on y 2 (n) = w(n) 2 cos(0.25π)w(n 1) + w(n 2) (4.11) Muodosta x:n neliö ja suodata. Mitä taajuuksia y2 sisältää? Selitä, miksi suodatin suodattaa taajuuden ω = 0.25π kokonaan pois. Vihje: Johda FIRsuodattimen ulostulon lauseke, kun sisäänmeno on e j0.25πn yhtälöiden 3.5 ja 3.6 tapaan. Viitteet [1] J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, and Applications. Prentice-Hall, Inc., 3 ed., Tämä versio: 5. toukokuuta 2006 kello 9:01 7

10 Työ D102: Sinimuotoisen signaalin suodattaminen Ohjaajan varmistus lämmittelyosan suorittamisesta Liitä tämä sivu harjoitusosan raporttiin Ryhmän jäsenet: Ohjaaja täyttää seuraavat kohdat: (a) (b) (c) Päiväys: Ohjaaja:

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D104: Kuvien suodatus 0.9 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio Sisältö 1 Johdanto 1

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Signaalinkäsittelyn menetelmät

Signaalinkäsittelyn menetelmät Signaalinkäsittelyn laitos. Opetusmoniste 25: Institute of Signal Processing. Lecture Notes 25: Heikki Huttunen Signaalinkäsittelyn menetelmät Tampere 25 Opetusmoniste 25: Signaalinkäsittelyn menetelmät

Lisätiedot

8000203: Johdatus signaalinkäsittelyyn 1

8000203: Johdatus signaalinkäsittelyyn 1 TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste -23 Heikki

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

Mitä on signaalien digitaalinen käsittely

Mitä on signaalien digitaalinen käsittely Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Heikki Huttunen Signaalinkäsittelyn perusteet

Heikki Huttunen Signaalinkäsittelyn perusteet Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 24: Tampere University of Technology. Department of Signal Processing. Lecture Notes 24: Heikki Huttunen Signaalinkäsittelyn perusteet

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Radioamatöörikurssi 2013

Radioamatöörikurssi 2013 Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

MATEMATIIKAN JAOS Kompleksianalyysi

MATEMATIIKAN JAOS Kompleksianalyysi MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Signaalien digitaalinen käsittely

Signaalien digitaalinen käsittely Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014) TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 1 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 Digitaalinen signaalinkäsittely ja suodatus Versio 5.01 (29.9.2003) T-61.246 Harjoitustyö

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

Alias-ilmiö eli taajuuden laskostuminen

Alias-ilmiö eli taajuuden laskostuminen Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

8000253: Johdatus signaalinkäsittelyyn 2

8000253: Johdatus signaalinkäsittelyyn 2 TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot