12. Korkojohdannaiset

Koko: px
Aloita esitys sivulta:

Download "12. Korkojohdannaiset"

Transkriptio

1 2. Korkojohdannaiset. Lähtökohtia Korkojohdannaiset ovat arvopapereita, joiden tuotto riippuu korkojen kehityksestä. korot liittyvät lähes kaikkiin liiketoimiin korkojohdannaiset ovat tärkeitä. korkojohdannaisilla voidaan hallita korkokehityksen epävarmuudesta johtuvia riskejä. Esimerkkejä. Joukkovelkakirjat (ks. luento 3). 2. Jvk:ihin kohdistuvat optiot. esim. optio, joka antaa päättymispäivänään oikeuden ostaa 0 v:n jvk optiossa asetettuun toteutushintaan. 3. Jvk:ihin sisältyvät optiot. esim. liikkeellelaskija voi varata itselleen oikeuden ostaa jvk takaisin (callable bond). takaisinostaminen kannattaa, mikäli korot laskevat jvk:n implikoimaa alhaisemmiksi. 4. Kiinnelainat (mortgages). esim. asuntolainan ottaja voi kuolettaa ennenaikaisesti joko koko lainan tai osan siitä. Ahti Salo / Pekka Mild

2 5. Rajattu vaihtuva korko (interest caps & floors) esim. lainasta maksetaan vaihtuvaa korkoa siten (esim. EURIBOR+2%), että korko pysyy lainaehdoissa määriteltyjen rajojen puitteissa. 6. Koronvaihtosopimukset (swap). sopimusosapuolet vaihtavat eri korko-instrumenteista saatavat tuotot keskenään esim. A maksaa B:lle kiinteän koron mukaan, ja B maksaa A:lle vaihtuvan koron mukaan 7. Optiot koronvaihtosopimuksiin (swaption). 2. Korkorakenteen mallintaminen Korkojohdannaisten hinnoittelu edellyttää korkorakenteen mallittamista.. Spot-korkojen muutokset eivät ole riippumattomia riippuvuudet on otettava mallinnuksessa huomioon 2. Samansuuntaiset korkorakenteen siirtymät tarjoavat arbitraasimahdollisuuksia esim. porftfolion immunisointi (Ex 3.0) korkojen muutos antaa riskittömän voiton B-tyypin arbitraasi! tarvitaan monipuolisempi korkorakenteen malli. - 2-

3 Mallinnetaan korkorakenne binomihilana. Valitaan perusperiodin pituus (esim.vko/kk/a) 2. Liitetään hilan jokaiseen solmuun lyhyt korko: ensimmäisen solmun lyhyt korko tunnetaan (siihen ei liity epävarmuutta) muiden solmujen korot saadaan kertomalla edeltävän solmun lyhyt korko termillä u, jos solmuun tullaan siirtymällä kaarta pitkin ylöspäin termillä d, jos solmuun tullaan siirtymällä kaarta pitkin alaspäin kuhunkin kaareen liitetään riskineutraali tn (usein ½). Jos r ti on lyhyt korko ja V ti korkoinstrumentin arvo solmussa (t,i), niin V ti + Vt +, i + Vt +, i + + rti 2 2 missä D ti on korkoinstrumentista saatava kuponkituotto. D ti Riskineutraali hinnoittelu (so. kassavirtojen odotusarvoihin perustuva tarkastelu) sulkee pois arbitraasimahdollisuudet. - 3-

4 Esim. Tarkastellaan kaksiperiodista tapausta, jossa jvk:sta saadaan toisen periodin päätteeksi. solmussa (,0) jvk:n arvo on P + r 0 solmussa (,) jvk:n arvo on P solmussa (0,0) jvk:n arvo on P 00 ( ½ + ½ ) 0 + r ( ½ + ½ ) + r + r ( ½ P + ½ P ) ½ Tämä implikoi kahden periodin spot-koron s 2, joka toteuttaa ehdon P + s Ts. lineaarinen hinnoittelu (so. instrumenttien hinnoittelu niiden tuottojen odotusarvon perusteella) binomihilassa implikoi koko korkorakenteen. 0 + r 00 2 ( 2 ) 0 + ½ + r - 4-

5 Esim. Muodostetaan malli kuuden vuoden koroille binomihilan parametreilla r , u.3, d0.9. Lyhyiksi koroiksi saadaan ,070 0,09 0,8 0,54 0,200 0,260 0,063 0,082 0,06 0,38 0,80 0,057 0,074 0,096 0,25 0,05 0,066 0,086 0,046 0,060 0,04 Neljän vuoden spot-korko saadaan hinnoittelemalla nollakuponkinen jvk, joka maksaa nimellisarvonsa 4 v:n kuluttua: (tässä esim. P(3,3) /(+0.54)*(½ +½ )0.867) ,733 0,75 0,792 0,867 0,88 0,848 0,904 0,89 0,93 0,95 Näin 4 v:n spot-koroksi tulee ( + s 4 ) Vastaavalla tavalla saadaan myös muut spot-korot. s 4-5-

6 3. Binomihilan käyttö hinnoittelussa Monet korkoinstrumentit voidaan hinnoitella binomihilan avulla. a) Optio joukkovelkakirjaan Esim. Oletetaan, että edellisen esimerkin binomihila kuvaa korkojen kehitystä, jolloin maturiteetiltaan 4 vuoden pituisen ja nimellisarvoltaan 00 suuruisen nollakuponkisen jvk:n hinta on Eurooppalainen osto-optio antaa oikeuden ostaa tämä jvk 3 v:n kuluttua hintaan 90. Mikä on tämän option arvo? Rakennetaan binonomihila 3 v:n alkuun s.e. binomihilan viimeiseen sarakkeeseen tulee option arvo sen päättymishetkellä option arvo lasketaan tästä taaksepäin riskineutraaleja todennäköisyyksiä käyttäen option arvoksi tulee,602, sillä 0 2 3,602 0,82 0,69 0 2,606,623 0,378 3,98 3,35 5,45-6-

7 b) Jvk-kaupan terminointi (forward-sopimus) Esim. Tarkastellaan sopimusta, jossa maturiteeriltaan 2 vuotinen 0%-kuponkikoron jvk ostetaan 4 vuoden päästä. Mikä on tämän terminoidun kaupan forward-hinta? Jvk:n arvo saadaan binomihilasta käyttäen riskineutraaleja todennäköisyyksiä 5. ja 6. vuoden alussa saadaan kuponkituotto 0% muina vuosina ei kuponkituottoja saada jvk:n nykyarvoksi saadaan 72.90, sillä ,90 72,20 73,07 76,38 83,56 97,3 0,00 83,8 84,46 87,06 92,69 03,23 0,00 93,72 95,69 99,96 07,82 0,00 02,38 05,53,27 0,00 09,68 3,80 0,00 5,63 0,00 0,00 Koska kauppa on terminoitu 4 vuoden päähän, niin forwardhinta on kuitenkin tätä suurempi. Edellä 4 vuoden diskonttokertoimeksi d 0,4 saatiin 0,733 termiinisopimuksen arvo on 72,90 d 0,4 72,90 0,733 99,40-7-

8 c) Jvk:hon kohdistuvan futuurin hinnoittelu Esim. Tarkastellaan futuurisopimusta, joka kohdistuu edellisen esimerkin jvk:hon. Mikä on tämän sopimuksen futuurihinta? Edellä laskettiin binomihilalla jvk:n arvo 4 vuoden kuluttua. Futuurisopimuksen arvo 3. vuoden päättyessä riippuu siitä, millainen jvk:n arvo on 4. vuoden päättyessä. tarkastellaan solmua (3,3), jonka jälkeen jvk:n arvo lopuksi joko 83,56 tai 92,69. jos futuurihinta on F, niin sopimuksesta saadaan voittoa joko 83,56 F tai 92,69 F tuoton odotusarvo on 0.5(83.56 F ) + 0.5(92.69 F ) F 0.5( ) 88.3 futuurihinta määrittyy siten, että odotusarvo on nolla ts. futuurihinta saadaan laskemalla jvk:n arvo binomihilassa takaisinpäin ilman diskonttausta ,2 95,88 92,23 88,3 83,56 02,36 99,54 96,33 92,69 05,8 02,75 99,96 07,6 05,53 09,68 Hinnaksi saadaan 99.2 < hinnoitteluekvivalenssi ei enää päde! - 8-

9 4. Forward-yhtälö ja elementäärihinnat Binomihila määrittää korkorakenteen täysin k:n vuoden spot-korko saadaan laskemalla rekursiivisesti maturiteetiltaan k:n vuoden mittaisen nollakuponkisen jvk:n nykyarvo tämä edellyttää jokaisen maturiteetin käsittelyä erikseen spot-koron laskeminen k:nnelle vuodelle edellyttää k k(k+)/2 laskutoimitusta spot-korkojen laskeminen n:lle eri vuodelle edellyttää n k ( k + k 2 laskutoimitusta. ) n 3 Elementäärihinta on P 0 (k,s) sellaisen instrumentin nykyarvo, josta saatava kassavirta on yhden yksikön suuruinen hetkellä k tilassa s ja muuten nolla. A. Tarkastellaan solmua (k+,s) missä s 0 ja s k+ ko. solmun elementäärihinta on P 0 (k+,s) solmulla on kaksi edeltäjää (k,s) ja (k,s-) solmuun (k+,s) liittyvä yhden yksikön kassavirta allokoituu rekursiossa näille solmuille s.e. niissä saatavat ekvivalentit kassavirrat ovat ½d k,s ja ½d k,s- - 9-

10 P koska edeltäjien elementäärihinnat ovat P 0 (k,s-) ja P 0 (k,s), niin saadaan ekvivalenssi B. Solmulla (k+,k+) on yksi edeltäjä yhden yksikön kassavirta (k+,k+):ssä on ekvivalentti (k,k):ssa saatavan ½d k,k suuruisen kassavirran kanssa C. Solmulla (k+,0) on yksi edeltäjä (k,0) [ d P ( k, s ) d P ( k, )] ( k +, s) k, s 0 + k, s s P0 ( k +, k + ) d k, k P0 ( k, k ) 2 yhden yksikön kassavirta (k+,0):ssa on ekvivalentti (k,0):ssa saatavan ½d k,o suuruisen kassavirran kanssa P0 ( k +,0) d k,0p0 ( k,0) 2 Saadaan forward-rekursio, jossa myöhempien periodien elementäärihinnat saadaan aikaisempien periodien elementäärihinnoista. Nollakuponkisten jvk:iden nykyarvo (ja siis spot-korot) saadaan suoraan elementäärihinnoista: esim. nimellisarvoltaan yhden yksikön suuruisen ja maturiteetiltaan n vuoden mittaisen jvk:n arvo on P n 0 P0 ( n, s) s 0-0-

11 Esim. Jos lyhyet korot ovat edellisten esimerkkien mukaiset, niin elementäärihinnoiksi saadaan Sum Korkorakenteen estimointi Tähän mennessä emme ole vielä ottaneet kantaa siihen, miten binomihila pitäisi rakentaa rakenne on pyrittävä sovittamaan havaittuun korkorakenteeseen a) Ho-Leen malli Ho-Leen mallissa lyhyet korot määrittyvät kaavasta rks a k + b k s missä a k ja b k ovat estimoitavia parametreja ja s on solmun indeksi (0,..,k) a k kuvaa korkorakenteessa esiintyviä siirtymiä b k kuvaa varianssia - -

12 estimoitu varianssi yleensä vakio b k b vakio lyhyiden korkojen varianssi on b/2 b voidaan estimoida datasta. Ks. esim

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen Rahoitusriskit ja johdannaiset Matti Estola luento 2 ermiini- ja futuurihintojen määräytyminen 1. ermiinien hinnoittelusta Esimerkki 1 Olkoon kullan spot -hinta $ 300 unssilta, riskitön korko 5 % vuodessa

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

8. Vertailuperiaatteita ja johdannaisia

8. Vertailuperiaatteita ja johdannaisia 8. Vertailuperiaatteita ja johdannaisia 1. Hyötyfunktio Nykyarvo ei mittaa riskiasennetta, joka vaikuttaa valintakäyttäytymiseen (minkä investointivaihtoehdon valitset?). Esim. Kumpi seuraavista vaihtoehdoista

Lisätiedot

9. Riskeiltä suojautuminen

9. Riskeiltä suojautuminen 9. Riskeiltä suojautuminen. utuurit orward-sopimuksia on tety jo yvin kauan organisoitu pörsseiin osapuolten ei tarvitse itse etsiä vastapuolta sopimuksen tekemiseksi toimituspäivämäärät, erät ja paikat

Lisätiedot

ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2

ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2 Moniperiodisten investointitehtäviä tarkasteltaessa sijoituskohteiden hintojen kehitystä mallinnetaan diskeetteinä (binomihilat) tai jatkuvina (Itô-prosessit) prosesseina. Sijoituskohteen hinta hetkellä

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit

r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit A50A000 Finanssi-investoinnit 6. harjoitukset.4.05 Futuuri, termiinit ja swapit Tehtävä 6. Mikä on kahden vuoden bonditermiinin käypä markkinahinta, kun kohdeetuutena on viitelaina, jonka nimellisarvo

Lisätiedot

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd .* Mat-2.11 4 Investointiteoria Tentti 6.9.2005 Ki{oita jokaiseen koepapcriin selveisti: o Mat-2.114 Investointiteoria o opintoki{'an numero sekii sukunimi ja viralliset etunimet tekstaten o koulutusohjelma

Lisätiedot

Valuuttariskit ja johdannaiset

Valuuttariskit ja johdannaiset Valuuttariskit ja johdannaiset Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Sosiaali- ja terveysjohtamisen laitos, kansantaloustiede Lähde: Hull, Options, Futures, & Other

Lisätiedot

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Optioiden hinnoittelu binomihilassa

Optioiden hinnoittelu binomihilassa Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

Korkomarkkinoiden erityispiirteet

Korkomarkkinoiden erityispiirteet Korkomarkkinoiden erityispiirteet - markkinoiden hinnoittelema talouskehitys / trading korkomarkkinoilla www.operandi.fi Rahoitusriskien hallinnan asiantuntijayritys esityksen rakenne I. peruskäsitteitä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Työkalut rahoitusriskien hallintaan käytännön ratkaisuja. Jukka Leppänen rahoituspäällikkö, johdannaiset

Työkalut rahoitusriskien hallintaan käytännön ratkaisuja. Jukka Leppänen rahoituspäällikkö, johdannaiset 1 Työkalut rahoitusriskien hallintaan käytännön ratkaisuja Jukka Leppänen rahoituspäällikkö, johdannaiset KORKORISKI KOKONAISKORKO = Markkinakorko Marginaali Muut kulut Markkinakorko Markkinakorko aiheuttaa

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Korkojen aikarakenne

Korkojen aikarakenne Korkojen aikarakenne opetusnäyte: osa kuvitteellista Raha- ja pankkiteorian aineopintojen kurssia Antti Ripatti Taloustiede 4.11.2011 Antti Ripatti (Taloustiede) Korkojen aikarakenne 4.11.2011 1 / 30 2003),

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

ottaa huomioon Euroopan unionin toiminnasta tehdyn sopimuksen ja erityisesti sen 127 artiklan 2 kohdan ensimmäisen luetelmakohdan,

ottaa huomioon Euroopan unionin toiminnasta tehdyn sopimuksen ja erityisesti sen 127 artiklan 2 kohdan ensimmäisen luetelmakohdan, L 14/30 21.1.2016 EUROOPAN KESKUSPANKIN SUUNTAVIIVAT (EU) 2016/65, annettu 18 päivänä marraskuuta 2015, eurojärjestelmän rahapolitiikan kehyksen täytäntöönpanossa sovellettavasta markkina-arvon aliarvostuksesta

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on

Lisätiedot

sama kuin liikkeeseenlaskijan muilla vakuudettomilla sitoumuksilla Nordea Pankki Suomi Oyj:n Structured Products -yksikkö

sama kuin liikkeeseenlaskijan muilla vakuudettomilla sitoumuksilla Nordea Pankki Suomi Oyj:n Structured Products -yksikkö Lainakohtaiset ehdot Nordea Pankki Suomi Oyj 11/2003 Erillisjoukkovelkakirjalaina Nordea Pankki Suomi Oyj:n joukkovelkakirjaohjelman lainakohtaiset ehdot Nämä lainakohtaiset ehdot muodostavat yhdessä Nordea

Lisätiedot

A250A0100 Finanssi-investoinnit 5. harjoitukset 14.4.2015 Futuurit ja termiinit

A250A0100 Finanssi-investoinnit 5. harjoitukset 14.4.2015 Futuurit ja termiinit A250A0100 Finanssi-investoinnit 5. harjoitukset 14.4.2015 Futuurit ja termiinit ehtävä 5.1 Kesäkuun 3. päivä ostaja O ja myyjä M sopivat syyskuussa erääntyvästä 25 kappaleen OMX Helsinki CAP-indeksifutuurin

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Määräykset ja ohjeet 4/2011

Määräykset ja ohjeet 4/2011 Määräykset ja ohjeet 4/2011 Asuntoluoton ennenaikaisesta takaisinmaksusta perittävän enimmäiskorvauksen laskentaan käytettävät Dnro FIVA 9/01.00/2011 Antopäivä 15.12.2011 Voimaantulopäivä 31.3.2012 FIASSIVALVOTA

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen. Toivo Koski

Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen.  Toivo Koski 1 Yrityksen taloudellisen tilan analysointi ja oma pääoman turvaaminen SISÄLLYS Mitä tuloslaskelma, tase ja kassavirtalaskelma kertovat Menojen kirjaaminen tuloslaskelmaan kuluksi ja menojen kirjaaminen

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Optiot 1. Tervetuloa webinaariin!

Optiot 1. Tervetuloa webinaariin! Optiot 1 Tervetuloa webinaariin! Optiot 1 on peruskurssi optioista kiinnostuneelle sijoittajalle. Webinaarissa käydään läpi mm. mikä optio on, miten sitä voi käyttää ja mistä kannattaa lähteä liikkeelle.

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo MAT - 2.114 INVESTOINTITEORIA (5 op) Kevät 2008 Ville Brummer / Pekka Mild / Ahti Salo 1 Opintojakson sisältö Taustaa Kattaa matemaattisen investointiteorian perusteet: Teemoja sivuttu osin muilla Mat-2

Lisätiedot

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Komission ilmoitus. annettu 16.12.2014, Komission ohjeet asetuksen (EU) N:o 833/2014 tiettyjen säännösten soveltamisesta

Komission ilmoitus. annettu 16.12.2014, Komission ohjeet asetuksen (EU) N:o 833/2014 tiettyjen säännösten soveltamisesta EUROOPAN KOMISSIO Strasbourg 16.12.2014 C(2014) 9950 final Komission ilmoitus annettu 16.12.2014, Komission ohjeet asetuksen (EU) N:o 833/2014 tiettyjen säännösten soveltamisesta FI FI Komission ohjeet

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

Tietoa hyödykeoptioista

Tietoa hyödykeoptioista Tietoa hyödykeoptioista Tämä esite sisältää tietoa Danske Bankin kautta tehtävistä hyödykeoptiosopimuksista. Hyödykkeet ovat jalostamattomia tuotteita tai puolijalosteita, joita tarvitaan lopputuotteiden

Lisätiedot

Markkinoilla kaupattavia sijoituskohteita (1/2)

Markkinoilla kaupattavia sijoituskohteita (1/2) Markkinoilla kaupattavia sijoituskohteita (1/2) Sovelletun matematiikan jatko-opintoseminaari Johdannaissopimushinnoittelun matemaattinen mallinnus ja laskennalliset menetelmät Johdanto TkT Juho Kanniainen

Lisätiedot

Projektin arvon määritys

Projektin arvon määritys Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari

Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari Suojaa ja tuottoa laskevilla markkinoilla Commerzbank AG Saksan toiseksi suurin pankki Euroopan johtavia strukturoitujen tuotteiden liikkeellelaskijoita Yli 50 erilaista tuotetyyppiä listattuna Saksan

Lisätiedot

METSÄLIITTO OSUUSKUNNAN JOUKKOVELKAKIRJALAINA I/2006 LAINAKOHTAISET EHDOT

METSÄLIITTO OSUUSKUNNAN JOUKKOVELKAKIRJALAINA I/2006 LAINAKOHTAISET EHDOT METSÄLIITTO OSUUSKUNNAN JOUKKOVELKAKIRJALAINA I/2006 LAINAKOHTAISET EHDOT Nämä lainakohtaiset ehdot muodostavat yhdessä 29.5.2006 päivättyyn ohjelmaesitteeseen sisältyvien Metsäliitto Osuuskunnan joukkovelkakirjojen

Lisätiedot

TERMIINI (forward) - OTC-perusteinen kaupankäyntijärjestelmä. - sopimuskoko ja maturiteetti räätälöitävissä

TERMIINI (forward) - OTC-perusteinen kaupankäyntijärjestelmä. - sopimuskoko ja maturiteetti räätälöitävissä TERMIINI (forward) - termiinisopimus on kauppa, jonka ehdot sovitaan kauppaa tehtäessä, mutta kauppahinta ja kohde-etuus siirtyvät sopimusosapuolten välillä vasta tulevaisuudessa sovittuna ajankohtana

Lisätiedot

Korko optioiden volatiliteettirakenteen estimointi

Korko optioiden volatiliteettirakenteen estimointi Aalto yliopisto Mat 2.4177 Operaatiotutkimuksen projektityöseminaari Kevät 2010 Korko optioiden volatiliteettirakenteen estimointi Pohjola konserni Projektisuunnitelma Robert Huuhilo Juhana Joensuu Teppo

Lisätiedot

Projektin arvon aleneminen

Projektin arvon aleneminen Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen

Lisätiedot

RBS Warrantit NOKIA DAX. SIP Nordic AB Alexander Tiainen Maaliskuu 2011

RBS Warrantit NOKIA DAX. SIP Nordic AB Alexander Tiainen Maaliskuu 2011 RBS Warrantit DAX NOKIA SIP Nordic AB Alexander Tiainen Maaliskuu 2011 RBS Warrantit Ensimmäiset warrantit Suomen markkinoille Kaksi kohde-etuutta kilpailukykyisillä ehdoilla ; DAX ja NOKIA Hyvät spreadit

Lisätiedot

Sijoitustodistuksen nykyinen markkinahinta: euroa. Jos viitekorko laskee 0,5 %-yksikköä, uusi markkinahinta: euroa

Sijoitustodistuksen nykyinen markkinahinta: euroa. Jos viitekorko laskee 0,5 %-yksikköä, uusi markkinahinta: euroa AB30A0101 Finanssi-investoinnit 4. harjoitukset 7.4.015 Tehtävä 4.1 45 päivän kuluttua erääntyvälle, nimellisarvoltaan 100 000 euron sijoitustodistukselle maksettava vuosikorko on 3,0 %. Jos viitekorko

Lisätiedot

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 MARKKINAKATSAUS AGENDA Lyhyt johdanto optioihin Näkemysesimerkki 1: kuinka tehdä voittoa kurssien laskiessa Näkemysesimerkki

Lisätiedot

ottaa huomioon Euroopan unionin toiminnasta tehdyn sopimuksen ja erityisesti sen 127 artiklan 2 kohdan ensimmäisen luetelmakohdan,

ottaa huomioon Euroopan unionin toiminnasta tehdyn sopimuksen ja erityisesti sen 127 artiklan 2 kohdan ensimmäisen luetelmakohdan, 17.12.2016 L 344/117 EUROOPAN KESKUSPANKIN SUUNTAVIIVAT (EU) 2016/2299, annettu 2 päivänä marraskuuta 2016, eurojärjestelmän rahapolitiikan kehyksen täytäntöönpanossa sovellettavasta markkina-arvon aliarvostuksesta

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Investointimahdollisuudet ja investoinnin ajoittaminen

Investointimahdollisuudet ja investoinnin ajoittaminen Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman

Lisätiedot

Hanken Svenska handelshögskolan / Hanken School of Economics www.hanken.fi

Hanken Svenska handelshögskolan / Hanken School of Economics www.hanken.fi Sijoittajan sanastoa Pörssisäätiön sijoituskoulu VERO 2014 Prof. Minna Martikainen Hanken School of Economics, Finland Sijoitusmaailman termistö ja logiikka, omat toimet ja näin luen. SIJOITUSMAAILMAN

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot)

Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot) Kuvio 1. Rahalaitosten lyhytaikaisten talletusten korot ja vertailussa käytetty markkinakorko (vuotuisina prosentteina; uusien liiketoimien korot) 2,5 2,5 1,5 1,5 1,0 1,0 0,5 0,5 Tammi Helmi Maalis Huhti

Lisätiedot

Solvenssi II:n markkinaehtoinen vastuuvelka

Solvenssi II:n markkinaehtoinen vastuuvelka Solvenssi II:n markkinaehtoinen vastuuvelka Mikä on riskitön korko ja pääoman tuottovaatimus Suomen Aktuaariyhdistys 13.10.2008 Pasi Laaksonen Yleistä Mikäli vastuuvelka on ei-suojattavissa (non-hedgeable)

Lisätiedot

RAHOITUSTARKASTUKSELLE TOIMITETTAVA NYKYARVOMENETELMÄN MUKAINEN KORKORISKILASKELMA

RAHOITUSTARKASTUKSELLE TOIMITETTAVA NYKYARVOMENETELMÄN MUKAINEN KORKORISKILASKELMA 1 (7) RAHOITUSTARKASTUKSELLE TOIMITETTAVA NYKYARVOMENETELMÄN MUKAINEN KORKORISKILASKELMA 1 Nykyarvomenetelmän mukainen korkoriski 1.1 Standardimenetelmä Rahoitustarkastuksen standardiin RA4.5 liittyvään

Lisätiedot

OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT

OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT Nämä Lainakohtaiset ehdot muodostavat yhdessä :n 24.5.2005 päivätyn ja 6.9.2005 päivitetyn joukkovelkakirjaohjelman (Ohjelmaesite) Yleisten lainaehtojen kanssa

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia

Lisätiedot

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia.

laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia. SHV - TUTKINTO Vakavaraisuus 30.9.2010 klo 9-15 1(5) 1. Henkivakuutusosakeyhtiö Tuoni myöntää yksilöllisiä henkivakuutuksia (sijoitussidonnaisia, laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Investointimahdollisuudet ja investointien ajoittaminen

Investointimahdollisuudet ja investointien ajoittaminen Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari

Lisätiedot

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio

Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx

Lisätiedot

Millaisia ovat finanssipolitiikan kertoimet

Millaisia ovat finanssipolitiikan kertoimet Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Joukkovelkakirjat ja riski

Joukkovelkakirjat ja riski Joukkovelkakirjat ja riski Kansantaloustiede Pro Gradu -tutkielma Taloustieteiden laitos Tampereen yliopisto 14.12.2010 Mikko Ristamäki TIIVISTELMÄ Tampereen yliopisto Taloustieteiden laitos RISTAMÄKI,

Lisätiedot

SAMPO ASUNTOLUOTTOPANKKI OYJ 1

SAMPO ASUNTOLUOTTOPANKKI OYJ 1 SAMPO ASUNTOLUOTTOPANKKI OYJ 1 TILINPÄÄTÖSTIEDOTE VUODELTA 2009 Tilikauden voitto oli 19,0 miljoonaa euroa. Tilikaudella yhtiö osti Sampo Pankilta 0,5 miljardin euron antolainakannan Tilikauden aikana

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

Eurojärjestelmän rahapolitiikka Tavoite, välineet ja tase

Eurojärjestelmän rahapolitiikka Tavoite, välineet ja tase Samu Kurri Kansainvälisen ja rahatalouden toimisto, Suomen Pankki Eurojärjestelmän rahapolitiikka Tavoite, välineet ja tase Elvyttävä kansalaisosinko tilaisuus 6.2.2016 Esitetyt näkemykset ovat omiani.

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Nordea Pankki Suomi Oyj

Nordea Pankki Suomi Oyj Nordea Pankki Suomi Oyj 10/2004 Nordea Pankki Suomi Oyj:n joukkovelkakirjaohjelman lainakohtaiset ehdot Nämä lainakohtaiset ehdot muodostavat yhdessä Nordea Pankki Suomi Oyj:n 8.3.2004 päivätyn joukkovelkakirjaohjelman

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Kuopion kaupunki Pöytäkirja 9/2015 1 (1) Kaupunginvaltuusto 96 09.11.2015. 96 Asianro 7192/00.02.01/2015

Kuopion kaupunki Pöytäkirja 9/2015 1 (1) Kaupunginvaltuusto 96 09.11.2015. 96 Asianro 7192/00.02.01/2015 Kuopion kaupunki Pöytäkirja 9/2015 1 (1) Kaupunginhallitus 2 19.10.2015 96 Asianro 7192/00.02.01/2015 Kaupunginhallituksen johtosäännön muuttaminen Päätöshistoria Kaupunginhallitus 19.10.2015 2 Talous-

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot