Projektin arvon määritys

Koko: px
Aloita esitys sivulta:

Download "Projektin arvon määritys"

Transkriptio

1 Projektin arvon määritys Luku 6, s Optimointiopin seminaari - Syksy 2000 / 1

2 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin arvon V sijaan. Laajennus luo pohjan myöhemmin Luvussa 6 tehtävillä lisäyksille Kiinteä tuotantokustannus Vaihtuva tuotantokustannus Investoinnin arvon poisto Investointikustannuksen stokastisuus Optimointiopin seminaari - Syksy 2000 / 2

3 Eteneminen 1 Johdetaan kohde-etuuden hinnan ja projektin arvon välinen riippuvuus 2 Johdetaan kohde-etuuden hinnan ja projektiin oikeuttavan option arvon välinen riippuvuus Menetelmät Brownin liike Iton Lemma CAPM Johdannaisanalyysi/dynaaminen optimointi Optimointiopin seminaari - Syksy 2000 / 3

4 Mallin laajennus Oletetaan hinnan P ja kysynnän D(Q) olevan kääntäen verrannollisia toisiinsa seuraavasti P = YD( Q), missä Y = Brownin liikettä noudattava satunnaismuuttuja D(Q) = kysyntä Q = tuotantomäärä Tuotantomäärän Q ollessa kiinteä (1), voidaan tarkastelussa olettaa hinnan noudattavan Brownin liikettä dp = αpdt + σpdz Optimointiopin seminaari - Syksy 2000 / 4

5 A. Koron määritys Kuten aiemmin kappaleessa 5, valitaan diskonttokorko johdannaisanalyysissä CAPM-mallia käyttäen µ = r + φσρ pm Jotta projektin arvo olisi äärellinen, oletetaan µ > α Merkitään osinkoa δ = µ α Optimointiopin seminaari - Syksy 2000 / 5

6 B. Projektin arvon määritys (1) Muodostetaan riskitön portfolio: projekti + n kpl kohde-etuutta lyhyeksi ostettuna, jolloin pääoman kasvuksi aikavälillä dt saadaan Iton Lemmaa käyttäen dv ndp = P[ V n] + P V dt P[ V n] dz α ' 1 σ '' + ' σ Eliminoidaan termin dz kerroin valitsemalla n = V (P) Kun huomioidaan pääoman tuotosta maksettava osinko, saadaan aikavälin dt kokonaistuotoksi P δ PV ' + σ P V '' dt 2 Optimointiopin seminaari - Syksy 2000 / 6

7 B. Projektin arvon määritys (2) Tämän täytyy vastata riskitöntä tuottoa, jolloin projektin arvon V(P) tulee toteuttaa σ P V '' + ( r δ ) PV ' rv + P = 0 2 β Yritettä V ( P) = AP vastaavien ratkaisujen ehdoksi saadaan 1 2 Q σ β( β 1) + ( r δ ) β r = 0 2 Differentiaaliyhtälön yleinen ratkaisu on muotoa β P 1 β2 V ( P) = B1 P + B2 P + β 1 > 0 > β { δ 3 Optimointiopin seminaari - Syksy 2000 / 7

8 C. Spekulatiivisten termien eliminointi β1 1 Termi B 1 P on hinnan mahdolliseen nousuun liittyvä spekulatiivinen kupla, joka jätetään jatkotarkastelussa huomiotta => B 1 = 0 2 V(0) = 0 => B 2 = 0 3 Differentiaaliyhtälön erikoisratkaisu vastaa projektin arvon odotusarvoa E[V(P)] [ ( )] { E V P α t µ t P P = Pe e = = E( P) µ α δ 0 Optimointiopin seminaari - Syksy 2000 / 8

9 Tulkintoja β1 Termi B 1 P sisältää hinnan stokastiikan projektille tuoman mahdollisuuden odotusarvoa parempaan tuottoon ja sen eliminointi palauttaa yhtälön takaisin odotusarvoon P V ( P) δ Toimenpide ei kuitenkaan eliminoi stokastiikkaan perustuvaa option arvoa vaan palauttaa tehtävän aiemmin Luvussa 5 esitettyyn malliin, jossa stokastiikka kytkettiin projektin arvoon Optimointiopin seminaari - Syksy 2000 / 9

10 D. Option arvon määritys (1) Muodostetaan riskitön portfolio: Optio investoida + n = F (P) kpl tuotetta, jolloin option arvon F(P) tulee toteuttaa σ P F'' + ( r δ ) PF' rf = 0 2 Yhtälön ratkaisuksi saadaan β F( P) = A P + A P 1 2 β 1 2 Optimointiopin seminaari - Syksy 2000 / 10

11 D. Option arvon määritys (2) Option arvon F(P) ratkaisun tulee täyttää reuna-ehdot F( 0) = 0 A2 = 0 β P * 1 F( P*) = V ( P*) I A1 ( P*) = δ β F'( P*) = V '( P*) 1 A1 ( P*) = β δ I Optimointiopin seminaari - Syksy 2000 / 11

12 D. Option arvon määritys (3) Ratkaisuksi saadaan β1 F( P) = A1 P 2 1 r δ r δ 1 r β = σ σ 2 σ β1 1 ( β1 1) A1 = β1 1 β1 I ( δβ1) 2 Optimointiopin seminaari - Syksy 2000 / 12

13 Tulkintoja Projektin kriittinen arvo V* on kohde-etuuden hintaa käyttäen sama kuin projektin arvosta laskien β 1 V * = I β 1 1 Edellä kohde-etuuden hinnan ja projektin arvon välinen riippuvuus oli lineaarinen. Option arvo voidaan kuitenkin johtaa hinnan funktiona myös tilanteissa, joissa kohde-etuuden hinnan ja projektin arvon riippuvuus tästä poikkeava. Optimointiopin seminaari - Syksy 2000 / 13

14 Case: Panimoinvestointi Oluen tuotanto ja kulutus 500,0 450,0 Suomessa 100,0 95,0 90,0 85,0 400,0 350,0 300,0 80,0 75,0 70,0 65,0 60,0 55,0 Tuotanto (milj. litraa) Kulutus (milj. litraa) Kulutus/henki (litraa) 250, Lähde: CBMC The Brewers of Europe ,0 Optimointiopin seminaari - Syksy 2000 / 14

15 Case: Panimoinvestointi Oletetaan, että oluen tuotanto Q riippuu käänteisesti hinnasta P dq = YD( P) missä Y on stokastinen muuttuja Oletetaan myyntihinta vakioksi 1 Euro/litra ja mallinnetaan tuotannon vaihtelua Wiener-prosessilla dq = σqdz Oletetaan, että investoinnin arvon ja tuotannon saadaan diskonttaamalla tuotannon arvo Q V ( Q) = µ Optimointiopin seminaari - Syksy 2000 / 15

16 Case: Panimoinvestointi Wiener-prosessi sovitettuna kysyntään 500,0 450,0 400,0 350,0 Kulutus (milj. litraa) Q(t) 300,0 250, Optimointiopin seminaari - Syksy 2000 / 16

17 Kotitehtävä 15 A Mikä on investointiin oikeuttavan option arvo ilmaistuna tuotannon funktiona F(Q)? oluen tuotannon keskihajonta σ = 0, 20 investointikustannus I = 10 miljoonaa Euroa investoinnista kaksi kolmannesta rahoitetaan omalla pääomalla, jonka tuottotavoite on 15% ja yksi kolmannes vieraalla pääomalla, jonka korkokustannus on 6% B Kannattaako investointi vai option pito tuotannon ollessa 1,5 miljoonaa litraa? Optimointiopin seminaari - Syksy 2000 / 17

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd

Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd .* Mat-2.11 4 Investointiteoria Tentti 6.9.2005 Ki{oita jokaiseen koepapcriin selveisti: o Mat-2.114 Investointiteoria o opintoki{'an numero sekii sukunimi ja viralliset etunimet tekstaten o koulutusohjelma

Lisätiedot

Black ja Scholes ilman Gaussia

Black ja Scholes ilman Gaussia Black ja Scholes ilman Gaussia Tommi Sottinen Vaasan yliopisto SMY:n vuosikokousesitelmä 19.3.2012 1 / 21 Johdanto Tarkastelemme johdannaisten, eli kansankielellä optioiden, hinnoittelua. Kuuluisin hinnoittelumalli

Lisätiedot

Fuusio vai konkurssi? Hintakilpailun satoa

Fuusio vai konkurssi? Hintakilpailun satoa Fuusio vai konkurssi? Hintakilpailun satoa Pia Kemppainen-Kajola 02.04.2003 Optimointiopin seminaari - Syksy 2000 / 1 Johdanto Yrityskaupat ilmoitetaan kaupparekisteriin. Kauppa kiinnostaa kilpailuviranomaisia,

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta

Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. SHV-tutkinto Vakavaraisuus 25.9.28 klo 9-15 1(5) 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. (1p) 2. Henkivakuutusyhtiö Huolekas harjoittaa vapaaehtoista henkivakuutustoimintaa

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT

LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT LASKENTATOIMEN JA RAHOITUKSEN LUENTOJEN TEHTÄVÄT 1. Yrityksen sidosryhmät 1. Mitä tarkoittaa yrityksen sidosryhmä? Luettele niin monta sidosryhmää kuin muistat. 2. Ketkä käyttävät ylintä päätösvaltaa osakeyhtiössä?

Lisätiedot

Rajatuotto ja -kustannus, L7

Rajatuotto ja -kustannus, L7 ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Konsernin laaja tuloslaskelma, IFRS

Konsernin laaja tuloslaskelma, IFRS Konsernin laaja tuloslaskelma, IFRS tuhatta euroa 1.1.-31.12.2010 1.1.-31.12.2009 Liikevaihto 9 862 6 920 Liiketoiminnan muut tuotot 4 3 Aineiden ja tarvikkeiden käyttö ( ) -557-508 Työsuhde-etuuksista

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

Black-Scholes-optiohinnoittelumalli

Black-Scholes-optiohinnoittelumalli TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jonne Kuittinen Black-Scholes-optiohinnoittelumalli Informaatiotieteiden yksikkö Matematiikka Elokuu 2012 Tampereen yliopisto Informaatiotieteiden yksikkö KUITTINEN,

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

8. Vertailuperiaatteita ja johdannaisia

8. Vertailuperiaatteita ja johdannaisia 8. Vertailuperiaatteita ja johdannaisia 1. Hyötyfunktio Nykyarvo ei mittaa riskiasennetta, joka vaikuttaa valintakäyttäytymiseen (minkä investointivaihtoehdon valitset?). Esim. Kumpi seuraavista vaihtoehdoista

Lisätiedot

Optioiden hinnoittelu binomihilassa

Optioiden hinnoittelu binomihilassa Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

AULANKO GOLF OY YLIMÄÄRÄINEN YHTIÖKOKOUS 31.10.2013

AULANKO GOLF OY YLIMÄÄRÄINEN YHTIÖKOKOUS 31.10.2013 AULANKO GOLF OY YLIMÄÄRÄINEN YHTIÖKOKOUS 31.10.2013 PELIOIKEUKSIEN MÄÄRÄN SELVITYS (Varsinainen yhtiökokous 13.3.2013) Lähtökohtana on varmistaa riittävästi pelitilaa osakkaille (osa strategiaa 2010-2015).

Lisätiedot

Solvenssi II:n markkinaehtoinen vastuuvelka

Solvenssi II:n markkinaehtoinen vastuuvelka Solvenssi II:n markkinaehtoinen vastuuvelka Mikä on riskitön korko ja pääoman tuottovaatimus Suomen Aktuaariyhdistys 13.10.2008 Pasi Laaksonen Yleistä Mikäli vastuuvelka on ei-suojattavissa (non-hedgeable)

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

BS-kaava ja lama. Lama 2007. Johdannaiset ja BS-kaava. Matematiikka finanssikriisin syyllisenä. Tommi Sottinen

BS-kaava ja lama. Lama 2007. Johdannaiset ja BS-kaava. Matematiikka finanssikriisin syyllisenä. Tommi Sottinen Tommi Sottinen BS-kaava ja lama Lama 007 Countries don t owe money to each other, countries owe money to banks. If the countries owe money to banks how stupid are the countries to pay. Like the country

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

OLVI OYJ PÖRSSITIEDOTE 4.11.2004 klo 09.00 1(4)

OLVI OYJ PÖRSSITIEDOTE 4.11.2004 klo 09.00 1(4) OLVI OYJ PÖRSSITIEDOTE 4.11.2004 klo 09.00 1(4) OLVI-KONSERNIN OSAVUOSIKATSAUS 1.1.- 30.9.2004 (9 KK) Konsernin liikevaihto kasvoi 16,0 % 99,90 (86,09) milj. euroon ja liikevoitto oli 7,83 (7,65) milj.

Lisätiedot

1 Sovelluksia. Sovelluksia 1

1 Sovelluksia. Sovelluksia 1 Sovelluksia 1 1 Sovelluksia 1.1 Tausta ja tärkeimpiä määritelmiä Kalvo 1 Aloitetaan tutustumaan luennolla tarkasteltaviin prosesseihin. Tarkempia selityksiä, esimerkiksi Brownin liikkestä, löytyy kertauksesta,

Lisätiedot

Yritys- ja osinkoverotus ja riskinotto. Verotuksen kehittämistyöryhmä 13.3.2009 Essi Eerola ja Seppo Kari/VATT

Yritys- ja osinkoverotus ja riskinotto. Verotuksen kehittämistyöryhmä 13.3.2009 Essi Eerola ja Seppo Kari/VATT Yritys- ja osinkoverotus ja riskinotto Verotuksen kehittämistyöryhmä 13.3.2009 Essi Eerola ja Seppo Kari/VATT Esityksen aihe ja sisältö Peruskysymys: Miten toteuttaa neutraali pääomatulojen verotus ympäristössä,

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Pellonkäytön muutokset ja tuottoriskien hallinta. Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3.

Pellonkäytön muutokset ja tuottoriskien hallinta. Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3. Pellonkäytön muutokset ja tuottoriskien hallinta Timo Sipiläinen Helsingin yliopisto, Taloustieteen laitos Omavara loppuseminaari Raisio 19.3.2013 www.helsinki.fi/yliopisto 20.3.2013 1 Tausta ja tavoitteet

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola

Hakkuriteholähde. Hakkuriteholähteet. 28.03.2011 Timo Lepola Hakkuriteholähde Hakkuriteholähteet imo Lepola Hakkuriteholähde Lineaarinen teholähde Kookas ja painava muuntaja imo Lepola 2 Hakkuriteholähde Lineaarinen teholähde Isot kondensaattorit ja transistorit

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola

Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset

Lisätiedot

BIOMODE Hankeohjelma biokaasun liikennekäytön kehittämiseksi

BIOMODE Hankeohjelma biokaasun liikennekäytön kehittämiseksi BIOMODE Hankeohjelma biokaasun liikennekäytön kehittämiseksi BIOMODE Ohjelma toteutetaan Vaasan ja Seinäjoen seutujen yhteistyönä, johon osallistuvat alueen kaupungit ja kunnat sekä Merinova Oy ja Vaasan

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

SÄHKÖN TUOTANTOKUSTANNUSVERTAILU

SÄHKÖN TUOTANTOKUSTANNUSVERTAILU RISTO TARJANNE SÄHKÖN TUOTANTOKUSTANNUSVERTAILU TYÖ- JA ELINKEINOMINISTERIÖN KAPASITEETTISEMINAARI 14.2.2008 HELSINKI RISTO TARJANNE, LTY 1 KAPASITEETTISEMI- NAARI 14.2.2008 VERTAILTAVAT VOIMALAITOKSET

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Sikatalouden tulosseminaari 2014

Sikatalouden tulosseminaari 2014 Sikatalouden tulosseminaari 2014 Tampere 4.11.2014 Ari Nopanen Toimitusjohtaja ProAgria Liha Osaamiskeskus p. 0400-432582 ari.nopanen@proagria.fi Toimintaympäristö ja markkinat jatkuvassa muutoksessa Alkuvuodesta

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Variations on the Black-Scholes Model

Variations on the Black-Scholes Model Variations on th Black-Schols Mol Sovlltun matmatiikan jatko-opintosminaari 6.9 Koh-tuus maksaa osinkoja avoittna on tarkastlla tilantita, joissa B&S yhtälö i ol riittävä sllaisnaan (sim. option koh-tuus

Lisätiedot

Fingridin talouden periaatteet. Jan Montell, talous- ja rahoitusjohtaja Kantaverkkopäivä 3.9.2014

Fingridin talouden periaatteet. Jan Montell, talous- ja rahoitusjohtaja Kantaverkkopäivä 3.9.2014 Fingridin talouden periaatteet Jan Montell, talous- ja rahoitusjohtaja Kantaverkkopäivä 3.9.2014 Fingrid välittää. Varmasti. Fingridin keskeiset taloudelliset mittarit ovat kustannustehokkuus, korkea luottoluokitus

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 )

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 ) 2 E. VALKEILA 1. Johdanto 1.1. Käytännöt. Kurssin kotisivu löytyy osoitteesta http://www.math.hut.fi/teaching/rahoitus/ Kurssi suoritetaan kahdella välikokeella; luennot ja seuraavan viikon harjoitustehtävät

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. 5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Miten maatiloja rahoitetaan tulevaisuudessa

Miten maatiloja rahoitetaan tulevaisuudessa Miten maatiloja rahoitetaan tulevaisuudessa Maitoa ja naudanlihaa Keski-Suomesta loppuseminaari 10.4.2013 Timo Jaakkola, Nordea Pankki Suomi Oyj Maatalouden rahoituksen haasteet pankkisäätelyn lisääntyessä

Lisätiedot

Valuuttariskit ja johdannaiset

Valuuttariskit ja johdannaiset Valuuttariskit ja johdannaiset Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Sosiaali- ja terveysjohtamisen laitos, kansantaloustiede Lähde: Hull, Options, Futures, & Other

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Toimitusjohtajan katsaus. Varsinainen yhtiökokous 27.1.2010

Toimitusjohtajan katsaus. Varsinainen yhtiökokous 27.1.2010 Toimitusjohtajan katsaus Varsinainen yhtiökokous 27.1.2010 Tilinpäätös 11/2008 10/2009 tiivistelmä 1/2 Liikevaihto 15,41 milj. euroa (18,40 milj. euroa), laskua 16 % Liikevoitto -0,41 milj. euroa (0,74

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Talouden seuranta, analysointi ja tilinpäätös

Talouden seuranta, analysointi ja tilinpäätös Talouden seuranta, analysointi ja tilinpäätös Talous ja strategiaryhmä 7.1.2009 I 1 Talouden seuranta ja raportointi 7.1.2009 I 2 Tuloslaskelma Kunnassa tuloslaskelman tehtävä on osoittaa, riittääkö tuottoina

Lisätiedot

Hyödykebarrieroptioiden hinnoittelu

Hyödykebarrieroptioiden hinnoittelu Hyödykebarrieroptioiden hinnoittelu Kandidaattiseminaari 2010 1.11.2010 Esityksen rakenne Yleistä barrieroptioista Taustaa barrieroptioiden hinnoittelusta Työn tavoitteet ja rajaukset Sovellettava aineisto

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Globalisaatio ja asiantuntijapalvelut

Globalisaatio ja asiantuntijapalvelut IBM Global Business Services (Pohjanmaan vaatetus vai H&M) ITviikko Seminaari torstaina 10.5.2007 Pekka Leppänen (Pohjanmaan vaatetus vai H&M) Myytinmurtajat 1. Globalisaatio ei vaikuta korkean osaamisen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ahlstrom Tiekartta kohti parempaa tulosta

Ahlstrom Tiekartta kohti parempaa tulosta Ahlstrom Tiekartta kohti parempaa tulosta Sakari Ahdekivi Talousjohtaja Rahapäivä 2015 17.9.2015 Ahlstrom tänään Korkealaatuisia kuitupohjaisia materiaaleja valmistava yritys Noin 3 400 työntekijää 22

Lisätiedot

Ahlstrom. Tammi-syyskuu 2015. Marco Levi toimitusjohtaja. Sakari Ahdekivi talousjohtaja 28.10.2015

Ahlstrom. Tammi-syyskuu 2015. Marco Levi toimitusjohtaja. Sakari Ahdekivi talousjohtaja 28.10.2015 Ahlstrom Tammi-syyskuu 215 Marco Levi toimitusjohtaja Sakari Ahdekivi talousjohtaja 28.1.215 Sisältö Heinä-syyskuu 215 Liiketoiminta-aluekatsaus Taloudelliset luvut Tulevaisuuden näkymät Sivu 2 Heinä-syyskuu

Lisätiedot

Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010

Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010 Palvelusetelihanke Hinnoitteluprojekti / hinnoittelupolitiikan vaihtoehtoja ja malleja 16.4.2010 Sisältö Sivu Johdanto 3 Palvelusetelin hinnoittelun elementit 5 Palvelun hinta: hintakatto tai markkinahinta

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

HE 279/2014 vp laiksi eläkelaitoksen vakavaraisuusrajan laskemisesta ja sijoitusten hajauttamisesta sekä eräiksi siihen liittyviksi laeiksi

HE 279/2014 vp laiksi eläkelaitoksen vakavaraisuusrajan laskemisesta ja sijoitusten hajauttamisesta sekä eräiksi siihen liittyviksi laeiksi Lausunto 1 (5) Eduskunta/ Talousvaliokunta HE 279/2014 vp laiksi eläkelaitoksen vakavaraisuusrajan laskemisesta ja sijoitusten hajauttamisesta sekä eräiksi siihen liittyviksi laeiksi Työeläkevakuuttajat

Lisätiedot

OLVI OYJ PÖRSSITIEDOTE 07.08.2003 klo 09.00 1(4)

OLVI OYJ PÖRSSITIEDOTE 07.08.2003 klo 09.00 1(4) OLVI OYJ PÖRSSITIEDOTE 07.08.2003 klo 09.00 1(4) OLVI-KONSERNIN OSAVUOSIKATSAUS 1.1.- 30.6.2003 (6 KK) Konsernin liikevaihto laski 1,2 % 53,60 (54,27) milj. euroon ja liikevoitto oli 3,82 (3,92) milj.

Lisätiedot

Eri tuotantomuodot -kulutusprofiilit ja vaatimukset energialähteelle

Eri tuotantomuodot -kulutusprofiilit ja vaatimukset energialähteelle Eri tuotantomuodot -kulutusprofiilit ja vaatimukset energialähteelle Maarit Kari ProAgria Keskusten Liitto Maatilojen energiapalapelille on monta pelaajaa Maatilan kokoluokka & energiavirtojen kompleksisuus

Lisätiedot

Metsä Board Financial 2015 Tilinpäätöstiedote 2015

Metsä Board Financial 2015 Tilinpäätöstiedote 2015 Metsä Board Financial 215 Tilinpäätöstiedote statements review 215 Vuoden 215 kohokohdat Kartonkien toimitusmäärät kasvoivat 12 % verrattuna vuoteen 214 Liikevoitto parani 32 % Vahva liiketoiminnan kassavirta

Lisätiedot

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics)

Vähäpäästöisen talouden haasteita. Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Vähäpäästöisen talouden haasteita Matti Liski Aalto-yliopiston kauppakorkeakoulu Kansantaloustiede (economics) Haaste nro. 1: Kasvu Kasvu syntyy työn tuottavuudesta Hyvinvointi (BKT) kasvanut yli 14-kertaiseksi

Lisätiedot

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000

OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 MARKKINAKATSAUS AGENDA Lyhyt johdanto optioihin Näkemysesimerkki 1: kuinka tehdä voittoa kurssien laskiessa Näkemysesimerkki

Lisätiedot

Kaivannaisalan talous- ja työllisyysvaikutukset vuoteen 2020. Olavi Rantala ETLA

Kaivannaisalan talous- ja työllisyysvaikutukset vuoteen 2020. Olavi Rantala ETLA Kaivannaisalan talous- ja työllisyysvaikutukset vuoteen 2020 Olavi Rantala ETLA 1 Kaivannaisalan talousvaikutusten arviointi Kaivannaisala: - Metallimalmien louhinta - Muu mineraalien kaivu: kivenlouhinta,

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

VARSINAINEN YHTIÖKOKOUS 2015. Jussi Pesonen Toimitusjohtaja

VARSINAINEN YHTIÖKOKOUS 2015. Jussi Pesonen Toimitusjohtaja VARSINAINEN YHTIÖKOKOUS 215 Jussi Pesonen Toimitusjohtaja Sisältö Vuoden 214 tulos Muuttuva Pääoman käyttö Vastuullisuus Yhteenveto 2 3 VUODEN 214 TULOS Vahva tulosvire ja ennätyksellisen vahva tase 214

Lisätiedot

ENERGIAKOLMIO OY. Tuulivoiman rooli Suomen energiatuotannossa. Jyväskylän Rotary klubi 13.1.2014. Energiakolmio Oy / 13.1.2014 / Marko Lirkki

ENERGIAKOLMIO OY. Tuulivoiman rooli Suomen energiatuotannossa. Jyväskylän Rotary klubi 13.1.2014. Energiakolmio Oy / 13.1.2014 / Marko Lirkki ENERGIAKOLMIO OY Tuulivoiman rooli Suomen energiatuotannossa Jyväskylän Rotary klubi 13.1.2014 Energiakolmio Oy / 13.1.2014 / Marko Lirkki ENERGIAKOLMIO OY Energiakolmio on Suomen johtava riippumaton energiamarkkinoiden

Lisätiedot

PALJON RINNAKKAISIA JUONIA

PALJON RINNAKKAISIA JUONIA PALJON RINNAKKAISIA JUONIA Talousennustaminen (suhdanne / toimialat) Mitä oikeastaan ennustetaan? Miten ennusteen tekeminen etenee? Miten toimialaennustaminen kytkeytyy suhdanne-ennusteisiin? Seuranta

Lisätiedot

Demo 1: Excelin Solver -liitännäinen

Demo 1: Excelin Solver -liitännäinen MS-C2105 Optimoinnin perusteet Malliratkaisut 1 Ehtamo Demo 1: Excelin Solver -liitännäinen Ratkaise tehtävä käyttäen Excelin Solveria. max 3x 1 + x 2 s.e. 2x 1 + 5x 2 8 4x 1 + 2x 2 5 x 1, x 2 0 Ratkaisu

Lisätiedot

Katsaus siipikarjatuotannon talouteen

Katsaus siipikarjatuotannon talouteen Katsaus siipikarjatuotannon talouteen Timo Karhula MTT Taloustutkimus Suomen Siipikarjaliiton vuosikokous- ja seminaaripäivä Tampereella 27. 3.2014 Tuotantomäärät ja ennusteet vuoteen 2020 Tuottaja- ja

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Arvonkasvuohjelma. Knowledge Investor Comset www.comset.fi www.comset.se www.comset.dk

Arvonkasvuohjelma. Knowledge Investor Comset www.comset.fi www.comset.se www.comset.dk Arvonkasvuohjelma Yritysarvo on kattava toiminnan tuloksellisuuden mittari riippumatta omistajatavoitteesta. Yritysarvo heijastaa kaikkien tulevien rahavirtojen summaa. Kasvava yritysarvo = kasvava kassavirta

Lisätiedot

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C. Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Ahlstrom. Tammi kesäkuu 2015. Marco Levi Toimitusjohtaja. Sakari Ahdekivi Talousjohtaja

Ahlstrom. Tammi kesäkuu 2015. Marco Levi Toimitusjohtaja. Sakari Ahdekivi Talousjohtaja Ahlstrom Tammi kesäkuu 215 Marco Levi Toimitusjohtaja Sakari Ahdekivi Talousjohtaja 6.8.215 Sisältö Huhti kesäkuu 215 Liiketoiminta-aluekatsaus Taloudelliset luvut Tulevaisuuden näkymät Page 2 Huhti kesäkuu

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2016 Kansantalouden tilinpito 1 Monisteen sisältö Kansantalouden tilinpito, BKT Nimelliset ja reaaliset suureet Logaritmiset luvut, indeksit Maksutase Taloudellisten muuttujien

Lisätiedot

Pääsykoe 2001/Ratkaisut Hallinto

Pääsykoe 2001/Ratkaisut Hallinto Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin

Lisätiedot

Aineiston keskiarvo on 6.6923, mediaani on 8 ja moodi on myös 8. Näin ollen

Aineiston keskiarvo on 6.6923, mediaani on 8 ja moodi on myös 8. Näin ollen Taloustieteiden kvantitatiiviset menetelmät Kallio, Markku & Korhonen, Pekka & Salo, Seppo Johdatus kvantitatiiviseen analyysiin taloustieteissä. Seuraavassa sarjassa on esitetty erään yrityksen yhden

Lisätiedot

16 Säästäminen, investoinnit ja rahoitusjärjestelmä (Mankiw Taylor, Chs 26 ja 31)

16 Säästäminen, investoinnit ja rahoitusjärjestelmä (Mankiw Taylor, Chs 26 ja 31) 16 Säästäminen, investoinnit ja rahoitusjärjestelmä (Mankiw Taylor, Chs 26 ja 31) 1. Rahoitusjärjestelmä 2. Säästäminen ja investoinnit suljetussa taloudessa 3. Säästäminen ja investoinnit avoimessa taloudessa

Lisätiedot