ln S(k) = ln S(0) + w(i) E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2
|
|
- Eeva-Kaarina Nurmi
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Moniperiodisten investointitehtäviä tarkasteltaessa sijoituskohteiden hintojen kehitystä mallinnetaan diskeetteinä (binomihilat) tai jatkuvina (Itô-prosessit) prosesseina. Sijoituskohteen hinta hetkellä k on S(k) Additiivinen malli: S(k + 1) = as(k) + u(k), k = 0,..., N S(k) = a k S(0) + a k 1 u(0) + a k 2 u(1) + + u(k 1) Jos u(k):t normaalijakautuneita ja odotusarvo 0, hintaprosessi on normaalijakautunut ja sen odotusarvo on E[S(k)] = a k S(0) Additiivinen malli sisältää heikkouksia kuten esim. u(k):t voivat olla negatiivisia, jolloin negatiiviset S(k):t mahdollisia, mikä on epärealistista. Multiplikatiivinen malli: S(k + 1) = u(k)s(k), k = 0,..., N 1 S(k) = u(k 1)u(k 1) u(0)s(0) u(k):t riippumattomia satunnaismuuttujia, jotka kuvaavat hinnan suhteellista muutosta. Mallia voidaan tarkastella additiivisena mallina ottamalla logaritmit: ln S(k + 1) = ln S(0) + ln u(k) Oletetaan, että w(k) = ln u(k) normaalijakautuneita, jolloin u(k):t log-normaalijakautuneita: Jos E[w(k)] = v ja V ar[w(k)] = σ 2 niin k 1 ln S(k) = ln S(0) + w(i) i=0 E[ln S(k)] = ln S(0) + vk V ar[ln S(k)] = kσ 2 Binomihilan määrittää: Kohteen hinta alussa S(0) Hilaperiodin pituus Ylös- ja alaspäin tapahtuvien suhteellisten hinnanmuutosten suuruus u ja d Todennäköisyys p, jolla hinta nousee Parametrisoidaan hintaprosessi siten, että v on hinnan suhteellisen vuosimuutoksen logaritmin odotusarvo ja σ vastaava keskihajonta: v = E[ln S(T ) S(0) ] σ2 = V ar[ln S(T ) S(0) ] Tehtävänä on määrittää binomihilan parametrit siten, että ne kuvaavat havaittua hintaprosessia odotusarvon ja varianssin suhteen
2 Voidaan skaalata S(0) = 1, jolloin hinnan S(1) logaritmin odotusarvoksi ja varianssiksi saadaan E[ln S(1)] = E[ln S(0) + w(0)] = pln u + (1 p)ln d V ar[ln S(1)] = E[(ln S(1)) 2 ] E[ln S(1)] 2 = p(ln u) 2 +(1 p)(ln d) 2 [pln u+(1 p)ln d] 2 = p(1 p)(ln u ln d) 2 Merkitsemällä U = ln u ja D = ln d saadaan yhtälöpari pu + (1 p)d = v t p(1 p)(u D) 2 = σ 2 t Määritettäviä parametreja kolme, mutta yhtälöitä vain kaksi. Asetetaan lisävaatimus u = 1 d jolloin saadaan (2p 1)U = v t 4p(1 p)u 2 = σ 2 t eli U = D, Ratkaisemalla tämä saadaan p = 1 2 (1 + 1 ) σ 2 v 2 t + 1 U = σ 2 t + (v t) 2 Kun t on pieni voidaan approksimoida p 1 2 (1 + 1 ) = 1 σ 2 2 (1 + v t) σ v 2 t U σ 2 t = σ t u = e σ t d = 1 u = e σ t Lopputilojen ( todennäköisyydet saadaan binomijakaumasta. Lopputilan S = u k d n k S(0) todennäköisyys nk ) on p k (1 p) n k.
3 1. (L11.1) Osakkeen päivän hinta pörssissä on S(0) = 100 ja osakkeen hinnan logaritmin vuotuisen kasvun v odotetaan olevan 12%. Kasvun vuotuinen volatiliteetti on σ = 20%. Määritä sellaiset parametrit binomihilaan, että ne kuvaavat osakkeen käyttäytymistä 3 kuukauden perusperiodilla. Piirrä hila ja kirjoita solmujen arvot vuodelle 1 (periodi 4). Mitkä ovat saapumistodennäköisyydet eri lopputiloihin? Ratkaisu: Hinta alussa S(0) = 100 Hinnan logaritmin vuotuinen kasvu v = 12% (v = E[ln( S(T ) S(0) )]) Hinnan kasvun vuotuinen volatiliteetti σ = 20% (σ 2 = V ar[ln( S(T ) S(0) )]) Aikaperiodi t = 3 12 = 0.25 Oletetaan, että osake kasvaa jatkossakin odotusarvoisesti v:n verran: p = ( v σ ) t = 65.0% Muodostetaan binomihila parametreilla u ja d: u = e σ t = d = e σ t = kk 3 kk 6 kk 9 kk 12 kk # u/d Todennäköisyys p p 12kk ln( S(T ) S(0) ) S(T ) p ln( S(0) ) uuuu 17.9 % uuud 38.4 % uudd 31.1 % uddd 11.1 % dddd 1.5 % Odotettu tuotto on siis 14.78%. 12% on hinnan vuotuisen kasvun logaritmin odotusarvo!
4 2. (L12.1) Sijoittaja uskoo osakkeen hinnan nousevan ja haluaa muodostaa bull spreadin tälle osakkeelle. Yksi tapa muodostaa tällainen spread on ostaa osto-optio, jonka toteutushinta on K 1, ja myydä osto-optio, jolla on sama päättymispäivä kuin edellisellä osto-optiolla mutta jonka toteutushinta on K 2 > K 1. Piirrä spreadin tuottokäyrä. Onko spreadin alkuperäinen hinta positiivinen vai negatiivinen? Ratkaisu: Perusoptioita on kahdenlaisia, osto-optioita ja myyntioptioita. Kumpikin näistä voidaan joko ostaa tai myydä. Näin muodostuu siis yhteensä 4 erilaista tuottokäyrää. Alla olevissa kuvissa x-akseli on osakkeen hinta ja y-akseli optiosta saatu tuotto. Taitekohta on option toteutushinta ja vaakasuora taso on nollataso eli tuotto on 0. Option myymisen tuottokäyrä on y-akselin suhteen peilikuva option ostamisesta. On huomattava, että option ostamisen tuottokäyrä on ei-negatiivinen ja option myymisessä ei-positiivinen. Option myynnissä voitto saadaan option myyntihinnasta. Tämä laskee option ostamisen voittokäyrän (tuotto+ostohinta) aloitustason alle nollan ja nostaa option myymisen aloitustason nollan yläpuolelle. Seuraavaksi muodostetaan kuvaaja osto-option ostosta ja osto-option myynnistä, kun myynnin toteutushinta on suurempi kuin oston. Saadaan seuraavanlainen kuva, jossa paksu viiva on summakäyrä: Osto-optio on siis sitä kalliimpi, mitä alempi toteutushinta sillä on. Myyntioptiolla tilanne on päinvastainen eli korkeampi toteutushinta tekee optiosta arvokkaamman. Olkoon toteutushinta K ja C(K) option hinta. Tällöin osto-optiolle pätee C(K 1 ) > C(K 2 ), kun K 1 < K 2. Nyt C(K 1 ) C(K 2 ) > 0 eli spreadin hinta on positiivinen.
5 3. (L12.5) Osake maksaa osinkoja D:n verran hetkellä τ, joka osuu periodien k ja k + 1 väliin. Tavoitteena on määrittää osakkeen eurooppalaisen osto-option hinta hilamenetelmällä. Option voimassaoloaika [0, T ] jaetaan N intervalliin (saadaan N + 1 ajanhetkeä). Yksi tapa ratkaista tehtävä olisi muodostaa tavalliseen tapaan hila osakkeen hinnoista, ja vähentää D periodin k jälkeisistä solmuista. Tämä johtaa kuitenkin puuhun, jonka solmut eivät enää yhdy periodin k jälkeen (ks. kuva Luenbergerin sivulta 347). Ongelma voidaan ratkaista tällä tavalla, mutta on olemassa myös toinen esitystapa, jossa solmut yhtyvät osinkojen maksun jälkeen: Koska osinkotuotto on tunnettu, sitä pidetään osakkeen hinnan deterministisenä komponenttina. Ennen osinkojen jakoa hintaan sisältyy kaksi komponenttia: 1) stokastisen komponentti S ja 2) deterministinen komponentti, joka on yhtä suuri kuin jaettavan osingon nykyarvo. Hila kuvaa alkuarvolla S(0) De rτ ja parametreillä u ja d (määräytyvät volatiliteetista σ) stokastisen komponentin S dynamiikkaa. Option hinta määräytyy hilan perusteella, mutta nyt osakkeen hinta ei ole S vaan S = S + De r(τ t) kaikille t < τ. Käytä tätä tekniikkaa ja etsi 6 kuukauden eurooppalaisen ja amerikkalaisen osto-option hinta, kun perusperiodi on kuukausi, S(0) = 50, K = 50, σ = 20%, R = 10% ja D = 3 euroa, joka maksetaan kuukauden kuluttua. Ratkaisu: Tehtävänannosta: Osakkeen hinta S(0) = 50 Toteutushinta K = 50 Volatiliteetti σ = 20% Vuosituotto r vuosi = 10% Kuukausituotto r kk = 0.83% Osinko D = 3 Perusperiodi t = 1 12 Halutaan siis muodostaa binomihila laskemalla yhteen kaksi binomihilaa, osingon nykyarvoa ja osakkeen muuta arvoa kuvaavat hilat. Osingon nykyarvoa kuvaava hila (deterministinen komponentti): Osakkeen muuta arvoa kuvaava hila on tavalliseen tapaan stokastinen ja hilan alkuarvo saadaan vähentämällä osingon nykyarvo osakkeen nykyarvosta, koska deterministinen osinko sisältyy osakkeen hintaan.
6 Parametrit u ja d määritetään (kuten aiemmin) seuraavasti: u = e σ t = d = 1 u = e σ t = Osakkeen muuta arvoa kuvaava hila (stokastinen komponentti): Lopuksi lasketaan hilat yhteen ja saadaan osakkeen alkuarvoksi 50 kuten pitääkin: Seuraavaksi lasketaan osakkeeseen kohdistuvien eurooppalaisen ja amerikkalaisen option arvot. Perusideana optiohinnoittelussa on, että binomihilan solmuissa option arvo voidaan laskea osakkeesta ja riskittömästä korosta muodostetun replikoivan portfolion avulla. Tällainen portfolio voidaan muodostaa, koska binomihilassa seuraavan periodin tiloja on vain kaksi. Sekä optio, että replikoiva portfolio tuottavat seuraavan periodin tiloissa täsmälleen samat kassavirrat, joten niiden arvojen tulee myös olla samat. Binomihilassa replikoiva portfolio voidaan laskea parametrien u ja d sekä riskittömän koron perusteella. Näiden avulla lasketaan ns. riskineutraalitodennäköisyys q, joka yhdessä seuraavien perioidien kassavirtojen kanssa määrää replikoivan portfolion. q ei kuitenkaan ole oikea todennäköisyysluku vaan apuparametri replikoivan portfolion muodostamisessa. Riskineutraalitodennäköisyydeksi saadaan (kts. luento 10 sivut 13-15) q = R d u d. Kun osakkeen hinnan käyttäytyminen on määrätty u:n ja d:n avulla, voidaan lähteä laskemaan option hintaa. Tähän käytetään osakkeen hintahilan avulla muodostettua option arvoa kuvaavaa hilaa. Hilan kukin solmu edustaa option nykyarvoa kyseisellä ajanhetkellä vallitsevassa tilassa.
7 Eurooppalaisen osto-option arvo viimeisellä periodilla (toteutushetkenä) on suoraan maksimi nollasta ja osakkeen hinnan ja toteutushinnan erotuksesta. Olkoon S osakkeen hinta ja K toteutushinta. Eurooppalaisen osto-option arvo toteutushetkellä on siis max {0, S K}. Eurooppalaisen myyntioption arvo on puolestaan max {0, K S}. Edellisten periodien nykyarvot voidaan laskea diskontattuna odotusarvona niitä seuraavien tilojen arvoista. Kun lopputilojen arvot tiedetään, voidaan edellisen periodin solmujen arvot laskea ja näistä edelleen sitä edelliset jne. Option nykyarvo kussakin solmussa lasketaan seuraavasti C = 1 R (qc u + (1 q)c d ), missä C u on binomihilassa solmua seuraavan ylemmän solmun arvo ja C d vastaava alemman solmun arvo. R = 1 + r f on 1 + yhden periodin riskitön korko. Amerikkalaisen osto-option vastaava kaava on { } 1 C = max R (qc u + (1 q)c d ), S K, missä maksimointi osoittaa valintaa odottamisen ja option heti toteuttamisen välillä. Jos amerikkalaisen osto-option tapauksessa 1 R (qc u +(1 q)c d ) < S K niin osto-optio kannattaa toteuttaa ennen toimitusaikaa. Nyt pätee R = 100% + r kk = % ja q = 55.8% Eurooppalaisen osto-option hila:
8 Amerikkalaisen osto-option hila (alleviivaus osoittaa option toteuttamista ennen toimitusaikaa):
9 4. (L12.9) Olet kasinolla, jossa on kaksi mahdollisuutta: a) Osallistut peliin, jossa heitetään kolikkoa. Jos tulos on klaava, saat 3 euroa; jos tulos on kruuna et saa mitään. Osallistuminen maksaa 1 euron. Voit osallistua peliin useamman kerran tai pelata suuremmilla panoksilla, jolloin voitto suurenee panoksen mukaisesti. b) Et osallistu peliin ja pidät rahat taskussasi, eli saat varmasti 1 eurolla 1 euron. Kasinolla pelataan myös toista peliä, jossa kolikkoa heitetään kolme kertaa. Jos vähintään kahdessa kolmesta kolikon heitosta tulos on klaava, saat 27 euroa; muutoin et saa mitään. Mikä on tämän toisen pelin hinta, jos oletetaan, että se on johdonmukainen ensimmäisen pelin hinnan (1 euro) kanssa ja että pelilipuke voidaan myydä käypään hintaan kolikonheittojen välissä? Hinnoittele siis toinen peli ensimmäisen pelin perusteella. Ratkaisu: Jälkimmäinen peli hinnoitellaan ensimmäisen perusteella, kun huomataan, että toisen pelin epävarmuus voidaan kuvata ensimmäisen avulla. Varman tulevan arvo on ulostulema itse. Jälkimmäisessä pelissä on siis 50% todennäköisyys saada vähintään 2 klaavaa. Niinpä se voidaan ajatella myös ensimmäisenä pelijä, jossa panos on 9 euroa yhden euron asemesta. Tällainen hinnoittelulogiikka johtaa kuitenkin hintaan 9 euroa, joka poikkeaa saadusta 7 eurosta. Oikea hinta on nyt 7 euroa, koska mahdollisuus myydä peli laskee pelin hintaa. Jos peliä ei voisi ostaa tai vaihtaa kolikonheittojen välissä, olisi sen hinta 9 euroa olettaen, että pelit, joilla on sama todennäköisyysjakauma ulostulemille hinnoitellaan samalla tavalla.
10 Käyttämällä riskineutraalia todennäköisyyttä 1/3 saadaan ensimmäisen pelin tuoton odotusarvoksi tasan 1 (eli ei jäädä voitolle) ja jälkimmäiselle binomitodennäköisyyksien avulla seuraavaa: Klaavoja Todennäköisyys 3 3.7% % Yhteensä 25.9% Tällöin tuoton odotusarvoksi saadaan E[tuotto] = 7.
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
Mat-2.3114 Investointiteoria - Kotitehtävät
Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F
Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan
Rahoitusriskit ja johdannaiset Matti Estola. luento 8 Optioiden hinnoittelusta
Rahoitusriskit ja johdannaiset Matti Estola luento 8 Optioiden hinnoittelusta 1. Optioiden erilaiset kohde-etuudet 1.1. Osakeoptiot Yksi optio antaa yleensä oikeuden ostaa/myydä 1 kpl kohdeetuutena olevia
12. Korkojohdannaiset
2. Korkojohdannaiset. Lähtökohtia Korkojohdannaiset ovat arvopapereita, joiden tuotto riippuu korkojen kehityksestä. korot liittyvät lähes kaikkiin liiketoimiin korkojohdannaiset ovat tärkeitä. korkojohdannaisilla
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008
Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Rahoitusriskit ja johdannaiset Matti Estola. luento 2 Termiini- ja futuurihintojen määräytyminen
Rahoitusriskit ja johdannaiset Matti Estola luento 2 ermiini- ja futuurihintojen määräytyminen 1. ermiinien hinnoittelusta Esimerkki 1 Olkoon kullan spot -hinta $ 300 unssilta, riskitön korko 5 % vuodessa
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
Tietoja osakeoptioista
Tietoja osakeoptioista Tämä esite sisältää yleisiä tietoja osakeoptioista, joilla voidaan käydä kauppaa Danske Bankin välityksellä. AN OTC TRANSACTION WITH DANSKE BANK AS COUNTERPARTY. ESITTELY Osakeoptioilla
Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.
2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5
Optioiden hinnoittelu binomihilassa
Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai
Valintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.
SHV-tutkinto Vakavaraisuus 25.9.28 klo 9-15 1(5) 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. (1p) 2. Henkivakuutusyhtiö Huolekas harjoittaa vapaaehtoista henkivakuutustoimintaa
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000
OPTIOT Vipua ja suojausta - mutta mitä se maksaa? Remburssi Investment Group 23.5.2000 MARKKINAKATSAUS AGENDA Lyhyt johdanto optioihin Näkemysesimerkki 1: kuinka tehdä voittoa kurssien laskiessa Näkemysesimerkki
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
r1 2 (1 0,02) 1 0,027556 (1 0, 0125) A250A0100 Finanssi-investoinnit 6. harjoitukset 21.4.2015 Futuuri, termiinit ja swapit
A50A000 Finanssi-investoinnit 6. harjoitukset.4.05 Futuuri, termiinit ja swapit Tehtävä 6. Mikä on kahden vuoden bonditermiinin käypä markkinahinta, kun kohdeetuutena on viitelaina, jonka nimellisarvo
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
Luento 9. June 2, Luento 9
June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,
Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.
Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Tehtävä 1 on klassikko. 1. Tässä tehtävässä tapahtumat A ja B eivät välttämättä
Martingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Investointimahdollisuudet ja investointien ajoittaminen
Investointimahdollisuudet ja investointien ajoittaminen Optimaalisen investointistrategian ominaispiirteitä eli parametrien vaikutus ratkaisuun Optimointiopin seminaari - Syksy 000 / Optimointiopin seminaari
Mat-2.11 4 Investointiteoria. Tentti 6.9.2005. Mitd
.* Mat-2.11 4 Investointiteoria Tentti 6.9.2005 Ki{oita jokaiseen koepapcriin selveisti: o Mat-2.114 Investointiteoria o opintoki{'an numero sekii sukunimi ja viralliset etunimet tekstaten o koulutusohjelma
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Mat Investointiteoria Laskuharjoitus 4/2008, Ratkaisut
Projektien valintapäätöksiä voidaan pyrkiä tekemään esimerkiksi hyöty-kustannus-suhteen (so. tuottojen nykyarvo per kustannusten nykyarvo) tai nettonykyarvon (so. tuottojen nykyarvo - kustannusten nykyarvo)
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon
Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.
Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)
Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.
laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä eläkevakuutuksia, kapitalisaatiosopimuksia sekä sairauskuluvakuutuksia.
SHV - TUTKINTO Vakavaraisuus 30.9.2010 klo 9-15 1(5) 1. Henkivakuutusosakeyhtiö Tuoni myöntää yksilöllisiä henkivakuutuksia (sijoitussidonnaisia, laskuperustekorkoisia ja ns. riskihenkivakuutuksia), yksilöllisiä
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016
Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
10. Optiohinnoittelu binomihilassa
10. Optiohinnoittel binomihilassa 1. Sijoitskohteien hintaprosessit Moniperioisten investointitehtävien tarkastel eellyttää sijoitskohteien hintojen kehittymisen mallintamista joko iskreetteinä tai jatkvina
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Suojaa ja tuottoa laskevilla markkinoilla. Johannes Ankelo Arvopaperi Aamuseminaari
Suojaa ja tuottoa laskevilla markkinoilla Commerzbank AG Saksan toiseksi suurin pankki Euroopan johtavia strukturoitujen tuotteiden liikkeellelaskijoita Yli 50 erilaista tuotetyyppiä listattuna Saksan
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset
Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Black ja Scholes ilman Gaussia
Black ja Scholes ilman Gaussia Tommi Sottinen Vaasan yliopisto SMY:n vuosikokousesitelmä 19.3.2012 1 / 21 Johdanto Tarkastelemme johdannaisten, eli kansankielellä optioiden, hinnoittelua. Kuuluisin hinnoittelumalli
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,
Tietoja koron-ja valuutanvaihtosopimuksista
Tietoja koron-ja valuutanvaihtosopimuksista Tämä esite sisältää tietoja Danske ankin kautta tehtävistä koron- ja valuutanvaihtosopimuksista. Koron- ja valuutanvaihtosopimuksilla voidaan käydä Danske ankin
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Tietoja koronvaihtosopimuksista
Tietoja koronvaihtosopimuksista Tämä esite sisältää tietoja Danske Bankin kautta tehtävistä koronvaihtosopimuksista. Koronvaihtosopimuksilla voidaan käydä kauppaa Danske Bankin kanssa pörssin ulkopuolella
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on
Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly
Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä
H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta
22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin
Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola
Rahoitusriskit ja johdannaiset Luentokurssi kevät 2011 Lehtori Matti Estola Itä-Suomen yliopisto, Yhteiskunta- ja Kauppatieteiden tiedekunta, Oikeustieteiden laitos, kansantaloustiede Luennot 22 t, harjoitukset
Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy
Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
Martingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
Tietoa hyödykeoptioista
Tietoa hyödykeoptioista Tämä esite sisältää tietoa Danske Bankin kautta tehtävistä hyödykeoptiosopimuksista. Hyödykkeet ovat jalostamattomia tuotteita tai puolijalosteita, joita tarvitaan lopputuotteiden
Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2
Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi