, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta.

Koko: px
Aloita esitys sivulta:

Download ", sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta."

Transkriptio

1 Y - Otatameetelmät / Sysy 009 (Risto Letoe) TEKIE YTEEVETO I Otata-asetelmat ja estimoitiasetelmat Perusjouo ja muuttujat Äärellie perusjouo U = {,...,,..., } Tulosmuuttuja y tutemattomat arvot Y,,Y,,Y Apumuuttuja z tuetut arvot Z,,Z,,Z Perusjouo parametrit Äärellise perusjouo U parametrit Kooaismäärä T = = Y = Y + Y Y Kesiarvo Y =T/ Suteellie osuus R = T /T Otata-asetelma ja otos Otos s o perusjouo U osajouo Perusjouo U aiie madolliste (<) ooiste otoste jouo S Toteutuut otos s= {,...,,..., }, missä s o ysi madollisista otosista jouossa S Otosysiöt poimitaa soveltuvaa arpomismeettelyä eli otatameetelmää (SRS, SYS, PPS) äyttäe Otose s poimitatodeäöisyys p(s) Perusjouo alio sisältymistodeäöisyys π (0 < π ) Otata-asetelmasi (samplig desig), p ( ), saotaa iide säätöje ja meetelmie ooaisuutta, joilla otos poimitaa määritellystä perusjouosta.

2 Y - Otatameetelmät / Sysy 009 (Risto Letoe) Perusjouo parametri θ estimaattori ˆ θ : Lasetaaava tai laseta-algoritmi Estimaattori odotusarvo E( ˆ θ ) = ( ) ˆ s S p s θs arato (ubiased) estimaattori: E( ˆ θ) θ = 0 ara (Bias): Bias( ˆ θ ) = E( ˆ θ) θ Taretuva (cosistet) estimaattori: E( ˆ θ ) läestyy parametria θ u asvaa, ja ytyy parametrii, u =. Estimaatti: Otosesta lasettu estimaattori umeerie arvo Estimaattori asetelmavariassi V ( ˆ θ ): ˆ ˆ ˆ ˆ ˆ V( θ ) = s S p( s)( θs E( θ)) = E( θ E( θ)) missä otose s poimitatodeäöisyys o p (s) >0 Estimaattori esieliövire (Mea squared error MSE) ˆ ˆ ˆ MSE( θ ) = E( θ θ) = V ( θ) + Bias ( ˆ θ) ˆ s Variassiestimaattori v p( ) : Otata-asetelmaspesifi aalyyttie lausee tai approsimatiivie variassiestimaattori Estimoitu esivire: s. e( θˆ) = vˆ( θˆ ) (stadard error) Estimaattori estimoitu suteellie esivire (relative stadard error) eli variaatioerroi (coefficiet of variatio): c.v( ˆ θ ) = v ˆ( θ ˆ ) /θˆ = seθ.( ˆ)/ ˆ θ Estimoitu asetelmaerroi (desig effect) deff ( θˆ) = vˆ vˆ p( s) SRS ( θˆ) ( θˆ) missä p() s viittaa äytettyy otata-asetelmaa SRS o ysiertaie satuaisotata (WR tai WOR) deff = deff < deff > Otata-asetelma o ytä teoas ui SRS Otata-asetelma o teoaampi ui SRS Otata-asetelma o teottomampi ui SRS

3 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 3 Ysiertaie satuaisotata SRS Sisältymistodeäöisyys π = / o vaio Kooaismäärä T estimaattori (arato) tˆ = y = y = /, missä y o otosesiarvo ja perusjouo oo ˆ t = wy = y = y, = = π = missä w =/ o otospaio (alio sisältymistodeäöisyyde π = / ääteisluu) Asetelmavariassi (parametri) SRSWOR-poimialle missä = () ˆ V t = ( ) ( Y Y) /( ) = ( )( ) S SRS Y = = Y / o perusjouo esiarvo S = = ( Y Y ) /( ) o perusjouo variassi ( ) o äärellisyysorjaus (fpc, fiite populatio correctio) Variassiestimaattori (arato) ˆ vˆsrs () t = ( )( ) ( y y) /( ) = ( )( ) sˆ, = missä y = = y / o otosesiarvo sˆ = = ( y y) /( ) o otosvariassi UOM: SRSWR-otaassa fpc = ( ) UOM: Erioistapausea Beroulli-poimita (s. Survey samplig referece maual, s. 5 ja Appedix, atsotaa läemmi demoissa).

4 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 4 Systemaattie otata SYS Sisältymistodeäöisyys π = / o vaio Kooaismäärä T estimaattori (arato) tˆ = y = / Asetelmavariassi q ˆ ˆ ˆ sys j SRS j= V () t = ( t T ) / q = V ()( t + ( ) ρ ) = SSB, missä tˆ j o j:e systemaattise otose ooaismäärä estimaattori q=/ o poimitaväli SSW ρ it = o sisäorrelaatioerroi, missä äytetää SST AOVA-eliösummaajoitelmaa SST = SSW + SSB. Asetelmaerroi (parametri) V () ˆ sys t DEFF () ˆ sys t = = + ( ) ρ V () tˆ srs Systemaattie otata o ysiertaisee satuaisotataa verrattua: - teoaampi, jos /( ) < ρ it < 0, - ytä teoas, jos ρ it = 0, - teottomampi, jos 0 < ρ it < Variassiestimaattori Kute SRS, jos oletetaa, että yseessä o satuaisjärjestysessä oleva perusjouo (jolloi sisäorrelaatio = 0) Kute STR (ositettu otata, suteellie iitiöiti), jos oletetaa implisiittie ositus (perusjouo alioide lajittelu ee SYSpoimitaa) it it

5 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 5 Ositettu otata STR Ositteide oot, ositteet,,,,: , = missä o osittee alioide luumäärä o ositteide luumäärä o perusjouo alioide luumäärä STR-otos poimitaa ustai ositteesta itseäisesti Otosoot: = Estimaattorit ovat ositeotaiste estimaattoreide paiotettuja summia, paioia ositepaiot W /. = Kooaismäärä T estimaattori tˆ str o paiotettu summa ositeesiarvoista y y / = = tˆ str = W y = tˆ = tˆ = = tˆ tˆ, missä t ˆ = y o ooaismäärä estimaattori ositteessa Asetelmavariassi (SRS ositteissa) V str (ˆ t str ) = V = srs (ˆ t ) Variassiestimaattori (arato) vˆ str (ˆ t str ) = vˆ = srs (ˆ t )

6 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 6 Kiitiöiti (allocatio) Suteellie iitiöiti (proportioal allocatio) Tasaiitiöiti (equal allocatio) Optimaalie (optimal allocatio) eli eyma iitiöiti Baier iitiöiti (Baier or power allocatio) Suteellie iitiöiti: Lisätieto: osittee oo Otosoo ositteessa, pro = = W Sisältymistodeäöisyys o vaio π = π = / Kooaismäärä estimaattori tˆ str = tˆ = y / = = Meetelmää utsutaa itsepaiottuvasi (self-weigtig), osa ositeotaisia esiarvoja ei laseta UOM: Muissa iitiöitimeetelmissä sisältymistodeäöisyydet vaitelevat ositteide välillä (mutta ovat vaioita ositteide sisällä) Tasaiitiöiti: = / ussai ositteessa. Jos ositteide oot vaitelevat, ii sisältymistodeäöisyydet vaitelevat: π = / = /( ) aliolle ositteessa Asetelmapaiot ovat w = / Optimaalie eli eyma-iitiöiti: Ositteide otosoot määräytyvät ytälöstä S =. = S missä S (lisätieto) o muuttuja y (tuettu) esiajota ositteessa

7 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 7 PPS-otata (Probability Proportioal to Size) Oletetaa, että perusjouo alio ooa mittaava muuttuja arvo Z o tuettu joaiselle perusjouo aliolle Alio suteellie oo p = Z / T, =,, missä z Tz = = Z Kriteerit estimoii teostumiselle Kooa mittaava muuttuja z oma vaitelu muistuttaa tutittava muuttuja y vaitelua (voimaas orrelaatio) Apumuuttuja z ja tutittava muuttuja y sude o madollisimma läellä vaiota Jos sude o läes vaio aiilla perusjouo ysiöillä, ii estimaattori asetelmavariassi saa piee arvo PPS-otose poimita, eri tapoja: PPS_SYS PPS_WOR PPS_WR PPS_RC PPS_Poisso Systemaattie PPS Kumulatiivise summa meetelmä (WOR) Kumulatiivise summa meetelmä (WR) Rao-artley-Cocra-poimita Poisso-poimita Sisältymistodeäöisyydet π ovat suteessa ysiöide suteellisii ooii p = Z / T. Esim PPS_WR ja PPS_SYS: π = p z UOM: SRS_WR-poimiassa p = / joaiselle. Luua / utsutaa alio ysittäise poimia poimitatodeäöisyydesi (sigle-draw selectio probability) Sisältymistodeäöisyys ooise otose aliolle o site π = p = /

8 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 8 PPS_WR: Kumulatiivise summa PPS-poimita Työvaieet: ) Lase ullei aliolle apumuuttuja z umulatiivie summa: G = Z, =,,, G = T z. j= ) Perusjouo esimmäisee alioo (a ) liitetää väli [, ] G ooaisluvut Toisee alioo (a ) liitetää väli [ G ] G + ooaisluvut, Yleisesti aliolle (a ) liitetää väli [ G, ] 3) Poimi satuaisluu väliltä [ ] G + ooaisluvut,g. Se alio tulee otosee, joa poimitavälii satuaisluu uuluu 4) Toista vaie 3) ues alio otos o poimittu. Perusjouo alio suteellie oo p : Z p = = Z = Z T z. ja sisältymistodeäöisyys π : Z π = = p T z

9 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 9 PPS_SYS: Systemaattie PPS-poimita Työvaieet: ) Lase poimitaväli q = Tz / ) Geeroi satuaismuuttuja suljetulta väliltä [, q] Poimitaumerot alio otosta varte ovat: q q + q, q + q,..., q + ( ) q 0, Oloot se q 0. 3) Kussai poimiassa otosee otetaa esimmäie alio eiolistalta, jossa umulatiivie oo G o suurempi tai ytäsuuri ui poimitaumero. Sisältymistodeäöisyys o π = p Aliotaso paioerroi w = / π = /( p ) = T /( Z ) z UOM: Sisältymistodeäöisyyde tulee täyttää eto π. Jos Z o yvi suuri, voi sisältymistodeäöisyys olla >. Tällaiset aliot otetaa otosee s. varmoia alioia eli iille alioille sisältymistodeäöisyys π = joilla Z > = Z. Varmat aliot laitetaa ui omaa ositteeseesa (ositettu PPS). Jäljelle jäävie ysiöide sisältymistodeäöisyys π määritellää uudellee ooa mittaava muuttuja suteessa. Esim: Asetelma PPS_SYS_STR Kesi-Suome uta-aieistossa.

10 Y - Otatameetelmät / Sysy 009 (Risto Letoe) 0 Kooaismäärä estimaattorit PPS_WOR: orvitz-tompso-estimaattori T = = w y = π = tˆ y missä π o alio sisältymistodeäöisyys PPS_WR: ase-urwitz-estimaattori y ˆ t (ˆ... ˆ... ˆ = = t + + t + + t), = p missä ui t ˆ = y / p o ooaismäärä T estimaatti Asetelmavariassi V ppswr (ˆ t ) = = p Y ( p Y ) = = p ( T T ), missä T = Y / p ja Y o perusjouo esiarvo. UOM: Jos joaiselle perusjouo aliolle o voimassa sude o vaio, ii asetelmavariassi = 0 Variassiestimaattori (arato) Y / Z C eli = y vˆ (ˆ ) ( ) (ˆ ˆ ppswr t = y = t t ( ) = p ( ) = missä y o otosesiarvo ), UOM: WR-variassiestimaattoria äytetää approsimaatioa PPS_SYS-ja PPS_WOR-otaassa

Uudelleenpainotus ja imputointi Perusteita

Uudelleenpainotus ja imputointi Perusteita Heisigi yliopisto Matematiia ja tilastotietee laitos Otatameetelmät Sysy 008 Uudelleepaiotus ja imputoiti Perusteita Prof. Risto Lehtoe, Helsigi yliopisto.1.008 Uudelleepaiotus Otostasoise tiedo äyttö

Lisätiedot

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI Otatameetelmät (78143 Sysy 2010 TEEMA 2 risto.lehtoe@helsii.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 1 Lisätiedo äyttö estimoitiasetelmassa Malliavusteiset strategiat

Lisätiedot

Otantamenetelmät. Syksy

Otantamenetelmät. Syksy Otantamenetelmät (78143) Sysy 2009 TEEMA 2 risto.lehtonen@helsini.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 Lisätiedon äyttö estimointiasetelmassa i t Malliavusteiset

Lisätiedot

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen Otantamenetelmät (78143) Sysy 2008 OSA 2: Malliavusteinen estimointi Risto Lehtonen risto.lehtonen@helsini.fi Lisätiedon äyttö estimointiasetelmassa Tavoitteena estimoinnin tehostaminen poimitulle otoselle

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 3 GREG-estimaattori Yleinen tilanne (unequal probability sampling) Komposiittiestimaattorit (Composite

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 4 Laajennettu GREG-estimaattoreien perhe Avustavat mallit Yleistetty lineaarinen malli Lineaarinen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä

Lisätiedot

Tehtävä 11 : 1. Tehtävä 11 : 2

Tehtävä 11 : 1. Tehtävä 11 : 2 Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0402 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg 1 Jouo-oppi ja logiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O alto-yliopisto 12. maalisuuta 2015 3 Kombiatoriia ym. Summa-,

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen 15.3.2011 OSA 1 Estimaattorin tyyppi Mallin valinta Asetelmaperusteinen estimointi Horvitz-Thompson (HT)

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0401 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg alto-yliopisto 30. syysuuta 2015 1 Jouo-oppi ja logiia Prediaattilogiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O 3 Kombiatoriia

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme?

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme? TKK (c) Ila Melli (004) Yleie lieaarie malli Johdatus tilastotieteesee Yleie lieaarie malli Usea selittää lieaarie regressiomalli Yleise lieaarise malli matriisisesitys Yleise lieaarise malli estimoiti

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 2 Estimaattoreiden varianssien estimointi Survey-analyysin lähestymistavat Kuvaileva survey Descriptive survey

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

8. Ortogonaaliprojektiot

8. Ortogonaaliprojektiot 44 8 Ortogoaaliprojetiot Avaruus R o eemmäi ui pelä vetoriavaruus, osa siiä o mahdollisuus määritellä vetoreide pituus, välie ulma ja erityisesti ohtisuoruus ähä päästää ottamalla äyttöö vetoreide välie

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen Heli Holtari Tilastotieteen pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin

tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin S-445 FYSIIKKA III (Sf) Sysy 4, LH, Rataisut LHSf-* Kaasusäiliö o jaettu ahtee osaa, joide välisee eristävää seiämää o tehty iei ymyrämuotoie auo, joa halaisija o D Säiliö molemmissa osissa o helium aasua

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Ortogonaalisuus ja projektiot

Ortogonaalisuus ja projektiot MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Bernoullijakauma. Binomijakauma

Bernoullijakauma. Binomijakauma Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Otantamenetelmät. (78143) Syksy 2010 TEEMA 1. Risto Lehtonen

Otantamenetelmät. (78143) Syksy 2010 TEEMA 1. Risto Lehtonen Otantamenetelmät (78143) Syksy 2010 TEEMA 1 Risto Lehtonen risto.lehtonen@helsinki.fi Otantamenetelmät Luennot Tiistaisin klo 14 18 2.-30.11.2010 (Exactum), yhteensä 20 tuntia. Harjoitukset Torstaisin

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Klassinen todennäköisyys

Klassinen todennäköisyys TKK (c) Ila Melli (004) Klassie todeäöisyys ja ombiatoriia Klassie todeäöisyys Multiomiertoimet Johdatus todeäöisyyslasetaa Klassie todeäöisyys ja ombiatoriia TKK (c) Ila Melli (004) Klassie todeäöisyys

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Risto Lehtonen risto.lehtonen@helsini.fi Analyysimenetelmiä ja työaluja Lineaariset mallit Regressioanalyysi

Lisätiedot

1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).

1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit). Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi- a useampisuutaie variassiaalsi Ila Melli 44 Variassiaalsi Ila Melli 44 Variassiaalsi Sisälls

Lisätiedot

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2 Otantamenetelmät (78143) Syksy 2009 TEEMAT 3 & 4 Risto Lehtonen risto.lehtonen@helsinki.fi Teema 3 ERITYISKYSYMYKSIÄ Risto Lehtonen 2 1 Otannan erityiskysymyksiä Ryväsotanta Survey sampling reference guidelines

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Luku 2. Jatkuvuus ja kompaktisuus

Luku 2. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla. Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie

Lisätiedot

Tilastolliset luottamusvälit

Tilastolliset luottamusvälit Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli TKK (c) Ilkka Melli (4) Yhde selittää lieaarie regressiomalli Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista

2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista Moimuuttujameetelmät: Ilkka Melli. Yleise lieaarise malli määrittelemie.. ja malli oletukset.. Yleise lieaarise malli matriisiesitys. Yleise lieaarise malli parametrie estimoiti.. Parametrie estimoiti..

Lisätiedot

Koska elektronin oletetaan olevan perustilassa sen ionisaatioenergia on 13,6 ev:

Koska elektronin oletetaan olevan perustilassa sen ionisaatioenergia on 13,6 ev: LH0- H vetyioi perustila eergia (ytimie välimata, 06 Å) eergia verrattua systeemii, jossa perustilassa oleva vetyatomi ja H -ioi ovat äärettömä auaa toisistaa o,65 ev Lase a) H : eergia verrattua systeemii

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

Lahopuuinventoinnin menetelmien vertailu Nuuksion ulkoilualueilla

Lahopuuinventoinnin menetelmien vertailu Nuuksion ulkoilualueilla Metsätietee aikakauskirja t i e d o a t o Aika Kagas, Tuomas Aakala, Haa Alae, Maarit Haavisto, Jai Heikkilä, Au Kaila, Sami Kakaapää, Hau Kämäri, Olli Leio, Atti Mäkie, Eeva Nurmela, Sami Oksa, Atti Saari,

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 1 Risto Lehtonen risto.lehtonen@helsinki.fi Otanta-aineistojen analyysi Laajuus 6/8 op. Tyyppi 78136 Otanta-aineistojen analyysi (aineopintojen

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Tilastollinen päättely II, kevät 2017 Harjoitus 3B Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

Tilastolliset menetelmät

Tilastolliset menetelmät Tilastolliset meetelmät tilastolliste meetelmie tarkoitus o: estimoida eliaika- (vikaatumisaika, korjausaika- jakaumie ja -mallie parametreja eliaikakokeide, laitteide käyttökokemustiedo yms. perusteella

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

Mat Sovelletun matematiikan erikoistyö. Loviisan riskianalyysin yhteisvikaparametrien määrittäminen. Toivo Kivirinta 52663S

Mat Sovelletun matematiikan erikoistyö. Loviisan riskianalyysin yhteisvikaparametrien määrittäminen. Toivo Kivirinta 52663S Mat-.08 Sovelletu matematiia erioistyö Loviisa risiaalyysi yhteisviaparametrie määrittämie Toivo Kivirita 5663S 3. Syysuuta 003 Sisällysluettelo Johdato....PSA....PSA Fortumilla....3Yhteisviat....Tavoite...

Lisätiedot

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2 TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?

Lisätiedot