Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Koko: px
Aloita esitys sivulta:

Download "Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen"

Transkriptio

1 Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 4 Laajennettu GREG-estimaattoreien perhe Avustavat mallit Yleistetty lineaarinen malli Lineaarinen seamalli Yleistetty lineaarinen seamalli GREG-estimaattoreien teoreettisten ominaisuusien (harha, MSE) tutiminen empiirisesti Monte Carlo -simulointi

2 LAAJENNETT GREG-ESTIMAATTOREIDEN PERHE 2 GREG-tyyppiset estimaattorit joissa avustava malli on yleistettyjen lineaaristen mallien (GLMM, Generalize linear mixe moels) perheen jäsen Avustavat mallit (1) Yleistetty lineaarinen (iinteien teijöien) malli E ( Y ) f( ; ) = x β (51) m missä f (; β ) on annettu funtio (lineaarinen funtio, logistinen funtio), β on estimoitava parametrivetori ja E m viittaa ootusarvoon mallin suhteen Malli sovitetaan otosatalle {( y, x ); s} Saaaan parametrin B estimaatti ˆB, missä B on mallin parametrin β äärellisen perusjouon vastine ˆ Sovitteet yˆ = f( x; B ) lasetaan joaiselle äyttämällä vetoria ˆB ja apumuuttujavetoria x Logistisen mallin avustama GREG-estimaattori LGREG Lehtonen, R. an A. Veijanen (1998). Logistic generalize regression estimators. Survey Methoology 24,

3 (2) Yleistetty lineaarinen seamalli 3 E ( Y u ) = f ( x ( β + u )) (52) m missä u on omain-spesifien satunnaistermien vetori ˆ Sovitteet yˆ ( ( ˆ = f x B+ u )) lasetaan joaiselle äyttämällä estimaattivetoreita ˆB, u ˆ ja apumuuttujavetoria x (a) Lineaarinen seamalli E ( Y u ) = x ( β + u ) m = ( β + u ) + ( β + u ) x ( β + u ) x J J J missä u = ( u0, u1,..., u J) on omain-spesifien satunnaistermien vetori (53) Käytännössä usein vain osa u-termeistä on mallissa: E ( Y ) = ( β + u ) + ( β + u ) x + β x u (54) m Vastaava iinteien teijöien malli E ( Y ) β β x β x = + + (55) m Lehtonen, R. an A. Veijanen (1999). Domain estimation with logistic generalize regression an relate estimators. Proceeings, IASS Satellite Conference on Small Area Estimation, Riga, August Riga: Latvian Council of Science,

4 (b) Logistinen seamalli 4 Binominen logistinen seamalli on muotoa exp( x ( β + u)) Em( y u) = P{ y = 1 u} = 1 + exp( x ( β + u )) missä tulosmuuttuja y on binäärinen Esim: 0:Työllinen 1: Työtön (56) Tulosmuuttuja voi olla myös moniluoainen Multinomiaalinen logistinen seamalli Esim: 1: Työllinen 2: Työtön 3: Ei uulu työvoimaan Lehtonen, R., C.-E. Särnal, an A. Veijanen (2003). The effect of moel choice in estimation for omains, incluing small omains. Survey Methoology 29, Lehtonen, R., C.-E. Särnal, an A. Veijanen (2005). Does the moel matter? Comparing moel-assiste an moel-epenent estimators of class frequencies for omains. Statistics in Transition 7, HOM: Mallia (56) vastaava iinteien teijöien logitmalli on exp( x β) Em( y) = P{ y = 1} = 1 + exp( x β ) (57)

5 ESIMERKKI 5 Tutitaan osajouototaalien GREG-estimaattoreien teoreettisia ominaisuusia empiirisesti simulointioeien avulla Parametrit t = y, = 1,..., D Kiinnostusen ohteena estimaattorin t ˆ harha ja MSE Bias( tˆ ) ( ˆ = E t) t MSE( tˆ ) = E( tˆ t ) 2 Tutimusmenetelmä: Monte Carlo -oeet Otoset s ; v= 1,2,..., K v Kullein osajouolle lasetaan otosten perusteella: Absoluuttinen suhteellinen harha Absolute relative bias ARB ARB( tˆ ) = (1/ K) tˆ ( s ) t / t K v= 1 v Suhteellinen RMSE (Root MSE) Relative root mean square error RRMSE K 2 RRMSE( tˆ ) (1/ ) ( ˆ = K t ( ) ) / v 1 sv t t = Simuloinneissa poimitaan generoitavasta perusjouosta K = 1000 riippumatonta otosta

6 Keinoteoisen perusjouon generointi Perusjouon oo N = 1,000,000 Osajouot: D = 100 aliota 6 Osajouon oo N on suhteellinen luuun exp( q ) missä q generoiaan tasajaaumasta (0,2.9) Pienimmässä osajouossa N = 1721 Suurimmassa osajouossa N = Muuttuja x 1 generoiaan tasajaaumasta (1,11) Muuttuja x 2 generoiaan tasajaaumasta ( 5,5) Domain-ohtaiset satunnaistermit u ja ν i, i = 1,2 generoiaan multinormaalijaaumasta Varianssit Var( u ) = 1 Var ν = ( ) i Korrelaatiot Corr( u, ν ) = 0.5 i Corr( v, ν ) = Jäännöstermi ε generoiaan jaaumasta N(0,100)

7 Tulosmuuttujan y arvot generoiaan mallilla 7 missä y = (1 + u ) + (1 + ν ) x + (1 + ν ) x + ε u satunnaiset vaiotermit (intercept) ν 1 ja ν 2 satunnaiset ulmaertoimet (slope) HOM: Mallin iinteät parametrit β0 = β1 = β2 = 1 Populaatioorrelaatiot: corr( y, x 1) = 0.44 corr( y, x 2) = 0.45 corr( x, x ) Tulosmuuttujan omain-ohtaiset esiarvot olivat liimain yhtäsuuria Koonaismäärät poiesivat toisistaan paljon: Osajouon oo Kesimääräinen totaali perusjouossa Pieni 50,977 Kesisuuri 131,776 Suuri 263,979

8 Otanta-asetelma 8 Ei-suunnitellut (unplanne) osajouot Systemaattinen PPS-otanta (Sampling with probabilities proportional to size) PPS-otannan oomuuttuja x 1 Alion sisältymistoennäöisyys nx 1 Pr{ s} π = = x 1 Otosoo n = 10,000 Asetelmapainot a = 1/ π vaihteluväli Osajouojen ooluoittelu Osajouo Otosoo Osajouoja Pieni < Kesisuuri Suuri > Yht. 100

9 Domain-totaalien estimaattorit 9 HOM: Ysiötason lisäinfo x 1 ja x 2 äytettävissä aiista perusjouon alioista estimointia varten GREG-estimaattorit tavanomaista muotoa: tˆ = yˆ + a e GREG s missä sovitteet y ˆ määräytyvät valitun mallin muaan Avustavat regressiomallit (1) Kiinteien vaiutusten D-mallit (esim. malli D1) Y = x β + ε, missä x = ( δ1, δ2,..., δ D, x1, x2), δ = 1 un, nolla muulloin β = ( β, β,..., β, β, β ) D 1 2 Mallien parametrien estimointi: WLS (2) Lineaariset seamallit (esim. malli B2) Y = x β + u + ε, missä x = (1, x1, x 2 ) ja β = ( β, β, β ) Mallien parametrien estimointi: GWLS ja REML

10 Estimaattorit ja avustavat mallit 10 Estimaattori Malli GREG-A1 Y β0 ε MGREG-A2 Y β0 = +, = + u + ε, GREG-B1 Y β0 β2x2 ε = + +, MGREG-B2 Y β0 u β2x2 ε = + + +, GREG-C1 Y β0 β1x1 ε = + +, MGREG-C2 Y β0 u β1x1 ε = + + +, GREG-D1 Y β0 β1x1 β2x2 ε = + + +, MGREG-D2 Y β0 u β1x1 β2x2 ε = , GREG, avustavana mallina lineaarinen iinteien teijöien regressiomalli MGREG: Avustavana mallina lineaarinen seamalli (Mixe moel)

11 HOM: 11 Kaii mallit A-D ovat väärin spesifioituja Misi? A- ja B-mallit: Otanta-asetelma on informatiivinen (informative sampling) osa y-arvot riippuvat PPSotannan oomuuttujasta x 1 mutta muuttuja ei ole muana malleissa C- ja D-mallit: PPS-otannan oomuuttuja x 1 on muana Double-use of the auxiliary information (Särnal 1996) Osajouojen erojen huomioon ottaminen Mallit A1, B1, C1 ja D1 Kiinteät vaiotermit β 0, =1,,D Mallit A2, B2, C2 ja D2 Satunnaiset vaiotermit 0 β + u Kumpi tapa on parempi? Misi?

12 Tauluo 4. GREG-estimaattoreien esimääräinen absoluuttinen suhteellinen harha (Absolute relative bias ARB %) ja esimääräinen suhteellinen RMSE (Relative root mean square error RRMSE %) simulointioeissa. Kesimääräinen ARB (%) Kesimääräinen RRMSE (%) Avustava Otosen ooluoa Otosen ooluoa malli ja estimaattori Pieni Kesisuuri Suuri Pieni Kesisuuri Suuri (20-69) (70-119) (120+) (20-69) (70-119) (120+) Malli A1 Y = β0 + ε GREG-A Malli A2 Y = β0 + u + ε MGREG-A Malli B1 Y = β0 + β2x2 + ε GREG-B Malli B2 Y = β0 + u + β2x2 + ε MGREG-B Malli C1 Y = β0 + β1x1 + ε GREG-C Malli C2 Y = β0 + u + β1x1 + ε MGREG-C Malli D1 Y = β + β x + β x + ε GREG-D Malli D2 Y = β + u + β x + β x + ε MGREG-D

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 3 GREG-estimaattori Yleinen tilanne (unequal probability sampling) Komposiittiestimaattorit (Composite

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen 15.3.2011 OSA 1 Estimaattorin tyyppi Mallin valinta Asetelmaperusteinen estimointi Horvitz-Thompson (HT)

Lisätiedot

Otantamenetelmät. Syksy

Otantamenetelmät. Syksy Otantamenetelmät (78143) Sysy 2009 TEEMA 2 risto.lehtonen@helsini.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 Lisätiedon äyttö estimointiasetelmassa i t Malliavusteiset

Lisätiedot

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen Otantamenetelmät (78143) Sysy 2008 OSA 2: Malliavusteinen estimointi Risto Lehtonen risto.lehtonen@helsini.fi Lisätiedon äyttö estimointiasetelmassa Tavoitteena estimoinnin tehostaminen poimitulle otoselle

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Risto Lehtonen risto.lehtonen@helsini.fi Analyysimenetelmiä ja työaluja Lineaariset mallit Regressioanalyysi

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011. Risto Lehtonen Helsingin yliopisto

Pienalue-estimointi (78189) Kevät 2011. Risto Lehtonen Helsingin yliopisto Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Pienalue-estimointi Kurssin kotisivu http://wiki.helsinki.fi/pages/viewpage.action?pagei=62430039 2 Hyöyllisiä taustatietoja Otantamenetelmät

Lisätiedot

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI Otatameetelmät (78143 Sysy 2010 TEEMA 2 risto.lehtoe@helsii.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 1 Lisätiedo äyttö estimoitiasetelmassa Malliavusteiset strategiat

Lisätiedot

, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta.

, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta. Y - Otatameetelmät / Sysy 009 (Risto Letoe) TEKIE YTEEVETO I Otata-asetelmat ja estimoitiasetelmat Perusjouo ja muuttujat Äärellie perusjouo U = {,...,,..., } Tulosmuuttuja y tutemattomat arvot Y,,Y,,Y

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 2 Estimaattoreiden varianssien estimointi Survey-analyysin lähestymistavat Kuvaileva survey Descriptive survey

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2 Otantamenetelmät (78143) Syksy 2009 TEEMAT 3 & 4 Risto Lehtonen risto.lehtonen@helsinki.fi Teema 3 ERITYISKYSYMYKSIÄ Risto Lehtonen 2 1 Otannan erityiskysymyksiä Ryväsotanta Survey sampling reference guidelines

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

Uudelleenpainotus ja imputointi Perusteita

Uudelleenpainotus ja imputointi Perusteita Heisigi yliopisto Matematiia ja tilastotietee laitos Otatameetelmät Sysy 008 Uudelleepaiotus ja imputoiti Perusteita Prof. Risto Lehtoe, Helsigi yliopisto.1.008 Uudelleepaiotus Otostasoise tiedo äyttö

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1 Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n

Lisätiedot

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2004) 1 Yleinen lineaarinen malli Usean selittäjän lineaarinen regressiomalli Yleisen lineaarisen mallin matriisisesitys Yleisen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Otanta-aineistojen analyysi Kevät 2010 TEEMA 5: Tilastollinen mallinnus II Mallit, analyysimenetelmiä ja ohjelmia, PISA-esimerkki

Otanta-aineistojen analyysi Kevät 2010 TEEMA 5: Tilastollinen mallinnus II Mallit, analyysimenetelmiä ja ohjelmia, PISA-esimerkki Otanta-aineistojen analyysi Kevät 2010 TEEMA 5: Tilastollinen mallinnus II Mallit, analyysimenetelmiä ja ohjelmia, PISA-esimerkki risto.lehtonen@helsinki.fi Korreloituneiden havaintojen analyysi Lineaariset

Lisätiedot

PIENALUE-ESTIMOINTIMENETELMÄT:

PIENALUE-ESTIMOINTIMENETELMÄT: Pro gradu -tutkielma Tilastotiede PIENALUE-ESTIMOINTIMENETELMÄT: SOVELLUSKOHTEENA SUOMALAISTEN KOETTU TOIMEENTULO VUONNA 2009 Nico Maunula Toukokuu 2012 Ohjaaja: Risto Lehtonen HELSINGIN YLIOPISTO Matematiikan

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa TKK (c) Ilkka Mellin (2007) 1 Erityiskysymyksiä yleisen lineaarisen

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Logistinen regressioanalyysi Vastemuuttuja Y on luokiteltu muuttuja Pyritään mallittamaan havaintoyksikön todennäköisyyttä kuulua

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Lineaariset luokittelumallit: regressio ja erotteluanalyysi

Lineaariset luokittelumallit: regressio ja erotteluanalyysi Lineaariset luokittelumallit: regressio ja erotteluanalyysi Aira Hast Johdanto Tarkastellaan menetelmiä, joissa luokittelu tehdään lineaaristen menetelmien avulla. Avaruus jaetaan päätösrajojen avulla

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 4 Asetelmaperusteinen monimuuttujaanalyysi Logistinen ANOVA ja GWLS-estimointi Binäärinen tulosmuuttuja Diskreetit

Lisätiedot

Kulutustutkimuksen alue-estimointi Pienalue-estimointimenetelmien vertailu Kulutustutkimus aineistossa

Kulutustutkimuksen alue-estimointi Pienalue-estimointimenetelmien vertailu Kulutustutkimus aineistossa Kulutustutkimuksen alue-estimointi Pienalue-estimointimenetelmien vertailu Kulutustutkimus 2006 -aineistossa Pauliina Maria Peltonen Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Tilastotiede

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4 Estimointi Laajennettu Kalman-suodin AS-84.2161, Automaation signaalinäsittelymenetelmät Lasuharjoitus 4 Estimointi Systeemin tilaa estimoidaan, un prosessin tilamalli tunnetaan Tilamalli voi olla lineaarinen

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

Load

Load Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

1. LINEAARISET LUOKITTIMET

1. LINEAARISET LUOKITTIMET 1. LINEAARISET LUOKITTIMET Edellisillä luennoilla tarkasteltiin luokitteluongelmaa tnjakaumien avulla ja esiteltiin menetelmiä, miten tarvittavat tnjakaumat voidaan estimoida. Tavoitteena oli löytää päätössääntö,

Lisätiedot

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Hierarkkisen aineiston mallintaminen ja otanta/pre-kurssi

Hierarkkisen aineiston mallintaminen ja otanta/pre-kurssi Hierarkkisen aineiston mallintaminen ja otanta/pre-kurssi Risto Lehtonen, Helsingin yliopisto Metodifestivaali Jyväskylän yliopisto 27.5.2009 Keskiviikko 27.5 10-12 Hierarkkisuus otanta- asetelmaperusteisessa

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

4.3.6 Eräitä diskreettejä Markov-kenttiä

4.3.6 Eräitä diskreettejä Markov-kenttiä 0.4 0.35 Gauss l1 Cauchy 0.3 0.25 0.2 0.15 0.1 0.05 0 10 8 6 4 2 0 2 4 6 8 10 Kuva 4.20: L2-priorin tnft, Cauchy-priorin tntf kun α = α = 2. 2π π 2π ja L1-priorin tntf kun 4.3.6 Eräitä diskreettejä Markov-kenttiä

Lisätiedot

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1 Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin

Lisätiedot

Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen

Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). tulee katettua (complete replicate). Havaintojen 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla proc surveymeans data=pisa.impuoecd; where cnt='fin' or cnt='deu' or

Lisätiedot

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten

- voidaan käyttä lisämään tieteellistä ymmärrystä ilmiöstä. - joidenkin havaittavien suureiden vaikutus voi olla paljon suurempi kuin toisten Viime kerralla Normaalijakauma tunnetulla varianssilla Normaalijakauma tunnetulla keskiarvolla Poisson-mallli Exponentiaalinen malli Slide 1 Cauchy-jakauma Ei-informatiivisista priorijakaumista Bayesilaisen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Regressiomallin valinta TKK (c) Ilkka Mellin (2007) 1 Regressiomallin valinta >> Regressiomallin valinta: Johdanto Mallinvalintatestit

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Regressiomallin valinta TKK (c) Ilkka Mellin (2004) 1 Regressiomallin valinta Regressiomallin valinta: Johdanto Mallinvalintatestit Mallinvalintakriteerit Epälineaaristen riippuvuuksien

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin erusteet, kevät 007 Regressiomallin (selittäjien valinta Kai Virtanen 1 Regressiomallin selittäjien valinnasta Mallista uuttuu selittäjiä => harhaiset regressiokertoimien

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin erusteet, kevät 2007 10. luento: Regressiomallin (selittäjien) valinta Kai Virtanen 1 Regressiomallin selittäjien valinnasta Mallista uuttuu selittäjiä => harhaiset regressiokertoimien

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

, 3.7, 3.9. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu

, 3.7, 3.9. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu Lineaarikobinaatioenetelät 3.5-3.7, 3.7, 3.9 Sisältö Pääkoponenttianalyysi (PCR) Osittaisneliösua (PLS) Useiden vasteiden tarkastelu Laskennallisia näkökulia Havaintouuttujien uunnokset Lähtökohtana useat

Lisätiedot