Uudelleenpainotus ja imputointi Perusteita

Koko: px
Aloita esitys sivulta:

Download "Uudelleenpainotus ja imputointi Perusteita"

Transkriptio

1 Heisigi yliopisto Matematiia ja tilastotietee laitos Otatameetelmät Sysy 008 Uudelleepaiotus ja imputoiti Perusteita Prof. Risto Lehtoe, Helsigi yliopisto.1.008

2 Uudelleepaiotus Otostasoise tiedo äyttö 1 Tyypilliset otaasta riippumattomat virheet (osamplig errors Vastausato (orespose Peitto- ja ehiovirheet (coverage ad frame errors Mittausvirheet (measuremet errors Processig errors Tavoite: Vastausado vaiutuste arvioiti ja adjustoiti Vastausato viittaa ahtee tilateesee: Ysiöato (Uit orespose - Mitää tietoja ei ole saatu erättyä joiltai otosysiöiltä - Kaii tutimusmuuttujat saavat puuttuva tiedo arvo äille ysiöille Eräato (Item orespose - Joitai tietoja o jääyt eräämättä joiltai otosysiöiltä 1 Source: Lehtoe R. ad Pahie E. (003 Practical Methods for Desig ad Aalysis of Complex Surveys. Secod Editio. Chichester: Joh Wiley & Sos, Ltd (Chapter 4.

3 - Joti tutimusmuuttujat saavat puuttuva tiedo arvo äille ysiöille HUOM: Molemmat puuttuva tiedo tyypit voivat aiheuttaa harhaa estimoitii ESIMERKKI Ysiöato tyypillisissä survey-tutimusissa Table 4.1 Vastausprosetti eräissä otostutimusissa Name of the survey Samplig uit Sample size Respose rate (% (1 Mii-Filad Health Survey ( Occupatioal Health Care Survey Perso % Establishmet % (3 Health Security Survey Household % (4 PISA 000 Survey School % (5 Passeger Trasport Survey Perso % (6 Wages Survey Busiess firm % PISA 000: Media of coutry-level respose rate is preseted due to heavy coutry-level variatio 3

4 YKSIKKÖKATO (UNIT NONRESPONSE Estimoitava parametri Totaali T N 1 Y HT estimaattori t ht 1 y / π Otata-asetelma: SRSWOR Otosoo: aliota HT-estimaattori variassi (SRSWOR Vsrs ( tht N (1 / N S / Jaajaa aluperäie otosoo Vastausado vallitessa saadu aieisto oo pieeee Saadu aieisto oo: (r < Siis variassi asvaa! 4

5 YKSIKKÖKADON AIHEUTTAMA HARHA Alio vastaustodeäöisyys θ, 1,..., N Harmillie (o-igorable vastausato Little ad Rubi (1987: Vastaustodeäöisyys θ riippuu tulosmuuttuja y arvosta Y Harmito (igorable vastausato Vastaustodeäöisyys θ ei riipu tulosmuuttuja y arvosta Y Esimerisi: Igorable tilae Vastaustodeäöisyys alioille 1,,N θ o vaio aiille 5

6 ESIMERKKI Harmillie (o-igorable vastausato Oletetaa, että haastattelututimusessa ysi osajouo jättäytyy ooaisuudessaa tutimuse ulopuolelle Perusjouo voidaa tällöi jaaa ahtee osaperusjouoo A. Osallistuva osajouo, N 1 aliota B. Ei-osallistuva osajouo (ato N aliota Totaali T estimaattori t ht ( r N y ( r missä y (r o osajouosta A saadu aieisto esiarvo Tällöi E ( y (r Y 1 (osajouo A esiarvo 6

7 Jos Y1 Y ii estimaattori t ht ( r o harhaie BIAS ( t ht ( r E t ht r T NY1 ( N1Y 1 + NY N( Y1 Käytäössä harha suuruutta o vaiea arvioida ( ( Y Variassi sijasta variaatio mittaa tulisi äyttää esieliövirhettä MSE t V ( t + BIAS t, ( ht ( r p( s ht ( r ( ht ( r Jos harhaa ei tiedetä, ii MSE ei voida lasea 7

8 ESIMERKKI Vastausato ja harha datassa Provice 91 Oletetaa, että seuraavat 5 utaa uuluvat ato-osajouoo B: Kuhmoie, Joutsa, Luhaa, Leivomäi, Toivaa Osajouo A: N 17 Osajouo B (ato: N 5 T N 7 Y T 63 N 5 Y T N 3 Y SRSWOR-otos ( 8 utaa Estimaattori t ht ( r, odotusarvo: E t N Y ( ht ( r BIAS ( t ht (r E t ht ( r T N( Y1 Y 5 ( eli varsi suuri ( 8 058

9 UUDELLEENPAINOTUS Reweightig Ysiöado (Uit o-respose hallita Lisäiformaatio äyttö Koo otosesta saatava lisäifo Perusjouo tasoie lisäifo Ysiertaie esimeri Oletus: Kaiie perusjouo alioide osallistumistodeäöisyys o vaio, eli θ θ aiille U Aieistosta estimoitu θ r / ( Uudelleepaiotettu HT-estimaattori ( r ( r t w y y /(θ π ht 1 1 tai missä ( ht (1/ θ 1 y / π (1/ θ r t t t ( r ht 1 y / π ht 9

10 Vaio-osallistumistodeäöisyyde oletus o äytäössä epärealistie 1 Disreetti lisäifo: RHG-meetelmä Respose Homogeeity Groups Jaetaa perusjouo tai oo otos vastaustodeäöisyyde suhtee sisäisesti homogeeisii osajouoihi äyttäe hyväsi perusjouosta tai oo otosesta äytettävissä olevaa lisäiformaatiota, joa orreloi osallistumisalttiude assa Otostasoie lisäifo: Osajouot: 1,,c,...,C Osajouoje otosoot: 1,..., c,..., C Saadu aieisto oot: 1 ( r,..., c( r,..., C( r Oletus: Vastaustodeäöisyys θ c o vaio ui osajouo sisällä, mutta voi vaihdella osajouoje välillä Estimoitu osajouo c osallistumist θ c /, c 1,,C c( r c 10

11 Uudelleepaiotettu HT-estimaattori t ( r C ( r w y 1 c c (1/ θ w rhg 1 rhg, 1 c c y c missä uusi paio o w (1/ θ w rhg, c c ja wc 1/ πc o asetelmapaio, c 1,..., C ja,..., 1 c ( r RHG-meetelmä o tehoas jos osajouoje ostruoiti oistuu ii, että sisäie homogeeisuusehto täyttyy Edellyttää lisäiformaatio hyvää saatavuutta ja (voimaasta orrelaatiota osallistumisalttiude assa RHG-meetelmä äyttää disreettiä lisäiformaatiota (yhde tai useamma otostasoise disreeti muuttuja äyttö osajouoje muodostamisessa 11

12 Jatuvatyyppie lisäiformaatio Jatuva lisäifomuuttuja z tuetaa aiilta otosalioilta 1,, Muuttuja orreloi voimaaasti osallistumisalttiude θ assa Uudet paiot (reweights w ] w rat, [( 1/ θ ( z / z( r missä z o muuttuja z esiarvo, joa o lasettu oo otosesta z (r o esiarvo, joa o lasettu saadusta aieistosta, θ r / ja w 1/ π ( Uudelleepaiotettu HT-estimaattori t z ( r ( r 1 w rat, y θ z rat Suhdetehosteie estimoiti/ Ratio estimatio ( r 1 w y 1

13 UUDELLEENPAINOTETUN HT- ESTIMAATTORIN VARIANSSIN ESTIMOINTI Uudelleepaiotusessa paiot ovat muotoa w 1/(πθ missä sisältymistodeäöisyydet π ovat tuettuja parametreja (ei satuaismuuttujia Estimoidut vastaustodeäöisyydet θ ovat satuaismuuttujia Uudelleepaiotetu HT-estimaattori asetelmavariassi o site muotoa V ( t ht Vsam( tht + Vrew ( tht missä V sam Asetelmavariassi (otatavirhee hallita rew V Lisävariassi (uudelleepaiotuse aiheuttama lisäepävarmuus 13

14 ESIMERKKI (Example 4. Provice 91 Populatio N 3 utaa SRSWOR otos, 8 utaa, π π 0. 5 Kasi atoutaa: Kuhmoie ja Toivaa Saadu data oo 6 utaa ( r Lisäiformaatiomuuttuja z (jatuva HOU85 Asutoutie lm 1985 Lisäifo tiedossa aiista otosuista Estimoitu vastaustodeäöisyys θ θ ( r / 6 / RHG: Kaupugit c 1 θ 1 3 / Muut uat c θ 3 /

15 Lisäifo: Koo otos ( 8 : z Saatu data ( 6 : z (1 Estimaattori t ht RHG: Koo otos Naiivi uudelleepaiotus: ( r w ht 1 /(π θ 1/( ( Estimaattori t rhg RHG: Kaupugit / Muut uat Uudelleepaiotus: Kaupugit w rhg, 1 (1/1 4 4 Muut uat w (1/ rhg, (3 Estimaattori t rat RHG: Koo otos Uudelleepaiotus: w w [(1/ θ ( rat, z z( r ] 4 (1/

16 Table 4. SRSWOR otos perusjouosta Provice 91. Sample desig idetifiers Elemet Respose data (Samp le Reweight by orespose model STR CLU WGHT LABEL UE91 HOU85 RHG REW_HT RHG RATIO w*ht w*rhg w*rat Kuhmoie Toivaa Pihtipudas Uuraie Kogiagas Jyväsylä Keuruu Saarijärvi A missig value is deoted as.. 16

17 Uudelleepaiotusestimaattori variassi Totaaliestimaattori asetelmavariassi: V N sam( t N (1 S / ( r ( r missä S ( r N ( r 1 ( Y N Y ( r ( r 1 Asetelmavariassi estimaatti: ( (1 N v sam t N s ( r / ( r ( / missä s ( r ( r 1 ( y ( r y ( r 1 V sam (t o sama aiille estimaattoreille (1-(3 17

18 (1 Estimaattori t ht Uudelleepaiotusesta johtuva variassiompoetti: V t N S ( r rew ( ht (1 ( r / ( r missä S ( r N ( r 1 ( Y N Y ( r ( r 1 Variassiompoeti estimaatti: ( r v rew tht N (1 ( 6 8 s 3 ( / 6 ( r / ( r

19 ( Estimaattori t rhg RHG: Kaupugit Otosoo 1 3 N ( / N (3 / Muut uat Otosoo 5 N ( / N (5 / Uudelleepaiotusesta johtuva variassiompoetti: V ( rew t rhg 1( N 1 (1 + N (1 r 1 ( r S S 1( r ( r / / 1( r ( r missä S h( r N h ( r 1 ( Y h N Y h( r h( r 1 19

20 Variassiompoeti estimaatti: v ( t rew rhg (1 ( / 3 /

21 (3 Estimaattori t rat Määritellää jääöset Y E Y Z ( r ( r ( r ( r Z( r Uudelleepaiotusesta johtuva variassiompoetti: V ( r rew ( trat N (1 SE ( / r ( r N( missä 1 ( ( /( ( 1 ( r SE E r E N r r ja E N( r E N. 1 ( r / ( r Estimoidut jääöset y ( r e ( r y ( r z ( r z ( r 1

22 Variassiompoeti estimaatti: ( ( / (1 3 / (1 ( ( r e r rat rew s N t v r missä 1 /( ( ( 1 ( ( ( ( r r r e e e s r r

23 Poimitasuhteet: Estimaattorit t ht ja t rat r ( / N 6 / Estimaattori t rhg Kaupugit 1( r / N1 3/1 0.5 Muut uat: ( r / N 3/ Vertailuestimaattorit: (0 Estimaattori t ht ( r N y ( r Poimitasuhde / N 6 / ( r (4 Estimaattori t ht "Full respose" Poimitasuhde /N 8/

24 Table 4.3 Variassiompoetit ja ooaisvariassi eri estimaattoreille (Provice 91 populatio. Model ad estimator (0 Respodet data 6 t ht ( r ( ( r Estimate for a Total v v sam v rew (1 Reweighted estimator t ht ( Respose homogeeity group t rhg (3 Ratio estimator t rat (4 Full respose ( 8 t ht

25 IMPUTOINTI Imputatio Eräado (item o-respose hallita Tavoite: Täydellie datamatriisi Tulosmuuttuja y Puuttuva mittaustulos y aliolle Imputoitu arvo ŷ IMPUTOINTIMENETELMIÄ (1 Kesiarvoimputoiti Respodet mea method RM Jatuva tulosmuuttuja y Imputoitu arvo y y( r eli vastaeide esiarvo Kesiarvoimputoiti ei ole yleisesti suositeltava meetelmä 5

26 Kehittyeemmät meetelmät: Lisäiformaatio äyttö otosaieistosta tai perusjouosta ( Lähimmä aapuri meetelmä Nearest eighbor method NN Jatuva tulosmuuttuja y Puuttuva tieto y aliolle Jatuva lisäiformaatiomuuttuja z Tiedossa aiilta otosalioilta Lasetaa pareittaiset etäisyydet zl z, l Valitaa substituutti y y l jolle etäisyys o piei, missä y l o havaittu arvo Alio l o luovuttaja (door 6

27 (3 Suhde-estimoiti Ratio estimatio method RA Jatuva tulosmuuttuja y Puuttuva tieto y aliolle Jatuva lisäiformaatiomuuttuja z Tiedossa aiilta otosalioilta Imputoitu arvo y z ( y ( r / z( r missä y (r o tulosmuuttuja y esiarvo havaitussa aieistossa z (r o apumuuttuja z esiarvo havaitussa aieistossa 7

28 (4 Hot dec meetelmä HD Tulosmuuttuja y (jatuva tai disreetti Puuttuva tieto y aliolle Door l ja vastaava imputoitu arvo y y l valitaa satuaisesti havaittuje arvoje jouosta (5 Moi-imputoiti - Multiple imputatio MI Sigle imputatio: Meetelmät (1-(4 Alio puuttuva tieto y orvataa yhdellä imputoidulla arvolla ŷ Multiple imputatio: Alio puuttuva tieto y orvataa usealla imputoidulla arvolla y, y,..., y 1 m Saadaa m täydellistä havaitomatriisia Usei valitaa arvo m 5 8

29 TOTAALIESTIMAATTORIN VARIANSSIN ESTIMOINTI IMPUTOINNIN YHTEYDESSÄ Imputoiti tuottaa estimaattori variassilauseeesee lisäompoeti (vastaavasti ui uudelleepaiotusmeetelmie yhteydessä HT-estimaattori t 1 / π variassilausee ht y V ( t ht Vsam( tht + Vimp( tht missä V t o asetelmavariassi ( sam ht V ( imp tht o imputoii aiheuttama lisävariassi (imputoitivariassi Lisävariassi V ( imp tht lausee riippuu imputoitimeetelmästä 9

30 Moi-imputoiti Multiple imputatio (MI Variassiestimaattori v ( t v ( t + v mi sam mi imp ( t mi Aliolle imputoidaa m arvoa y 1,..., y j,..., y m jolloi saadaa m täydellistä datamatriisia Määritellää joaiselle m matriisille totaaliestimaattori t 1w y, j 1,..., m j missä w 1/ π HUOM: Osa arvoista y o imputoituja! Lasetaa totaaliestimaattie esiarvo t mi 1 m j m t 1 j 30

31 Määritellää variassiompoetit: Imputoitie sisäie variassiestimaattori 1 m m vsam tmi j 1 v p( s t j ( ( Imputoitie välie variassiestimaattori 1 m (1 + j m v imp tmi 1 ( ( t j t mi m 1 jolloi ooaisvariassi estimaattori o: v( t mi (1 + v sam 1 m 1 m ( t m j 1 mi + v m j 1 p( s ( t j v t imp mi m 1 ( t ( t mi j + 31

32 ESIMERKKI (Example 4.3 Provice 91 Populatio N 3 utaa SRSWOR otos, 8 utaa, π π 0. 5 Tulosmuuttuja y UE91 (työttömie luumäärä uassa Lisätietomuuttuja z HOU85 (asutoutie lm vuoa 1985, väestölaseta Tiedossa aiista uista Puuttuva tieto muuttujalta UE91 uista: Kuhmoie ja Toivaa Imputoitimeetelmät: (1 Kesiarvoimputoiti RM ( Lähimmä aapuri meetelmä NN (3 Suhde-estimoiti RA (4 Moi-imputoiti MI Puuttuva tieto aliolla 3

33 (1 Kesiarvoimputoiti RM Tulosmuuttuja y esiarvo saadussa datassa 6 ( ( r y( r y Imputoiti: Kuhmoie 18 y Toivaa 30 y ( Lähimmä aapuri meetelmä NN Tutitaa, millä aliolla l etäisyys zl z saavuttaa miimi. Imputoiti: Kuhmoie 18 Miimi o Door: Pihtipudas y y Toivaa 30 Miimi o Door: Uuraie y y

34 (3 Suhde-estimoiti RA Lasetaa saadusta aieistosta suhde-estimaatti B r y ( r / z( / Lasetaa sovitteet y B Imputoiti: z Kuhmoie 18 z 1463 y Toivaa 30 z 834 y

35 Table 4.4 Completed data sets obtaied by sigle imputatio methods (The Provice 91 populatio. ID Elemet LABEL Respose data (Sample UE91 HOU85 Imputed data sets by model (1 Respode t mea RM ( Nearest eighbour NN (3 Ratio estimatio RA Full respose 18 Kuhmoie 30 Toivaa * * 331* 19* 36.57* * Jyväsylä Keuruu Saarijärvi Kogi Pihtipudas Uuraie Imputed values are flagged with * ad missig values with.. Samplig rate for respodet data is 6/ Samplig rate for Full respose ad completed data sets is 8/

36 Totaaliestimaattori variassi estimoiti Variassiestimaattori v ( t ht v ( t + v sam ht imp ht ( t Asetelmavariassi estimoiti: v sam ( t ht N 3 (1 (1 N s 8 3 ( r / ( r / missä ( r s ( y y /( 1 ( r 1 ( r ( r o lasettu saadusta aieistosta v sam ( t o sama aiille estimaattoreille (1-(3 36

37 Imputoitivariassi estimoiti Variassiestimaattori: v imp ( t ht ( r ( r 1 N (1 ( e ( r e 1 / ( r missä ( r e 1 e / ( r o jääöste Jääöset: e y y esiarvo (1 RM: e y y( r. ( NN: e y y ( l missä y (l o doori y-arvo (3 RA: e y ( y( r / z( r z 37

38 Imputoitivariassi estimaatit: (1 RM (respodet mea: v ( t imp rm 6 3 ( / 6 ( NN (earest eighbour: 6 8 imp t 3 ( / 6 v ( (3 RA (ratio estimatio: ( / 6 v imp ( t ra HUOM: Piei imputoitivariassi estimaatti o RAmeetelmälle 38

39 (4 Moi-imputoiti MI Käytetää HD-meetelmää (Hot Dec Muodostetaa m 5 täydellistä dataa Imputoidut datat: Table 4.5 Variassi estimoiti v ( t v ( t + v mi sam mi imp ( t mi Lasetaa totaaliestimaattie esiarvo t mi m t / m (1/ 5( j 1 j

40 Table 4.5 Imputed data sets obtaied by multiple imputatio (m5. Hot dec imputatio is used for each completed data set (The Provice 91 populatio. ID Elemet Respo se data (sample Kuhm. Toivaa Repeated samples icludig imputed values ad flagged as * UE * 14* 760* 71* 71* 19* 413* 760* 760* 19* Full respos e Jyväsylä Keuruu Saarijärvi Kogi Pihtipudas Uuraie Mea , STD (y

41 41 Imputoitie sisäie variassiompoetti: 6 / ( (1 5 1 ( m j j srswor sam t v m v Imputoitie välie variassiompoetti: ( 1 (1 + m j mi j imp m t t m v Estimaattori mi t variassiestimaatti: ( + + imp sam mi v v t v

42 Table 4.6 Estimates of a total ad its stadard error uder various imputatio methods (the Provice 91 populatio. Model type Estimator Estimate for a total v v sam v imp (0 No adj. 6 ( r t ht ( r (1 RM t ma ( NN t (3 RA t ra (4 MI m 5 t mi (5 Full 8 t ht

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI

LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI Otatameetelmät (78143 Sysy 2010 TEEMA 2 risto.lehtoe@helsii.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 1 Lisätiedo äyttö estimoitiasetelmassa Malliavusteiset strategiat

Lisätiedot

, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta.

, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta. Y - Otatameetelmät / Sysy 009 (Risto Letoe) TEKIE YTEEVETO I Otata-asetelmat ja estimoitiasetelmat Perusjouo ja muuttujat Äärellie perusjouo U = {,...,,..., } Tulosmuuttuja y tutemattomat arvot Y,,Y,,Y

Lisätiedot

Otantamenetelmät. Syksy

Otantamenetelmät. Syksy Otantamenetelmät (78143) Sysy 2009 TEEMA 2 risto.lehtonen@helsini.fi Teema 2 LISÄTIEDON KÄYTTÖ ESTIMOINTIASETELMASSA: MALLIAVUSTEINEN ESTIMOINTI 2 Lisätiedon äyttö estimointiasetelmassa i t Malliavusteiset

Lisätiedot

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen

Otantamenetelmät (78143) Syksy 2008 OSA 2: Malliavusteinen estimointi. Risto Lehtonen Otantamenetelmät (78143) Sysy 2008 OSA 2: Malliavusteinen estimointi Risto Lehtonen risto.lehtonen@helsini.fi Lisätiedon äyttö estimointiasetelmassa Tavoitteena estimoinnin tehostaminen poimitulle otoselle

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 3 GREG-estimaattori Yleinen tilanne (unequal probability sampling) Komposiittiestimaattorit (Composite

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen OSA 4 Laajennettu GREG-estimaattoreien perhe Avustavat mallit Yleistetty lineaarinen malli Lineaarinen

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen

Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Sosiaalitieteien laitos 1 Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen 15.3.2011 OSA 1 Estimaattorin tyyppi Mallin valinta Asetelmaperusteinen estimointi Horvitz-Thompson (HT)

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä

Lisätiedot

Otanta-aineistojen analyysi

Otanta-aineistojen analyysi Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 2 Estimaattoreiden varianssien estimointi Survey-analyysin lähestymistavat Kuvaileva survey Descriptive survey

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2

(78143) Syksy 2009 TEEMAT 3 & 4. Risto Lehtonen Teema 3 ERITYISKYSYMYKSIÄ. Risto Lehtonen 2 Otantamenetelmät (78143) Syksy 2009 TEEMAT 3 & 4 Risto Lehtonen risto.lehtonen@helsinki.fi Teema 3 ERITYISKYSYMYKSIÄ Risto Lehtonen 2 1 Otannan erityiskysymyksiä Ryväsotanta Survey sampling reference guidelines

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Tehtävä 11 : 1. Tehtävä 11 : 2

Tehtävä 11 : 1. Tehtävä 11 : 2 Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0402 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg 1 Jouo-oppi ja logiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O alto-yliopisto 12. maalisuuta 2015 3 Kombiatoriia ym. Summa-,

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

Imputoi puuttuvat kohdat

Imputoi puuttuvat kohdat Imputoi puuttuvat kohdat Imputointi tarkoittaa tai määritellyn tiedon paikkaamista sellaisella korvikearvolla joka estimaatin laatua verrattuna siihen mikä saataisiin ilman eli jättämällä tuo tieto käsittelystä

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 4: Asetelmaperusteinen monimuuttuja-analyysi Risto Lehtonen risto.lehtonen@helsini.fi Analyysimenetelmiä ja työaluja Lineaariset mallit Regressioanalyysi

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0401 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg alto-yliopisto 30. syysuuta 2015 1 Jouo-oppi ja logiia Prediaattilogiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O 3 Kombiatoriia

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Pienalue-estimointi (78189) Kevät 2011. Risto Lehtonen Helsingin yliopisto

Pienalue-estimointi (78189) Kevät 2011. Risto Lehtonen Helsingin yliopisto Pienalue-estimointi (78189) Kevät 2011 Risto Lehtonen Helsingin yliopisto Pienalue-estimointi Kurssin kotisivu http://wiki.helsinki.fi/pages/viewpage.action?pagei=62430039 2 Hyöyllisiä taustatietoja Otantamenetelmät

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme?

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme? TKK (c) Ila Melli (004) Yleie lieaarie malli Johdatus tilastotieteesee Yleie lieaarie malli Usea selittää lieaarie regressiomalli Yleise lieaarise malli matriisisesitys Yleise lieaarise malli estimoiti

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Helsinki University of Technology Laboratory of Telecommunications Technology

Helsinki University of Technology Laboratory of Telecommunications Technology Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 9. Lueto: Kaava apasiteetti ja ODM prof. Timo

Lisätiedot

Puuttuvan tiedon käsittely analyyseissä. Eija Räikkönen, JY Jari Westerholm, NMI Asko Tolvanen, JY

Puuttuvan tiedon käsittely analyyseissä. Eija Räikkönen, JY Jari Westerholm, NMI Asko Tolvanen, JY Puuttuvan tiedon käsittely analyyseissä Eija Räikkönen, JY Jari Westerholm, NMI Asko Tolvanen, JY Esityksen rakenne Puuttuvan tiedon teoriaa Mitä puuttuva tieto on? Olennaiset käsitteet Tyypillisiä tapoja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Tilastolliset luottamusvälit

Tilastolliset luottamusvälit Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude

Lisätiedot

810 Tilastolliste meetelmie perusteet II (TILTP3), Kevät 00 http://wwwutafi/~strale/p3alkuhtml 600 500 Huom 1 Dokumeti lopussa o kirjallisuusluettelo, joka sisältäviä teoksia o käytetty tukea tämä luetorugo

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.

Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla. Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie

Lisätiedot

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli TKK (c) Ilkka Melli (4) Yhde selittää lieaarie regressiomalli Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,

Lisätiedot

Estimaattoreiden asetelmaperusteinen

Estimaattoreiden asetelmaperusteinen Otanta-aineistojen aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 2: Estimaattoreiden varianssin estimointi Risto Lehtonen risto.lehtonen@helsinki.fi Estimaattoreiden asetelmaperusteinen varianssien

Lisätiedot

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4 Estimointi Laajennettu Kalman-suodin AS-84.2161, Automaation signaalinäsittelymenetelmät Lasuharjoitus 4 Estimointi Systeemin tilaa estimoidaan, un prosessin tilamalli tunnetaan Tilamalli voi olla lineaarinen

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

pisteet Frekvenssi frekvenssi Yhteensä

pisteet Frekvenssi frekvenssi Yhteensä 806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-

Lisätiedot

3. Jakaumien parametrien estimointi

3. Jakaumien parametrien estimointi 53 / 99 3. Jakaumie parametrie estimoiti Edellisessä kappaleessa johdettii optimaalisia luokittelijoita, ku priorit ja posteriorit tuettii. Useimmissa tapauksissa äitä todeäköisyyksiä ei tueta, vaa algoritmie

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi- a useampisuutaie variassiaalsi Ila Melli 44 Variassiaalsi Ila Melli 44 Variassiaalsi Sisälls

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

KURSSIN TILASTOMATEMATIIKKA KAAVOJA

KURSSIN TILASTOMATEMATIIKKA KAAVOJA KURSSIN TILASTOMATEMATIIKKA KAAVOJA X = S = s = Otossuureita X i tai x = x i (otoskeskiarvo) (X i X) = (x i x) = Xi x i E(X) =µ, var(x) = σ X x tai, E(S )=σ (otosvariassi) Normaalijakautuee populaatio

Lisätiedot