A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät

Koko: px
Aloita esitys sivulta:

Download "A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät"

Transkriptio

1 ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden luokittelu Pulssi vs. kantoaaltomodulaatio Liittyy korkeataajuisen signaalin modulointiin Lineaarinen vs. epälineaarinen Liittyy kantataajuussignaaliin Analoginen vs. digitaalinen Liittyy tiedon esitysmuotoon 2 (25)

2 A! Pulssi- vs kantoaaltomodulaatio Kantoaaltomodulaatiossa matalataajuinen kantataajuussignaali moduloi korkeataajuista kantoaaltoa esim. amplitudi-modulaatio Pulssimodulaatiossa informaatio pakataan korkeataajuisen pulssin läsnäoloon/-olemattomuuteen tai pulssin muotoon (amplitudi tai ajoitus) esim. impulssiradio jotkut ISDN & Ethernet johtokoodit 3 (25) A! Lineaarinen vs.epälineaarinen modulaatio Lineaarinen: kantafunktionta kertova symboli riippuu vain lähetettävästä informaatiosta, ei edellisistä symboleista signaali on superpositio (summa) riippumattomien symbolien lähetteistä Epälineaarinen: lähetettävä symboli riippuu lähetettävästä informaatiosta, sekä edellisistä symboleista 4 (25)

3 A! Analoginen vs. digitaalinen modulaatio Esimerkki 2D signaaliavaruudessa Edellytetään, että aaltomuodon normi on yksi, s s2 2 =1 Analoginen: jatkuvat arvot, mielivaltaiset s 1,s 2 sallittu. Digitaalinen: diskreetit arvot, esim. vain arvot s j {±1/ 2} Tässä esimerkissä ympyrällä olevan :n analogisen aaltomuodon sijaan on vain 4 mahdollista digitaalista aaltomuotoa. 5 (25) A! Digitaaliset modulatiokonstellaatiot: Signaaliavaruuden symbolit a a [7.9] 6 (25)

4 A! Mitä modulaatio on? Modulaatiomenetelmän täydellinen määrittelly sisältää 1. Miten matalataajuinen signaali moduloi korkeataajuista signaalia 2. Tiedon kantafunktoista φ n (t) Kuinka signaalit käytävät (kantataajuus)kaistaa Valitut kantafunktiot määrittelevät signaaliavaruuden kannan. 3. Symbolikuvaus: kuinka informaatio kuvataan signaaliavaruuden koordinaateille s n Digitaalinen tiedonsiirto: äärellinen joukko aaltomuotoja äärellinen määrä M kompleksilukuja s m C signaaliavaruudessa M-arvoinen (M-ary) modulaatio Lineaarinen modulaatio: informaatiota kuvataan riippumattomasti kullekin s m Konstellaatio (eli aakkosto) C M = {s m } M m=1 Informaatiobitit kuvataan näille kompleksiluvuille: log 2 M bittiä määrittelee yhden M :stä konstellaatiopisteestä ja aaltomuodosta log 2 M bits symbol index m {1, 2,...,M} s m C M C 7 (25) A! Symbolikonstellaatio Signaaliavaruudessa informaatio kuvataan kompleksiluvuille s n jotka kertovat ortogonaalisia aaltomuotoja s n :n reaali- ja imaginaariosat I- & Q-haarat Kompleksisen kertoimen s n sallittujen arvojen joukkoa kutsutaan modulaatioaakkostoksi tai konstellaatioksi Voidaan piirtää 2D signaaliavaruudessa konstellaatiodiagrammaksi Konstellaatiosta riippuen moduloidaan pelkästään amplitudia pelkästään vaihetta amplitudia ja vaihetta yhdessä 8 (25)

5 A! Kompleksiarvoiset konstellaatiot 9 (25) A! Pulse Amplitude Modulation Informaatio kuvattu signaalin amplitudille (ja binääriselle vaiheelle). Pulse Amplitude Modulation (PAM) Signaalilla on vain In-phase -komponentti (I-haara) tehoton, jos kantoaaltosignaali, ja enemmän kuin yksi bitti 2-PAM: 1 bitti, 4-PAM: 2 bittiä, 8-PAM: 3 bittiä, 10 (25)

6 A! Phase-shift Keying Phase-shift Keying (PSK): moduloidaan vain vaihetta. PSK on I-Q modulaatio, käytetään kantoaallon I- ja Q-haaraa PSK-symboleilla on sekä reaali- että imaginaariosat PSK ei muuta amplitudia tehoton, jos enemmän kuin 2 bittiä miellyttävät spektrinkäyttöominaisuudet Binary PSK (BPSK): 1 bitti, Quadriphase PSK (QPSK): 2 bittiä, 8-PSK: 3 bittiä, 16-PSK: 4 bittiä BPSK = 2-PAM 11 (25) A! Kvadratuuriamplitudimodulaatio Moduloidaan sekä I- että Q-haaran amplitudia I-Q modulaatio moduloi reaalisen signaalin amplitudia sekä vaihetta tehokas modulaatio Quadrature Amplitude Modulation (QAM) 4-QAM: 2 bittä, 16-QAM: 4 bittiä, 64-QAM: 6 bittiä 4-QAM = QPSK Monet konstellaatiot mahdollisia, jotkut näitä parempia, mutta vaikeasti toteutettavissa. 12 (25)

7 A! PAM vs. PSK vs. QAM Verrataan modulaatioden suorituskykyä bittivirheen suhteen. Keskimääräinen lähetysteho annettu. Jos enemmän kuin yksi bitti per symboli: PSK ja QAM aina parempia kuin PAM Jos enemmän kuin kaksi bittiä per symboli: QAM aina parempi kuin PSK Syy: minimietäisyys kahden ulottuvuuden käyttäminen aina parempi kuin yhden. 13 (25) A! Konstellaatiot yhteenveto Olemme kuvanneet bittejä signaaliavaruuden konstellaatioille. Kompleksiarvoiset konstellaatiopisteet edustavat kompleksiarvoisia aaltomuotoja ekvivalentissa kantataajuusesityksessä. Digitaalista modulaatiota voidaan tehdä amplitudissa (PAM) vaiheessa (PSK) sekä amplitudissa että vaiheessa (QAM) Meillä saattaa olla vielä jotakin ymmärrettävää pulssinmuokkauksessa & yksittäisten symboleiden T :n mittaisten jaksojen jatkamisessa useamman symbolin lähetteiksi 14 (25)

8 A! Symbolijonolähetteet 15 (25) A! Äärellinen vs. ääretön ajanjakso Äärellinen ajanjakso T =[ T/2,T/2]. Kantafunktioiden joukkoja: Trigonometrinen kanta Eksponentiaalinen Fourier-kanta TDM/CDM kannat Valitaan N kantafunktiota kantataajuussignaalilla N kompleksiarvoista ulottuvuutta jaksossa T. Fourier-analyysin kannalta funktio ajassa T vastaa T -jaksollista funktiota. Mitkä ovat vastaavat rakenteet äärettömässä ajassa (, )? 16 (25)

9 A! Jatko alueelta T äärettömyyteen (, ) Otetaan signaali g T (t) äärellisessä ajassa T Jatketaan se reaaliakselin (, ) signaaliksi, joka häviää T :n ulkopuolella: Jatkettu signaali on s(t) =ft rect (t)s T (t) missä jaksollinen signaali s T kerrotaan kanttiaaltoikkunalla ft rect Tulkinta: T on symbolijakso. 17 (25) A! Kanttipulssi Kanttipulssin muotoinen ikkunafunktio: ft rect (t) = 1 2 T (sign (T 2 t) + sign ( T 2 + t)) = 1 (H (t + T 2) H (t T 2)) = T missä H(t) = { 1 if t 0 0 if t<0 { 0 if t >T/2 if t T/2 1 T on askelfunktio Diracin delta-funktion integraali. Kanttiaalto luo terävät symbolirajat Askelfunktioiden Fourier analyysi Äärettömän nopeat muutokset signaalissa levittävät taajuuden äärettömyyteen. 18 (25)

10 A! Symbolijonokanta Jaetaan IR jonoksi symbolijaksoja: IR = m= [mt T/2,mT + T/2) Otetaan jokaiselle symbolijaksolle ikkunafunktio ft rect (t mt ) täydellinen ortonormaalinen kanta {φ k (t)} k=1 Esimerkiksi trigonometrinen, tai CDM/FDM kanta Saadaan ortonormaali kanta {ϕ m,k (t)} m Z,k Z+ IR:n äärellisenergisille signaaleille. Kantafunktiot ovat ϕ m,k (t) =ft rect (t mt )φ k (t) jokainen indeksipari (m, k) antaa yhden kantafunktion, esim. k:s eskponentiaalien Fourier-aalto ikkunoituna aikaväliin [mt T/2,mT + T/2) Rajoittamalla k =1,...N antaa äärellisulotteisen signaaliavaruuden jokaisella symbolijaksolla T. 19 (25) A! Symbolijonokanta II Funktiot ϕ m,k (t) ovat triviaalisti ortonormaalisia: Tarkastellaan kahta funktiota ϕ m,k (t) and ϕ m,k (t) jos m m, sisätulo häviää jaksot, joissa funktiot nollasta poikkeavia, eivät mene päällekäin jos m = m, sisätulo häviää, jos k k on käytetty äärellisen jakson T kahta ortonormaalia funktiota. jos m = m ja k = k, sisätulo on yksi. Mielivaltainen äärellisenerginen IR:n funktio g(t) voidaan kehittää tässä kannassa koska g:llä on äärellinen energia, sen rajoittuma mihin tahansa symbolijaksoon [mt T/2,mT + T/2) on äärellisenerginen, ja voidaan esittää tuon jakson kannassa. 20 (25)

11 A! Esimerkki: kaksi jaksoa { 5(t 1) Kehitä funktio f(t) = 2 (t 1) 4 if 1 t 3 0 otherwise T =2mittaisten jaksojen kantafunktioissa Kaksi jaksoa: [ 1, 1) ja [1, 3), Fourier-kanta kummallakin jaksolla. 21 (25) A! Lineaarinen kantataajuuslähete Otetaan N kantafunktiota kussakin symbolijaksossa Tehdään symbolijonoista signaali N g(t) = s m,k ϕ m,k (t) = ft rect (t mt ) m Z m Z N s m,k φ k (t) k=1 k=1 Digitaalinen informaatio kuvataan M-arvoisiin symboleihiin s m,k C. Lähetettävät bitit ryhmitellään ensin N log 2 M bitiksi. Ryhmät lähetetään sarjassa, yksi ryhmä symbolijaksossa. Symbolijaksossa lähetetään N log 2 M bittiä rinnan N:llä aaltomuodolla kukin aaltomuoto moduloidaan lineaarisesti C-arvoisella symbolila, valitaan log 2 M:llä bitillä konstellaatiopiste. 22 (25)

12 A! Lähete stokastisena prosessina b Symbolijaksossa m lähetetään signaaliavaruusvektori s(m) C N diskreettiaikainen stokastinen prosessi {s(m)} Kantataajuusmodulaatio jatkuva-aikainen stokastinen prosessi g(t) Prosessi on stationaarinen ja ergodinen: Odotusarvo: E G,α {g(t + α)} = T 0 E G{g(t + α)}dα = vakio Autokorrelaatio: R g (τ) =E G,α {g(t+α)g (t+α+τ)} = lim T E Huom: g on näytefunktio prosessista. { 1 T T /2 T /2 Tehospektritiheys: autokorrelaation Fourier-muunnos S g (f) = R g (τ)e 2πjfτ dτ odotusarvo yli satunnaisuuden otettiin jo autokorrelaatiofunktiossa b [9.1, 9.2, 9.3] g(t )g (t + τ)dt } 23 (25) A! Lineaarisen modulaation autokorrelaatio c Satunnaisprosessi g(t) = N m Z k=1 s m,kϕ m,k (t) Lineaarisella modulaatiolla symbolit ovat riippumattomat, E { } s k,m s k,m = Es δ k,k δ m,m. Oletetaan, että symbolin odotusarvo häviää: E {s k,m } =0; Konstellaation massakeskipiste (MK) on siis origossa Suorituskyky riippuu konstellaatiopisteiden erotuksista, ei MK:sta Valitsemalla MK nollaksi minimoidaan energia, muuttamatta suorituskykyä Autokorrelaatiofunktio on (katso luennon lisämateriaali) R g (τ) = E S T N ϕ 0,k (t) ϕ 0,k(t + τ)dt. k=1 Summa yhden symboli-intervallin aaltomuotojen autokorrelaatiofunktioista Prosessin satunnaisuus oli signaliavaruuden symboleissa s m,k Odotusarvo autokorrelaatiossa otettiin näiden yli. c vrt. [Example 9.6; Example 9.7] 24 (25)

13 A! Lineaarisen modulaation tehospektritiheys Tehospektritiheys (PSD) saadaan suoraan: S g (f) = E s T G 0,k (f) 2 missä G 0,k (f) on funktion ϕ 0,k = f T (t)φ k (t) Fourier-muunnos Jos käytetään vain yhtä kantafunktiota symbolijaksossa (N =1), S g (f) = E s T F T(f) 2 missä F T (f) on ikkunafunktion f T (t) Fourier-muunnos Lineaarisella modulaatiolla symbolit ovat riippumattomat. PSD palautui aaltomuodon F-muunnoksen itseisarvon neliöksi PSD riipuu konstellaatiosta vain E S :n kautta! k 25 (25)

Signaaliavaruuden kantoja äärellisessä ajassa a

Signaaliavaruuden kantoja äärellisessä ajassa a ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Suodatus ja näytteistys, kertaus

Suodatus ja näytteistys, kertaus ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;

Lisätiedot

Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a. Kuvaa diskreetin ajan signaaliavaruussymbolit jatkuvaan aikaan

Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a. Kuvaa diskreetin ajan signaaliavaruussymbolit jatkuvaan aikaan ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 5: Kantataajuusvastaanotin AWGNkanavassa I: Suodatus ja näytteistys a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.1-10.6.3]

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Radioamatöörikurssi 2016

Radioamatöörikurssi 2016 Radioamatöörikurssi 2016 Modulaatiot Radioiden toiminta 8.11.2016 Tatu Peltola, OH2EAT 1 / 18 Modulaatiot Erilaisia tapoja lähettää tietoa radioaalloilla Esim. puhetta ei yleensä laiteta antenniin sellaisenaan

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET 1 VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET Millaiset aaltomuodot s 1 (t) ja s (t) valitaan erilaisten kantoaatomodulaatioiden toteuttamiseksi? SYMBOLIAALTOMUODOT

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi

Lisätiedot

SIGNAALITEORIAN JATKOKURSSI 2003

SIGNAALITEORIAN JATKOKURSSI 2003 SIGNAALITEORIAN JATKOKURSSI 2003 Harri Saarnisaari University of Oulu Telecommunication laboratory & Centre for Wireless Communications (CWC) Yhteystiedot Luennot Harri Saarnisaari puh. 553 2842 vastaanotto

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI

JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI 1 JATKUVAN AWGN-KANAVAN KAPASITEETTI SHANNON-HARTLEY -LAKI Miten tiedonsiirrossa tarvittavat perusresurssit (teho & kaista) riippuvat toisistaan? SHANNONIN 2. TEOREEMA = KANAVAKOODAUS 2 Shannonin 2. teoreema

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 1 Fourier-sarjat ja Fourier-integraalit Poissonin summakaava Whittaker-Shannonin interpolointikaava 2 Vaimennetunen distribuution

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 18 Kari Kärkkäinen Syksy 2015

MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 18 Kari Kärkkäinen Syksy 2015 1 MONITILAISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 2 M-tilaisilla yhdellä symbolilla siirtyy k = log 2 M bittiä. Symbolivirhetn. sasketaan ensin ja sitten kuvaussäännöstä riippuvalla muunnoskaavalla

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu S-38.1105 Tietoliikennetekniikan perusteet Jukka Manner Teknillinen korkeakoulu Luento 3 Signaalin siirtäminen Tiedonsiirron perusteita Jukka Manner Teknillinen korkeakoulu Luennon ohjelma Termejä, konsepteja

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

Digitaalinen tiedonsiirto ja siirtotiet

Digitaalinen tiedonsiirto ja siirtotiet A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

521357A TIETOLIIKENNETEKNIIKKA I

521357A TIETOLIIKENNETEKNIIKKA I 1 521357A TIETOLIIKENNETEKNIIKKA I KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA KARI KÄRKKÄINEN Tietoliikennetekniikan osasto, huone TS439 kk@ee.oulu.fi, puh: 029 448 2848, http://www.ee.oulu.fi/~kk/ https://noppa.oulu.fi/noppa/kurssi/521357a/etusivu

Lisätiedot

Laitteita - Yleismittari

Laitteita - Yleismittari Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Radioamatöörikurssi 2017

Radioamatöörikurssi 2017 Radioamatöörikurssi 2017 Polyteknikkojen Radiokerho Luento 4: Modulaatiot 9.11.2017 Otto Mangs, OH2EMQ, oh2emq@sral.fi 1 / 29 Illan aiheet 1.Signaaleista yleisesti 2.Analogiset modulaatiot 3.Digitaalinen

Lisätiedot

MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 22 1 (16)

MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 22 1 (16) MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM Tietoliikennetekniikka I 521357A Kari Kärkkäinen Osa 22 1 (16) Multipleksointimenetelmät Usein on tarve yhdistää eri lähteistä tulevia toisistaan riippumattomia

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

WIMAX-järjestelmien suorituskyvyn tutkiminen

WIMAX-järjestelmien suorituskyvyn tutkiminen Teknillinen korkeakoulu Elektroniikan, tietoliikenteen ja automaation tiedekunta Tietoliikenne- ja tietoverkkotekniikan laitos WIMAX-järjestelmien suorituskyvyn tutkiminen Mika Nupponen Diplomityöseminaari

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015 BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

T-61.246 DSP: GSM codec

T-61.246 DSP: GSM codec T-61.246 DSP: GSM codec Agenda Johdanto Puheenmuodostus Erilaiset codecit GSM codec Kristo Lehtonen GSM codec 1 Johdanto Analogisen puheen muuttaminen digitaaliseksi Tiedon tiivistäminen pienemmäksi Vähentää

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

Luku 4 - Kuvien taajuusanalyysi

Luku 4 - Kuvien taajuusanalyysi Luku 4 - Kuvien taajuusanalyysi Matti Eskelinen 8.2.2018 Kuvien taajuusanalyysi Tässä luvussa tutustumme taajuustasoon ja opimme analysoimaan kuvia ja muitakin signaaleja Fourier-muunnoksen avulla. Aiheina

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima. Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?

Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? 2 Tieto on koodattu aikaisempaa yleisemmin digitaaliseen muotoon,

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

12. Luento. Luento 12 Modulaatio. Oppenheim luku 8 soveltuvin osin. Koherentti ja epäkoherentti analoginen modulaatio Digitaalinen modulaatio

12. Luento. Luento 12 Modulaatio. Oppenheim luku 8 soveltuvin osin. Koherentti ja epäkoherentti analoginen modulaatio Digitaalinen modulaatio . Luento Luento Modulaatio Koherentti ja epäkoherentti analoginen modulaatio Digitaalinen modulaatio Oppenheim luku 8 soveltuvin osin Modulaatio Modulaatiossa siirretään moduloivan signaalin spektri kantoaallon

Lisätiedot

Kotitehtävät 1-6: Vastauksia

Kotitehtävät 1-6: Vastauksia /V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(

Lisätiedot

Laplace-muunnos: määritelmä

Laplace-muunnos: määritelmä Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM

MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM MULTIPLEKSOINTIMENETELMÄT FDM, TDM, CDM JA QM 1 (17) Multipleksointimenetelmät Usein on tarve yhdistää riippumattomista eri lähteistä tulevia signaaleja multipleksoinnin keinoin, jotta ne voidaan lähettää

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Sarjat ja integraalit Peter Hästö 1. huhtikuuta 2015 Matemaattisten tieteiden laitos Eteneminen pvm luku v 11 2.1, 2.2 v 12 2.3, 2.4 v 13 3.0, 3.1 v 14 3.2 v 15 4 v 16 5.1 v 17 5.2 v 18 6.1 v 19 6.2 Peter

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät, Systeemitekniikka Feb 2019

Lisätiedot

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin

Lisätiedot

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt 8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot

c) 22a 21b x + a 2 3a x 1 = a,

c) 22a 21b x + a 2 3a x 1 = a, Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana

Lisätiedot

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina.

Alla olevassa kuvassa on millisekunnin verran äänitaajuisen signaalin aaltomuotoa. Pystyakselilla on jännite voltteina. TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki 1 Kirjan lukuun 3 liittyvää lisäselitystä ja esimerkkejä Kirjan luvussa 3 (Signals Carried over the Network) luodaan katsaus siihen, minkälaisia

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot