Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?

Koko: px
Aloita esitys sivulta:

Download "Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?"

Transkriptio

1

2 Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? 2

3 Tieto on koodattu aikaisempaa yleisemmin digitaaliseen muotoon, jonka tietoyksikkö on bitti. Tiedon havainnollistamisella on sen käytön kannalta olennainen rooli, koska binääriluvut kertovat ihmiselle kovin vähän. Tiedon toisintaminen ja visualisointi on yksinkertaisissa tapauksissa suoraviivaista, kunhan on olemassa tarkoitukseen soveltuvat laitteet ja tiedon muuntamiseen tarvittavat menetelmät. Moniulotteisen tiedon kohdalla sen havainnollistaminen ei olekaan niin yksinkertaista. 3

4 Tietojenkäsittelyn perusteet II Tiedon visualisointia ja lineaarialgebraa 4

5 Tiedon visualisointia ja lineaarialgebraa 5

6 Tiedon visualisoinnista Tieto ja sen koodaus Tiedon havainnollistaminen Tiedon muunnoksia: "Yksinkertainen" tapaus: Lineaarialgebra geometriset muunnokset tietokonegrafiikka "Monimutkainen" tapaus: Ulottuvuuksien vähentäminen moniulotteisen tiedon havainnollistaminen 6

7 Pohjustusta: Laskentaa vai tietojenkäsittelyä? Eräs karkea näkemys laskennan ja tietojenkäsittelyn välisistä eroista: Ongelmanratkaisu Algoritminen Heuristinen Numeerinen tieto Teknismatemaattinen laskenta Simulointi, signaalinkäsittely Symbolinen tieto Kaupallishallinnollinen tietojenkäsittely Tekoäly, tietämystekniikka 7

8 Kertausta: Algoritmien syötetiedonlähteet Data vs. informaatio vs. tieto vs. tietämys Todellisen maailman signaalit: Analoginen vs. digitaalinen signaali Signaalien ulottuvuudet: 1 (esim. yksittäinen aikariippuva suure) 2 (esim. harmaasävykuva) 3 (esim. värikuva, spektrikuva) 4 (esim. värillinen video) n (esim. n-kanavainen aivosähkökäyrä) Synteettiset (keinotekoiset) signaalit: Todellisen maailman mallit, virtuaalimaailmat,... 8

9 Kertausta: Tiedon koodaus Tieto koodataan kokonais- ja liukulukuina jossakin lukujärjestelmässä (tyypillinen kantaluku 2 tai 10). Liukulukujen koodaustavat: Kiinteä (desimaali)pilkku: kokonais- ja desimaaliosien tarkkuus rajoitettu. Liukuluku: desimaalipilkku liikkuu tarpeen mukaan (vrt. 6, ). Merkkitiedon koodaamiseen jokaiselle merkille oma bittikuvio: ASCII tai ISO 8859: 7- tai 8-bittiä/merkki. Unicode transformation format (UTF): 8-, 16- tai 32-bittiä/merkki. ISO standardi Universal Character Set: (1), 2 tai 4 tavua/merkki. 9

10 Kertausta: Informaatio Informaatio ~ kohteen luonteesta kertova data, tuloksen todennäköisyys Shannonin tulkinta: kommunikaatio osapuolten välillä Tapahtuman A informaatiosisältö: 1 i ( A) = log b = log b P( A) P ( A) P(A) = tapahtuman A todennäköisyys b = logaritmifunktion kantaluku eli tietoyksikön merkistö i ( AB) = i ( A) + i ( B ) 10

11 Kertausta: Entropia Tapahtumasarjan informaatio Lyhyin keskimääräinen viestin pituus bitteinä, millä satunnainen tieto voidaan välittää: Shannonin entropia Kolikon heitto: 1 bittiä/heitto Aina samana toistuva tieto: 0 bittiä/merkki Keskimääräinen bittien määrä, joka tarvitaan yhden symbolin koodaamiseen Määrittää vähimmäiskapasiteetin kommunikaatiokanavalle luotettavaan binääriseen tiedonsiirtoon 11

12 Kertausta: Tiedon tiivistäminen Jokaiselle koodattavalle merkkijonon merkille (jostakin aakkostosta) oma koodisana: N log b K, missä N koodisanan pituus, L on koodattavan merkkijonon L pituus, b koodiaakkoston koko ja K koodattavan aakkoston koko. Tiivistämissuhde: kuinka paljon uudelleen koodaaminen hyödyttää. Kiinteäpituinen/muuttuvapituinen koodi 12

13 Kertausta: Tiivistämisen perusmenetelmät Häviötön tiivistäminen: Alkuperäisestä tiedosta ei katoa tai muutu mitään Tiivistämisessä tulee raja vastaan entropian mukaisesti Häviöllinen tiivistäminen: Alkuperäistä tietoa katoaa Huomattavasti parempi tiivistämissuhde 13

14 Yhteenveto tiedosta Tieto edustaa jotakin suuretta, ilmiötä tai asiaa todellisesta tai keinotekoisesta maailmasta. Tieto on koodattu yleisesti digitaaliseen muotoon, jonka tietoyksikkö on bitti. Digitaalisen tiedon toisintaminen (reproduktio) on yksinkertaisissa tapauksissa suoraviivaista: lineaarialgebra geometriset muunnokset tietokonegrafiikan algoritmit tiedon visualisointi 14

15 Tapaus 1: Lineaarialgebra ja tiedon havainnollistaminen Kaarna, A., 2008 Tiedon toisintamisen välineitä Geometrisen tiedon muunnoksia Geometrisen tiedon saamisesta ja esittämisestä: Valot ja varjot (shape from shading / fotometrinen stereo) Esim. tietokonepeleissä paljon käytetty (kolmiulotteista grafiikkaa) 15

16 Geometrisen tiedon muunnoksista 16

17 Geometrisen tiedon saamisesta: Fotometrinen stereo Ikonen L

18 Pinnanmuodot (topografia) fotometrisellä stereolla 18

19 Kolmiulotteinen kasvomallinnus Kasvomalli yhdestä valo-varjo-kuvasta Rakenteinen valo kolmiulotteiseen rekonstruktioon 19

20 Monimutkaisesta tiedosta Ihminen on kuitenkin tottunut havainnoimaan ja toimimaan "vain" neljässä ulottuvuudessa: Entä piste (2, 1, 4, 3,...) n-ulotteisessa (n 4) koordinaatistossa? Ihmiselle onkin vaikeaa käsitellä monimutkaista (esim. monikanavaista) tietoa, jossa on lukuisia ulottuvuuksia. 20

21 Monimutkaisesta tiedosta Nykytekniikka mahdollistaa hyvin monipuolisen tiedon mittaamisen ympäristöstä. Erilaiset tietoaineistot sisältävät runsaasti moniulotteista tietoa. Tieto onkin tällöin muunnettava sellaiseen muotoon, että ihminen pystyy hahmottamaan tiedon luonteen: Olennaisen tiedon rajaaminen Ulottuvuuksien vähentäminen 21

22 Taustaa: Neurolaskenta Neuroverkot mallintavat ihmisen aivojen rakennetta ja toimintaa: Skaala vain huomattavasti rajoitetumpi eli vähemmän hermosoluja ja niitä yhdistäviä synapseja Hermosoluilla matemaattinen malli, jota hyödynnetään laskennassa Neuroverkolla voi mallintaa mitä tahansa funktiota Ohjattua tai ohjaamatonta oppimista, jolla verkon toiminta kehittyy haluttuun suuntaan 22

23 Taustaa: Neuroni 23

24 Taustaa: Neuronin laskennallinen malli Perseptronin ulostulo 0 tai 1 kertoo kumpaan luokkaan syöte kuuluu (lineaarisesti erottuvien datajoukkojen luokittelu): 24

25 Taustaa: Perseptroni Mallintaa hermosolun toimintaa: y = f (u ) u = w1 x1 + w2 x2 θ 1, u > 0 f (u ) = 0, u 0 x1 w1 w2 x2 f(u) y Σ -1 θ missä xi on neuronin syöte, wi syötteen painoarvo, θ biaksen painoarvo, f(u) siirtofunktio ja y ulostulo 25

26 Taustaa: Monikerrosperseptroni 26

27 Taustaa: Monikerrosperseptroni Neuroneissa on lineaarinen tai epälineaarinen funktio (esim. sigmoidi), jonka avulla lähdön arvo lasketaan neuronin sisääntulojen painotetusta summasta. 27

28 Taustaa: Monikerrosverkon hyödyntäminen Monikerrosverkossa voi olla mielivaltainen määrä kerroksia (käyttäjän määriteltävä): Piilokerros/piilokerroksia (välitulokset) Ulostulokerros Mitä enemmän muuttujia mallinnettavassa ongelmassa on, sitä enemmän kerroksia sekä perseptroneita kerrosta kohti tarvitaan. Neuroverkko, jossa on riittävästi neuroneita, yksi sigmoidifunktiolla varustettu piilokerros ja lineaarinen ulostulokerros, voi oppia minkä tahansa funktion, jossa äärellinen määrä epäjatkuvuuskohtia. 28

29 Taustaa: Monikerrosverkon käyttötarkoituksia Luokittelu Stokastinen ongelmanratkaisu, optimointi Monimutkaisen ilmiön approksimointi, esim. prosessin säätö: Ei toimi kaikissa tapauksissa kovin hyvin miksi? Mikä rajoittaa suorituskykyä? 29

30 Itseorganisoituva kartta (Engl. Self-Organizing Map, SOM) Ohjaamatonta oppimista: Neuroverkosta haetaan painoarvoltaan lähimpänä syötettä oleva neuroni. Neuronien painot päivitetään oppimisalgoritmin mukaan: mi(t+1) = mi(t) + α (x(t) mi(t)), i Nc mi(t+1) = mi(t) muulloin missä mi on neuronin i painoarvo, t on aika, α on oppimisnopeusvakio (voi muuttua ajan mukana), x on syöte ja Nc on neuronin i naapurusto. 30

31 Yhteenveto Tieto edustaa joko todellista tai keinotekoista maailmaa. Tieto on koodattu yleisesti digitaaliseen muotoon, jonka tietoyksikkö on bitti. Digitaalisen tiedon reproduktio on yksinkertaisissa tapauksissa suoraviivaista: lineaarialgebra geometriset muunnokset tietokonegrafiikan algoritmit tiedon havainnollistaminen Monimutkaisen tiedon kohdalla sen havainnollistaminen vaatii usein ulottuvuuksien vähentämistä. 31

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

ALGORITMIT & OPPIMINEN

ALGORITMIT & OPPIMINEN ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

1. NEUROVERKKOMENETELMÄT

1. NEUROVERKKOMENETELMÄT 1. NEUROVERKKOMENETELMÄT Ihmisten ja eläinten loistava hahmontunnistuskyky perustuu lukuisiin yksinkertaisiin aivosoluihin ja niiden välisiin kytkentöihin. Mm. edellisen innoittamana on kehitelty laskennallisia

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2013-2014 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen. Antti Järvelin

Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen. Antti Järvelin Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen Antti Järvelin Tampereen yliopisto Tietojenkäsittelytieteiden laitos Pro gradu -tutkielma Kesäkuu 2003 ii iii Tampereen yliopisto

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

AV-muotojen migraatiotyöpaja - video. KDK-pitkäaikaissäilytys seminaari / Juha Lehtonen

AV-muotojen migraatiotyöpaja - video. KDK-pitkäaikaissäilytys seminaari / Juha Lehtonen AV-muotojen migraatiotyöpaja - video KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Elävän kuvan muodot Videoon vaikuttavia asioita Kuvamuotojen ominaisuudet Audiomuotojen ominaisuudet

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

DIGI PRINT. Aineistovaatimukset ja aineiston siirto

DIGI PRINT. Aineistovaatimukset ja aineiston siirto DIGI PRINT Aineistovaatimukset ja aineiston siirto Glass Jet - Digitaalipainotekniikka Tulostettavan kuvan maksimikoko 2400 x 4000 mm. 6 perusväriä ja hiekkapuhallusta jäljittelevä etch-väri. Väreistä

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Operatioanalyysi 2011, Harjoitus 3, viikko 39 Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the

Lisätiedot

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä

Lisätiedot

Lukutaitotutkimukset arviointiprosessina. Sari Sulkunen Koulutuksen tutkimuslaitos, JY sari.sulkunen@jyu.fi

Lukutaitotutkimukset arviointiprosessina. Sari Sulkunen Koulutuksen tutkimuslaitos, JY sari.sulkunen@jyu.fi Lukutaitotutkimukset arviointiprosessina Sari Sulkunen Koulutuksen tutkimuslaitos, JY sari.sulkunen@jyu.fi Kansainväliset arviointitutkimukset Arvioinnin kohteena yleensä aina (myös) lukutaito Kansallisista

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

esimerkkejä erilaisista lohkokoodeista

esimerkkejä erilaisista lohkokoodeista 6.2.1 Lohkokoodit tehdään bittiryhmälle bittiryhmään lisätään sovitun algoritmin mukaan ylimääräisiä bittejä [k informaatiobittiä => n koodibittiä, joista n-k lisäbittiä], käytetään yleensä merkintää (n,k)-koodi

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä

Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen

Lisätiedot

E. Oja ja H. Mannila Datasta Tietoon: Luku 2

E. Oja ja H. Mannila Datasta Tietoon: Luku 2 2. DATASTA TIETOON: MITÄ DATAA; MITÄ TIETOA? 2.1. Data-analyysin ongelma Tulevien vuosien valtava haaste on digitaalisessa muodossa talletetun datan kasvava määrä Arvioita: Yhdysvaltojen kongressin kirjasto

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Tiedon esitys tietokoneessa. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010

Tiedon esitys tietokoneessa. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010 Tiedon esitys tietokoneessa Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010 Luennon sisältö 1. Kurssin loppupuolen rakenne 2. Tiedon binääriluonne AD-muunnos 3.

Lisätiedot

1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa informaatiota, siten e

1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa informaatiota, siten e Optimointiopin semminaari Mat-2.142 Uskomusverkot Jari Mustonen 8.12.1999 1 Johdanto Uskomusverkko -jota kutsutaan myos Bayesilaiseksi verkoksi, vaikutus kaavioksi tai seuraamus verkko - on tapa esitaa

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 17/02/2005 Luento 4b: Signaalien datamuunnokset 1 Näytteenotto

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA

OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA Sisältö Ihmisen oppiminen ja ohjautuvuus Ihminen digitalisoituvassa elinympäristössä Oleellisen oppimiskyvykkyys, mikä meitä vie? Yhteistyötä yrityksissä

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) k 10 2 10 2 s 10 10 8 10 16 10 2 10 2 s 2 8 8 2 2 16 16 2 Digitaalitekniikan matematiikka Luku 10 Sivu 2 (14) Johdanto Tässä luvussa perustellaan, miksi

Lisätiedot

Seminaari: Hajautetut algoritmit syksy 2009

Seminaari: Hajautetut algoritmit syksy 2009 Seminaari: Hajautetut algoritmit syksy 2009 http://www.cs.helsinki.fi/u/josuomel/sem-2009s/ Jukka Suomela 10.9.2009 Seminaari: Hajautetut algoritmit syksy 2009 Seminaarin työmuodot 2 / 38 Aikataulu ja

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Sini Metsä-Kortelainen, VTT

Sini Metsä-Kortelainen, VTT Sini Metsä-Kortelainen, VTT } Digitaaliset varaosat: konsepti, jossa varaosat ja niihin liittyvä tieto siirretään ja säilytetään digitaalisesti. Varaosan valmistus tapahtuu 3D-tulostamalla tarpeen mukaan,

Lisätiedot

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO. Otto Lappi

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO. Otto Lappi Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO Otto Lappi [T]ieto-opin perustivat antiikin kreikkalaiset filosofit 400-luvulla ekr, informaatioteorian Bellin yhtiön puhelininsinöörit 1920-luvulla.

Lisätiedot

Korvausvastuun ennustejakauma bootstrap-menetelmän avulla

Korvausvastuun ennustejakauma bootstrap-menetelmän avulla Korvausvastuun ennustejakauma bootstrap-menetelmän avulla Sari Ropponen 13.5.2009 1 Agenda Korvausvastuu vahinkovakuutuksessa Korvausvastuun arviointi Ennustevirhe Ennustejakauma Bootstrap-/simulointimenetelmä

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia. Kuntotestauspäivät 19.3.2016 Sami Kalaja

Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia. Kuntotestauspäivät 19.3.2016 Sami Kalaja Vaihtelu virkistää taidon oppimisessa - Kisakallion taitokongressin antia Kuntotestauspäivät 19.3.2016 Sami Kalaja Non-lineaarinen pedagogiikka / Keith Davids Urheilija, tehtävä ja ympäristö ovat jatkuvassa

Lisätiedot

Riemannin pintojen visualisoinnista

Riemannin pintojen visualisoinnista Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on

Lisätiedot

Approksimatiivinen päättely

Approksimatiivinen päättely 218 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta

Lisätiedot

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat 1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden

Lisätiedot

Kuulohavainnon perusteet

Kuulohavainnon perusteet Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

4. Esittäminen ja visualisointi (renderöinti)

4. Esittäminen ja visualisointi (renderöinti) 4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)

Lisätiedot

Kohosen itseorganisoituva kartta virtualisoitujen laskentaresurssien eksploratiivisessa data-analyysissa. Jaakko Routamaa

Kohosen itseorganisoituva kartta virtualisoitujen laskentaresurssien eksploratiivisessa data-analyysissa. Jaakko Routamaa Kohosen itseorganisoituva kartta virtualisoitujen laskentaresurssien eksploratiivisessa data-analyysissa Jaakko Routamaa Tampereen yliopisto Informaatiotieteiden yksikkö Tietojenkäsittelyoppi Pro gradu

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

Tietojen syöttäminen ohjelmalle. Tietojen syöttäminen ohjelmalle Scanner-luokan avulla

Tietojen syöttäminen ohjelmalle. Tietojen syöttäminen ohjelmalle Scanner-luokan avulla Tietojen syöttäminen ohjelmalle Tähän mennessä on käsitelty Javan tulostuslauseet System.out.print ja System.out.println sekä ohjelman perusrakenneosat (muuttujat, vakiot, lauseet). Jotta päästään tekemään

Lisätiedot

Luento 6 Tiedon esitysmuodot. Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?)

Luento 6 Tiedon esitysmuodot. Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) 1 Tiedon tyypit (3) Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Luento 6 Tiedon esitysmuodot

Luento 6 Tiedon esitysmuodot Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) 1 Tiedon tyypit (3) Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

Digitaalinen audio & video I

Digitaalinen audio & video I Digitaalinen audio & video I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva + JPEG 1 Johdanto Multimediassa hyödynnetään todellista ääntä, kuvaa ja videota

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 PO pisteiden määräämismenetelmät Idea: tuotetaan erilaisia PO ratkaisuita, joista

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

LÄHTEENKOODAUS. Mikä on lähteenkoodauksen perusidea? A Tietoliikennetekniikka II Osa 20 Kari Kärkkäinen Syksy 2015

LÄHTEENKOODAUS. Mikä on lähteenkoodauksen perusidea? A Tietoliikennetekniikka II Osa 20 Kari Kärkkäinen Syksy 2015 1 LÄHTEENKOODAUS Mikä on lähteenkoodauksen perusidea? LÄHTEENKOODAUKSEN IDEA 2 Lähteen symbolien keskimääräinen informaatio (keskimääräinen epävarmuus) määritellään entropian H(X) avulla, ja se on symbolien

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot