Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?

Koko: px
Aloita esitys sivulta:

Download "Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?"

Transkriptio

1

2 Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? 2

3 Tieto on koodattu aikaisempaa yleisemmin digitaaliseen muotoon, jonka tietoyksikkö on bitti. Tiedon havainnollistamisella on sen käytön kannalta olennainen rooli, koska binääriluvut kertovat ihmiselle kovin vähän. Tiedon toisintaminen ja visualisointi on yksinkertaisissa tapauksissa suoraviivaista, kunhan on olemassa tarkoitukseen soveltuvat laitteet ja tiedon muuntamiseen tarvittavat menetelmät. Moniulotteisen tiedon kohdalla sen havainnollistaminen ei olekaan niin yksinkertaista. 3

4 Tietojenkäsittelyn perusteet II Tiedon visualisointia ja lineaarialgebraa 4

5 Tiedon visualisointia ja lineaarialgebraa 5

6 Tiedon visualisoinnista Tieto ja sen koodaus Tiedon havainnollistaminen Tiedon muunnoksia: "Yksinkertainen" tapaus: Lineaarialgebra geometriset muunnokset tietokonegrafiikka "Monimutkainen" tapaus: Ulottuvuuksien vähentäminen moniulotteisen tiedon havainnollistaminen 6

7 Pohjustusta: Laskentaa vai tietojenkäsittelyä? Eräs karkea näkemys laskennan ja tietojenkäsittelyn välisistä eroista: Ongelmanratkaisu Algoritminen Heuristinen Numeerinen tieto Teknismatemaattinen laskenta Simulointi, signaalinkäsittely Symbolinen tieto Kaupallishallinnollinen tietojenkäsittely Tekoäly, tietämystekniikka 7

8 Kertausta: Algoritmien syötetiedonlähteet Data vs. informaatio vs. tieto vs. tietämys Todellisen maailman signaalit: Analoginen vs. digitaalinen signaali Signaalien ulottuvuudet: 1 (esim. yksittäinen aikariippuva suure) 2 (esim. harmaasävykuva) 3 (esim. värikuva, spektrikuva) 4 (esim. värillinen video) n (esim. n-kanavainen aivosähkökäyrä) Synteettiset (keinotekoiset) signaalit: Todellisen maailman mallit, virtuaalimaailmat,... 8

9 Kertausta: Tiedon koodaus Tieto koodataan kokonais- ja liukulukuina jossakin lukujärjestelmässä (tyypillinen kantaluku 2 tai 10). Liukulukujen koodaustavat: Kiinteä (desimaali)pilkku: kokonais- ja desimaaliosien tarkkuus rajoitettu. Liukuluku: desimaalipilkku liikkuu tarpeen mukaan (vrt. 6, ). Merkkitiedon koodaamiseen jokaiselle merkille oma bittikuvio: ASCII tai ISO 8859: 7- tai 8-bittiä/merkki. Unicode transformation format (UTF): 8-, 16- tai 32-bittiä/merkki. ISO standardi Universal Character Set: (1), 2 tai 4 tavua/merkki. 9

10 Kertausta: Informaatio Informaatio ~ kohteen luonteesta kertova data, tuloksen todennäköisyys Shannonin tulkinta: kommunikaatio osapuolten välillä Tapahtuman A informaatiosisältö: 1 i ( A) = log b = log b P( A) P ( A) P(A) = tapahtuman A todennäköisyys b = logaritmifunktion kantaluku eli tietoyksikön merkistö i ( AB) = i ( A) + i ( B ) 10

11 Kertausta: Entropia Tapahtumasarjan informaatio Lyhyin keskimääräinen viestin pituus bitteinä, millä satunnainen tieto voidaan välittää: Shannonin entropia Kolikon heitto: 1 bittiä/heitto Aina samana toistuva tieto: 0 bittiä/merkki Keskimääräinen bittien määrä, joka tarvitaan yhden symbolin koodaamiseen Määrittää vähimmäiskapasiteetin kommunikaatiokanavalle luotettavaan binääriseen tiedonsiirtoon 11

12 Kertausta: Tiedon tiivistäminen Jokaiselle koodattavalle merkkijonon merkille (jostakin aakkostosta) oma koodisana: N log b K, missä N koodisanan pituus, L on koodattavan merkkijonon L pituus, b koodiaakkoston koko ja K koodattavan aakkoston koko. Tiivistämissuhde: kuinka paljon uudelleen koodaaminen hyödyttää. Kiinteäpituinen/muuttuvapituinen koodi 12

13 Kertausta: Tiivistämisen perusmenetelmät Häviötön tiivistäminen: Alkuperäisestä tiedosta ei katoa tai muutu mitään Tiivistämisessä tulee raja vastaan entropian mukaisesti Häviöllinen tiivistäminen: Alkuperäistä tietoa katoaa Huomattavasti parempi tiivistämissuhde 13

14 Yhteenveto tiedosta Tieto edustaa jotakin suuretta, ilmiötä tai asiaa todellisesta tai keinotekoisesta maailmasta. Tieto on koodattu yleisesti digitaaliseen muotoon, jonka tietoyksikkö on bitti. Digitaalisen tiedon toisintaminen (reproduktio) on yksinkertaisissa tapauksissa suoraviivaista: lineaarialgebra geometriset muunnokset tietokonegrafiikan algoritmit tiedon visualisointi 14

15 Tapaus 1: Lineaarialgebra ja tiedon havainnollistaminen Kaarna, A., 2008 Tiedon toisintamisen välineitä Geometrisen tiedon muunnoksia Geometrisen tiedon saamisesta ja esittämisestä: Valot ja varjot (shape from shading / fotometrinen stereo) Esim. tietokonepeleissä paljon käytetty (kolmiulotteista grafiikkaa) 15

16 Geometrisen tiedon muunnoksista 16

17 Geometrisen tiedon saamisesta: Fotometrinen stereo Ikonen L

18 Pinnanmuodot (topografia) fotometrisellä stereolla 18

19 Kolmiulotteinen kasvomallinnus Kasvomalli yhdestä valo-varjo-kuvasta Rakenteinen valo kolmiulotteiseen rekonstruktioon 19

20 Monimutkaisesta tiedosta Ihminen on kuitenkin tottunut havainnoimaan ja toimimaan "vain" neljässä ulottuvuudessa: Entä piste (2, 1, 4, 3,...) n-ulotteisessa (n 4) koordinaatistossa? Ihmiselle onkin vaikeaa käsitellä monimutkaista (esim. monikanavaista) tietoa, jossa on lukuisia ulottuvuuksia. 20

21 Monimutkaisesta tiedosta Nykytekniikka mahdollistaa hyvin monipuolisen tiedon mittaamisen ympäristöstä. Erilaiset tietoaineistot sisältävät runsaasti moniulotteista tietoa. Tieto onkin tällöin muunnettava sellaiseen muotoon, että ihminen pystyy hahmottamaan tiedon luonteen: Olennaisen tiedon rajaaminen Ulottuvuuksien vähentäminen 21

22 Taustaa: Neurolaskenta Neuroverkot mallintavat ihmisen aivojen rakennetta ja toimintaa: Skaala vain huomattavasti rajoitetumpi eli vähemmän hermosoluja ja niitä yhdistäviä synapseja Hermosoluilla matemaattinen malli, jota hyödynnetään laskennassa Neuroverkolla voi mallintaa mitä tahansa funktiota Ohjattua tai ohjaamatonta oppimista, jolla verkon toiminta kehittyy haluttuun suuntaan 22

23 Taustaa: Neuroni 23

24 Taustaa: Neuronin laskennallinen malli Perseptronin ulostulo 0 tai 1 kertoo kumpaan luokkaan syöte kuuluu (lineaarisesti erottuvien datajoukkojen luokittelu): 24

25 Taustaa: Perseptroni Mallintaa hermosolun toimintaa: y = f (u ) u = w1 x1 + w2 x2 θ 1, u > 0 f (u ) = 0, u 0 x1 w1 w2 x2 f(u) y Σ -1 θ missä xi on neuronin syöte, wi syötteen painoarvo, θ biaksen painoarvo, f(u) siirtofunktio ja y ulostulo 25

26 Taustaa: Monikerrosperseptroni 26

27 Taustaa: Monikerrosperseptroni Neuroneissa on lineaarinen tai epälineaarinen funktio (esim. sigmoidi), jonka avulla lähdön arvo lasketaan neuronin sisääntulojen painotetusta summasta. 27

28 Taustaa: Monikerrosverkon hyödyntäminen Monikerrosverkossa voi olla mielivaltainen määrä kerroksia (käyttäjän määriteltävä): Piilokerros/piilokerroksia (välitulokset) Ulostulokerros Mitä enemmän muuttujia mallinnettavassa ongelmassa on, sitä enemmän kerroksia sekä perseptroneita kerrosta kohti tarvitaan. Neuroverkko, jossa on riittävästi neuroneita, yksi sigmoidifunktiolla varustettu piilokerros ja lineaarinen ulostulokerros, voi oppia minkä tahansa funktion, jossa äärellinen määrä epäjatkuvuuskohtia. 28

29 Taustaa: Monikerrosverkon käyttötarkoituksia Luokittelu Stokastinen ongelmanratkaisu, optimointi Monimutkaisen ilmiön approksimointi, esim. prosessin säätö: Ei toimi kaikissa tapauksissa kovin hyvin miksi? Mikä rajoittaa suorituskykyä? 29

30 Itseorganisoituva kartta (Engl. Self-Organizing Map, SOM) Ohjaamatonta oppimista: Neuroverkosta haetaan painoarvoltaan lähimpänä syötettä oleva neuroni. Neuronien painot päivitetään oppimisalgoritmin mukaan: mi(t+1) = mi(t) + α (x(t) mi(t)), i Nc mi(t+1) = mi(t) muulloin missä mi on neuronin i painoarvo, t on aika, α on oppimisnopeusvakio (voi muuttua ajan mukana), x on syöte ja Nc on neuronin i naapurusto. 30

31 Yhteenveto Tieto edustaa joko todellista tai keinotekoista maailmaa. Tieto on koodattu yleisesti digitaaliseen muotoon, jonka tietoyksikkö on bitti. Digitaalisen tiedon reproduktio on yksinkertaisissa tapauksissa suoraviivaista: lineaarialgebra geometriset muunnokset tietokonegrafiikan algoritmit tiedon havainnollistaminen Monimutkaisen tiedon kohdalla sen havainnollistaminen vaatii usein ulottuvuuksien vähentämistä. 31

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Kuvan pakkaus JPEG (Joint Photographic Experts Group)

Kuvan pakkaus JPEG (Joint Photographic Experts Group) Kuvan pakkaus JPEG (Joint Photographic Experts Group) Arne Broman Mikko Toivonen Syksy 2003 Historia 1840 1895 1920-luku 1930-luku Fotografinen filmi Louis J. M. Daguerre, Ranska Ensimmäinen julkinen elokuva

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen

Lisätiedot

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Luento 6 (verkkoluento 6) Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Ohjelman esitysmuoto Rakenteellinen tieto 1 Tiedon tyypit Kommunikointi

Lisätiedot

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

1. NEUROVERKKOMENETELMÄT

1. NEUROVERKKOMENETELMÄT 1. NEUROVERKKOMENETELMÄT Ihmisten ja eläinten loistava hahmontunnistuskyky perustuu lukuisiin yksinkertaisiin aivosoluihin ja niiden välisiin kytkentöihin. Mm. edellisen innoittamana on kehitelty laskennallisia

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät

A! Modulaatioiden luokittelu. Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet. ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 4: Digitaaliset modulaatiokonstellaatiot, symbolijonolähetteet Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos A! Modulaatioiden

Lisätiedot

Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen. Antti Järvelin

Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen. Antti Järvelin Neurolaskentamenetelmien soveltamisesta puheen tuoton häiriöiden mallintamiseen Antti Järvelin Tampereen yliopisto Tietojenkäsittelytieteiden laitos Pro gradu -tutkielma Kesäkuu 2003 ii iii Tampereen yliopisto

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 28 Kari Kärkkäinen Syksy 2015

INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 28 Kari Kärkkäinen Syksy 2015 1 INFORMAATIOTEORIA & KOODAUS TÄRKEIMPIEN ASIOIDEN KERTAUS TEENVETO 2 Informaatioteoria tarkastelee tiedonsiirtoa yleisemmällä, hieman abstraktilla tasolla ei enää tarkastella signaaleja aika- tai taajuusalueissa.

Lisätiedot

ALGORITMIT & OPPIMINEN

ALGORITMIT & OPPIMINEN ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi

Lisätiedot

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi Palautteita Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi 504 Mitä range() tekee? range on funktio, joka palauttaa listan esim. a = range(5,10) Palauttaa listan [5,6,7,8,9] Siis nämä kolme

Lisätiedot

ELEC-C5070 Elektroniikkapaja (5 op)

ELEC-C5070 Elektroniikkapaja (5 op) (5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea

Lisätiedot

1. NEUROVERKKOMENETELMÄT

1. NEUROVERKKOMENETELMÄT 1. NEUROVERKKOMENETELMÄT Ihmisten ja eläinten loistava hahmontunnistuskyky perustuu lukuisiin yksinkertaisiin aivosoluihin ja niiden välisiin kytkentöihin. Mm. edellisen innoittamana on kehitelty laskennallisia

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2012-2013 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 1 Ti 6.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 1 Ti 6.9.2011 p. 1/28 p. 1/28 Numeriikan termejä Simulointi: Reaalimaailman ilmiöiden jäljitteleminen (yleensä)

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

Shannonin ensimmäinen lause

Shannonin ensimmäinen lause Shannonin ensimmäinen lause Pro gradu Maija-Liisa Metso Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2014 Sisältö Tiivistelmä 2 1 Johdanto informaatioteoriaan 2 1.1 Informaatioteorian historiaa...................

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2013-2014 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

Tietoliikenteen fyysinen kerros. Tietoliikenne kohtaa todellisuuden Kirja sivut 43-93

Tietoliikenteen fyysinen kerros. Tietoliikenne kohtaa todellisuuden Kirja sivut 43-93 Tietoliikenteen fyysinen kerros Tietoliikenne kohtaa todellisuuden Kirja sivut 43-93 Data ja informaatio Data: koneiden tai ihmisten käsiteltävissä oleva tiedon esitysmuoto Informaatio: datan merkityssisältö

Lisätiedot

Kiinnostuspohjainen topologian hallinta järjestämättömissä vertaisverkoissa

Kiinnostuspohjainen topologian hallinta järjestämättömissä vertaisverkoissa Kiinnostuspohjainen topologian hallinta järjestämättömissä vertaisverkoissa Lektio 20.12.2012, Annemari Soranto Tietotekniikan laitos annemari.k.soranto@jyu.fi 1 Agenda Vertaisverkon määritelmä Haku vertaisverkossa

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

Signaalien datamuunnokset. Näytteenotto ja pito -piirit

Signaalien datamuunnokset. Näytteenotto ja pito -piirit Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 26/02/2008 Signaalien datamuunnokset 1 Näytteenotto ja

Lisätiedot

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan?

Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? 2012-2013 Lasse Lensu 2 Ihmisen, eläinten ja kasvien hyvinvoinnin kannalta nykyaikaiset mittaus-,

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

Tiedonsiirron perusteet ja fyysinen kerros. Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93

Tiedonsiirron perusteet ja fyysinen kerros. Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93 Tiedonsiirron perusteet ja fyysinen kerros Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93 Data ja informaatio Data: koneiden tai ihmisten käsiteltävissä oleva tiedon

Lisätiedot

Poikkeavuuksien havainnointi (palvelinlokeista)

Poikkeavuuksien havainnointi (palvelinlokeista) Poikkeavuuksien havainnointi (palvelinlokeista) TIES326 Tietoturva 2.11.2011 Antti Juvonen Sisältö IDS-järjestelmistä Datan kerääminen ja esiprosessointi Analysointi Esimerkki Lokidatan rakenne Esikäsittely,

Lisätiedot

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio T-106.1041 Tietotekniikan peruskurssi: Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio Luennon aiheita (1) mitä on tietokonegrafiikka? tietokone piirtää kuvia mikä on digitaalinen

Lisätiedot

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset

Digitaalinen tiedonsiirto ja siirtotiet. OSI-kerrokset A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät, Luento 1 Digitaalinen tiedonsiirto ja siirtotiet Olav Tirkkonen [Luku 1: Introduction, kokonaisuudessaan] A! OSI-kerrokset Tiedonsiirtojärjestelmiä

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

KOHTI TIETOISIA ROBOTTEJA

KOHTI TIETOISIA ROBOTTEJA SESKOn kevätseminaari 2017 KOHTI TIETOISIA ROBOTTEJA Dr. Pentti O A Haikonen Adjunct Professor Department of Philosophy University of Illinois at Springfield pentti.haikonen@pp.inet.fi ESITYKSEN PÄÄAIHEET

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO. Otto Lappi

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO. Otto Lappi Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 1: INFORMAATIO Otto Lappi [T]ieto-opin perustivat antiikin kreikkalaiset filosofit 400-luvulla ekr, informaatioteorian Bellin yhtiön puhelininsinöörit 1920-luvulla.

Lisätiedot

R intensiivisesti. Erkki Räsänen Ecitec Oy

R intensiivisesti. Erkki Räsänen Ecitec Oy R intensiivisesti Erkki Räsänen Ecitec Oy Päivän tavoitteet Yleinen perehdytys R:ään; miten sitä käytetään ja mitä sillä voi tehdä Ymmärrämme yleisimpiä analyysimenetelmiä ja osaamme tulkita tuloksia Madallamme

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

Signaalien generointi

Signaalien generointi Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND

SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND 98 SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND WORKING PAPERS ISSN 0781-4410 SUOMEN AKTUAARIYHDISTYS The Actuarial Society of Finland 98 Tähtinen, Sami Neuroverkkolaskenta ja sen soveltaminen

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR Risto Vehmas, Juha Jylhä, Minna Väilä ja prof. Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Myönnetty rahoitus: 50 000 euroa Esityksen

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 Luento 6: Tiedon esittäminen tietokoneessa, osa 1 Tekijät: Antti Virtanen, Timo Lehtonen, Matti Kujala, Kirsti Ala-Mutka, Petri M. Gerdt et al. Luennon

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

Matias Sumanen Mittaussignaalin häviötön pakkaaminen. Kandidaatintyö

Matias Sumanen Mittaussignaalin häviötön pakkaaminen. Kandidaatintyö Matias Sumanen Mittaussignaalin häviötön pakkaaminen Kandidaatintyö Tarkastaja: Yliopistonlehtori Heikki Huttunen Jätetty tarkastettavaksi: 17.5.2015 2 TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn

Lisätiedot

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL

Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän

Lisätiedot

ModerniOptiikka. InFotonics Center Joensuu

ModerniOptiikka. InFotonics Center Joensuu ModerniOptiikka InFotonics Center Joensuu Joensuun Tiedepuistossa sijaitseva InFotonics Center on fotoniikan ja informaatioteknologian yhdistävä kansainvälisen tason tutkimus- ja yrityspalvelukeskus. Osaamisen

Lisätiedot

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA

MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA MALLIT VESIJÄRJESTELMIEN TUTKIMUKSESSA Hannu Poutiainen, FT PUHDAS VESI JA YMPÄRISTÖ TUTKIMUSAVAUKSIA MAMKISSA Mikpoli 8.12.2016 Mitä mallit ovat? Malli on arvioitu kuvaus todellisuudesta joka on rakennettu

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

Tiedon esitys tietokoneessa. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010

Tiedon esitys tietokoneessa. Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010 Tiedon esitys tietokoneessa Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2010 Luennon sisältö 1. Kurssin loppupuolen rakenne 2. Tiedon binääriluonne AD-muunnos 3.

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM

Puheenkoodaus. Olivatpa kerran iloiset serkukset. PCM, DPCM ja ADPCM Puheenkoodaus Olivatpa kerran iloiset serkukset PCM, DPCM ja ADPCM PCM eli pulssikoodimodulaatio Koodaa jokaisen signaalinäytteen binääriseksi (eli vain ykkösiä ja nollia sisältäväksi) luvuksi kvantisointitasolle,

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

esimerkkejä erilaisista lohkokoodeista

esimerkkejä erilaisista lohkokoodeista 6.2.1 Lohkokoodit tehdään bittiryhmälle bittiryhmään lisätään sovitun algoritmin mukaan ylimääräisiä bittejä [k informaatiobittiä => n koodibittiä, joista n-k lisäbittiä], käytetään yleensä merkintää (n,k)-koodi

Lisätiedot