Kohinan ominaisuuksia
|
|
- Saara Mäkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kohia omiaisuuksia Kohiamekaismit Termie kohia Raekohia 1/f kohia (Kvatisoitikohia) Kohia käsittely Kohialähteide yhteisvaikutus Kohiakaistaleveys Sigaali-kohia suhde Kohialuku Kohialämpötila 1 Kohia omiaisuuksia Kohia o täysi satuaie sigaali - Eri taajuuskompoeteilla o satuaie taajuus ja vaihe - Hetkellistä amplitudia ei voida eustaa 1 = T T Kohia aikakeskiarvo o olla: ( t) lim ( t) dt = 0 Kohia variassi ei ole olla, jote kohialla o teho: δ = ( t) = 1 lim T T T 0 ( t) Variassi eliöjuuri (hajota) o kohia tehollisarvo (rms-arvo) dt T 0
2 Kohia omiaisuuksia Kohia spektrie tehotiheys S(f) kuvaa kohiateho jakautumista taajuudessa (yksikkö [V /Hz] tai [A /Hz]) S( f ) = e f Tehotiheys δ ( f ) = 0 S( f ) df Tehollisarvo Valkoie kohia tasaie tehospektri 3 Kohiamekaismit Päätyypit Termie kohia (valkoista kohiaa) Raekohia (valkoista kohiaa) 1/f -kohia 4
3 Termie kohia Termie kohia o lämpötila aiheuttamaa varauksekuljettajie satuaisliikettä johteessa Kutsutaa keksijöidesä mukaa myös Johsoi tai Nyquisti kohiaksi Sytyy resistiivisissä kompoeteissa, erityisesti vastuksissa Myös kapasitassie resistiiviset ja dielektriset häviöt, sekä iduktassie resistiiviset ja pyörrevirtoje aiheuttamat häviöt aiheuttavat pietä termistä kohiaa Termie kohia määrää resistiivise kompoeti pieimmä kohiataso. 5 Termie kohia... Kohiajäittee spektrie tehotiheys S e ( f ) = 4kTR [V /Hz] Kohiajäittee tehollisarvo (rms) e = 4kTRB [V] k = Boltzmai vakio (1.38 x 10-3 J/K) T = absoluuttie lämpötila (K) B = kohiakaista leveys (Hz) R = resistassi (Ω) Suuruusluokka: 1 kω, 1 Hz -> 4V rms 1 kω, 10 khz -> 0.4 µv rms 6
4 Termise kohia malli Kytkettyje resistassie kohia o verraollie muodostuva ekvivalettivastukse arvoo 7 Termise kohia miimoiti e = 4kTRB B, - taajuuskaista (mittauskaista) pieetämie T, - jäähdyttämie R, - yleisesti häviöide pieetämie, impedassisovitukset - Resistasseja ei yleesä voi pieetää, koska sigaaliki pieeee. Lisäksi alkaa kulua tehoa - Käytetää resistassie sijasta kapasitiivisia ja/tai iduktiivisia kompoetteja, jos mahdollista - Sigaalie siirto piei-impedassisea (virtaviesti) 8
5 Raekohia (shot oise) Diodeissa, trasistoreissa, ja elektroiputkissa esiityy virtakohiamekaismi, jota kutsutaa raekohiaksi. Raekohia liittyy virrakulkuu potetiaalivalli yli. Virra kulku ei ole jatkuvaluoteista, vaa tapahtuu yksittäiste virrakuljettajie (elektroit ja aukot) summasta. Tällaie potetiaalivalli o esim. kaikkie puolijohdekompoettie p-rajapialla. 9 Raekohia (shot oise) Raekohia tehotiheys: S ( f ) = qi i DC [A /Hz] Raekohiavirra tehollisarvo (rms): I = qi B [A] s DC q = elektroi varaus ( C) I DC = DC-virta (A) B = kohiakaista leveys (Hz) 10
6 Raekohia miimoiti I = qib Virra miimoiti, kuha se ei pieeä sigaalia Taajuuskaista pieetämie Vältetää kompoetteja jotka tuottavat raekohiaa: Diodit Bipolaaritrasistorit, iide sijasta FET-trasistoreita 11 Valkoie kohia aikatasossa 1
7 Valkoie kohia taajuustasossa 13 1/f - kohia (flicker oise, cotact oise, low-frequecy oise) 1/f - kohia tehospektri ei ole tasaie, vaa kohia taso kasvaa taajuude pieetyessä. Tehotiheys oudattaa muotoa S(f) = K/f α, α = /f - kohia ei varsiaisesti ole yksittäie kohiamekaismi, vaa sisältää useita eri sytymekaismeja. Ilmeee esim. Operaatiovahvistite bias-jäitteide ryömimiseä 14
8 1/f - kohia (flicker oise, cotact oise, low-frequecy oise) Esitettyjä sytymekaismeja: Geeraatio-rekombiaatio mekaismi puolijohteissa Virra kulku epähomogeeisessa johteessa (massavastukset), kohia tehotiheys verraollie virtaa 1/f - kohialle (α = 1) o omiaista, että kohiateho o sama jokaista taajuusdekadia kohti: esim Hz tai Hz. 15 1/f - kohia aikatasossa 16
9 1/f - kohia taajuustasossa 17 1/f - kohia miimoiti Keskiarvoistus ei juurikaa auta. Viimeisi lukema o paras Siirretää mittaus suuremmille taajuuksille esim. moduloimalla Kompoettie valita: Metallikalvovastuksilla pieempi 1/f kohiakui massa/hiilivastuksilla JFETeillä pieempi kui MOSFETeillä Chopper-stabiloidut operaatiovahvistimet Hyvät liitoskotaktit 18
10 Kohialähteide yhteisvaikutus Kohialähteide yhteisvaikutus saadaa summaamalla eliöllisesti. Kohiajäite- ja kohiavirtalähteet, joide geeraatioprosessit ovat itseäisiä, eivät korreloi keskeää. Korreloimattomille kohialähteille: = ( e e e, tot =,1 + e Mikäli kohialähteillä o korrelaatiota (harviaista): e tot + e ) = e, + e,,1,,1,,1, γ= korrelaatiokerroi, γe e 19 Kohiakaistaleveys B = A A( f ) df A(f) = jäitevahvistus A 0 = maksimivahvistus 0
11 Sigaali-kohia - suhde (SNR tai S/N) Sigaali-kohia suhde = kohiattoma sigaali teho P s ja kohiateho P suhde S SNR = = N Ps P Voidaa esittää myös tehollisarvoje suhteea Desibeleiä: Ps Vs SNR = 10 log10( ) = 0 log10( ) P V 1 Kohialuku Kohialuku F kuvaa kuika paljo jäjestelmä heiketää sigaalikohia suhdetta. F = SNR SNR i out = P P s, i, i P P, out s, out Käytäössä F>1 Desibeleiä : NF = 10 log10( F)
12 (Kohialämpötila) Kohialämpötila (T ) kuvaa vahvistime aiheuttamaa lisäkohiaa lähdekohiaa (samoi kui kohialuku). Ilmaisee vahvistime kohia lähderesistassi (R S ) lisäkohiaa. Kohialämpötila: T =T 0 (F-1) 3 Kertaus Termistä kohiaa sytyy kaikissa häviöllisissä kompoeteissa. e = 4kTRB [V] Raekohiaa sytyy ku virtaa kuljettavat yksittäiset varauksekuljettajat mm. p-liitokssa. I = qib [A] Korreloimattomie kohialähteide yhteisvaikutus: e e, tot =,1 + e, 4
S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue
S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet
LisätiedotPetri Kärhä 04/02/04. Luento 2: Kohina mittauksissa
Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila
LisätiedotKohinan ominaisuuksia
Kohia mittauksissa Kohia omiaisuuksia Kohiamkaismit Trmi kohia Rakohia 1/f kohia (Kvatisoitikohia) Kohia käsittly Kohialähtid yhtisvaikutus Kohiakaistalvys Sigaali-kohia suhd Kohialuku Kohialämpötila 1
LisätiedotS Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov
TKK / Mittaustekniikan laboratorio HUT / Metrology Research Institute S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov 7.2.2001 KL kohina.ppt 1 Elektroninen mittaussysteemi MITATTAVA
LisätiedotOngelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
Lisätiedot4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
Lisätiedot1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina
1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.
LisätiedotKOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )
KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen
LisätiedotPuolijohteet II. luku 2 ja 4
Puolijohteet II luku 2 ja 4 Satuaisliike Varauksekuljettaja siroaa kitee epäideaalisuuksista. Termie ettoopeus o olla. Törmäyste välie aika m ~ 0,1 ps 2 Keskimääräie eergia o E 3kT 2 m v 2 mistä saadaa
LisätiedotOngelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
Lisätiedottilavuudessa dr dk hetkellä t olevien elektronien
Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys
LisätiedotN:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo.
N:o 94 641 Liite 1. Staattise mageettiketä (0 Hz) vuotiheyde suositusarvo. Altistumie Koko keho (jatkuva) Mageettivuo tiheys 40 mt Tauluko selityksiä Suositusarvoa pieemmätki mageettivuo tiheydet saattavat
Lisätiedot1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
Lisätiedota) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/)
a) C C p e n sn V out p d jn sh C j i n V out Käytetyt symbolit & vakiot: P = valoteho [W], λ = valodiodin ilmaisuvaste eli responsiviteetti [A/W] d = pimeävirta [A] B = kohinakaistanleveys [Hz] T = lämpötila
LisätiedotSähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt
Mittaustekniikan perusteet / luento 9 Sähkömagneettiset häiriöt Signaali-kohinasuhteen parantaminen Sähkömagneettiset häiriöt Häiriö on ei-toivottu sähköinen signaali, joka voidaan poistaa mittauksista
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotAnalogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C
LisätiedotKäytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen
Lisätiedotj = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
LisätiedotHelsinki University of Technology
Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotSähkömagneettiset häiriöt. Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 8
Mittaustekniikan perusteet / luento 8 Signaali-kohinasuhteen parantaminen Häiriökysymyksistä myös oma kurssi: S-108.180 Elektroniikan mittaukset ja häiriökysymykset Häiriö on ei-toivottu sähköinen signaali,
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotHEIJASTUMINEN JA TAITTUMINEN
S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0
LisätiedotAnalogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen
LisätiedotOPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotRadiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut
Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK
LisätiedotSähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt
Mittaustekniikan perusteet / luento 9 Sähkömagneettiset häiriöt Signaali-kohinasuhteen parantaminen Sähkömagneettiset häiriöt Häiriö on ei-toivottu sähköinen signaali, joka voidaan poistaa mittauksista
LisätiedotSisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotC 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat
S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan
LisätiedotPuolijohdekomponenttien perusteet A Ratkaisut 5, Kevät qad L. 1, C 3,6 10 m m s 10 m 0,6 ev
OY/PJKOMP R5 8 Puolijohdekomoettie erusteet 57A Ratkaisut 5, Kevät 8 (a) deaalise ormaalimoodi -trasistori kollektorivirta o W csch qu ex kt W csch 6-9 8 -,6 C,6 m 5 m s m,6 ev 6-5 m 5 m, 59 ev ex csch,,855a,
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä
LisätiedotS-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä
S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:
LisätiedotTunnuslukuja 27 III TUNNUSLUKUJA
Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
Lisätiedot20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
Lisätiedot2. kierros. 1. Lähipäivä
2. kierros. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Mitoitus Kontaktiopetusta: 8 tuntia Kotitehtäviä: 4 + 4 tuntia Tavoitteet: tietää Yhden navan vasteen ekvivalentti
LisätiedotLauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta
LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS
LisätiedotVahvistimet ja lineaaripiirit. Operaatiovahvistin
Vahvistimet ja lineaaripiirit Kotitentti 3 (2007) Petri Kärhä 20/01/2008 Vahvistimet ja lineaaripiirit 1 Operaatiovahvistin (Operational Amplifier, OpAmp) Perusvahvistin, toiminta oletetaan suunnittelussa
Lisätiedotja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
Lisätiedotdx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
LisätiedotLOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
LisätiedotSignaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
LisätiedotSignaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
LisätiedotDigitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
LisätiedotOtantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
Lisätiedot1 PID-taajuusvastesuunnittelun esimerkki
Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )
LisätiedotELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
Kimmo Silvonen, Aalto ELEC 2. välikoe 12.12.2016. Saat vastata vain neljään tehtävään! 1. Tasajännitelähde liitetään parijohtoon hetkellä t 0. Lakse kuormavastuksen jännite u 2 (t) hetkellä t 3,1 t ottamalla
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi
SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)
Lisätiedot5$32577, 1 (8) Kokeen aikana vaihteisto sijaitsi tasalämpöisessä hallissa.
5$32577, 1 (8) 5967(&12/2*
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
LisätiedotJohdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
LisätiedotLuento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
LisätiedotVarauksenkuljettajien diffuusio. Puolijohteissa varauksenkuljettajat diffusoituvat termisen energian vaikutuksesta (k B
17.11.008. Varauksekuljettajie iffuusio Puolijohteissa varauksekuljettajat iffusoituvat termise eergia vaikutuksesta (k B T) suuremmasta kosetraatiosta ieemaa (/ tai /) ( if ) ( if ) D, D ( ) D D iffuusiokerroi
LisätiedotRadioamatöörikurssi 2018
Radioamatöörikurssi 2018 Radioiden toimintaperiaatteet ja lohkokaaviot 20.11.2018 Tatu Peltola, OH2EAT 1 / 13 Sisältö Lähettimien ja vastaanottimien rakenne eri modulaatiolla Superheterodyne-periaate Välitaajuus
Lisätiedot****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotS Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
Lisätiedot2. kierros. 2. Lähipäivä
2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit
LisätiedotPush-Pull hakkurin suunnittelu ja mitoitus:
Pasi Vähämartti / c1303, S4SE Push-Pull hakkurin suunnittelu ja mitoitus: Annetut arvot: U out = 5V / 3A (P = 15W) U in = 18-22V Rungon valinta: Valitaan rungoksi RM8, sillä kytkentätaajuuden ollessa 48kHz,
LisätiedotMääritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:
TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus
LisätiedotELEKTRONIIKAN PERUSTEET T700504
ELEKTRONIIKAN PERUSTEET T700504 syksyllä 2014 OSA 2 Veijo Korhonen 4. Bipolaaritransistorit Toiminta Pienellä kantavirralla voidaan ohjata suurempaa kollektorivirtaa (kerroin β), toimii vahvistimena -
LisätiedotDigitaalinen videonkäsittely Harjoitus 1, vastaukset tehtäviin 1-7
Digitaalie videokäsittel Harjoitus, vastaukset tehtävii -7 Tehtävä. a) Y_mi= [0.299+0.587+0.4]*0=0 Y_ma= [0.299+0.587+0.4]*023=023 Cr_mi= [0.5]*0+[-0.48-0.08]*023-5 Cr_ma= [0.5]*023+[-0.48-0.08]*0 52 Cb_mi=
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
Lisätiedotν = S Fysiikka III (ES) Tentti Ratkaisut
S-45 Fysiikka III (ES) etti 8500 Ratkaisut Ideaalikaasu suorittaa oheise kua esittämä kiertoprosessi abca Pisteessä a lämpötila o 0 K a) Kuika mota moolia kaasua o? b) Määritä kaasu lämpötila pisteissä
LisätiedotDiodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi
Diodit Puolijohdediodilla on tasasuuntaava ominaisuus, se päästää virran lävitseen vain yhdessä suunnassa. Puolijohdediodissa on samassa puolijohdepalassa sekä p-tyyppistä että n-tyyppistä puolijohdetta.
LisätiedotELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
2. välikoe.2.207. Saat vastata vain neljään tehtävään!. aske jännite u 2 (t) ajan t 4 t kuluttua kytkimen sulkemisesta. 9 V S 50 Ω, 00 Ω, 50 Ω. t 0 {}}{{}}{ S t 0 u u 2 (t) 2. aske jännite U yhden millivoltin
LisätiedotAallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2
Aallot Harmoie voima voima F o suoraa verraollie veymää x Hooke laki F = kx k = jousivakio Jousivakio yksikkö [k] = N/m = kg/s Jouse potetiaalieergia E p = kx syyttää harmoise värähtely yhtee värähdyksee
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen
LisätiedotMääräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005
Dro 1345/01/2005 Määräys sähköverkkotoimia tuuslukuje julkaisemisesta Aettu Helsigissä 2 päivää joulukuuta 2005 Eergiamarkkiavirasto o määräyt 17 päivää maaliskuuta 1995 aetu sähkömarkkialai (386/1995)
LisätiedotTehtävä 1. TEL-1360 Sähkömoottorikäytöt Laskuharjoitus 4/2011
TE-1360 Sähkömoottorikäytöt askuharjoitus 4/2011 Tehtävä 1. n = 750 V ; I n = 200 A ; a = 8 mh ; R a = 0,16 Ohm ; I max = 500 A ; i max0 = 60 A ; f s = 100 Hz astart = 30 V ; = 500 750 V ; cos φ = 1 Kyseessä
LisätiedotOPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään
LisätiedotAnalogiapiirit III. Tentti 15.1.1999
Oulun yliopisto Elektroniikan laboratorio nalogiapiirit III Tentti 15.1.1999 1. Piirrä MOS-differentiaalipari ja johda lauseke differentiaaliselle lähtövirralle käyttäen MOS-transistorin virtayhtälöä (huom.
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
LisätiedotYhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
LisätiedotNormaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
LisätiedotLähettimet ja vastaanottimet
Aiheitamme tänään Lähettimet ja vastaanottimet OH3TR:n radioamatöörikurssi Kaiken perusta: värähtelijä eli oskillaattori Vastaanottimet: värähtelijän avulla alas radiotaajuudelta eri lähetelajeille sama
LisätiedotPIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1
Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
LisätiedotKohina. Mittaustekniikan perusteet / luento 8. Kohina. Kohina. Kohinan mittaaminen
Mttutkk prutt / luto 8 Koh Koh mttm Koh lttyvää trmolog Kohtyypt Mttuvhvt Kohll trkott lktro järjtlmää pot fluktutot, jok hutuu jok ltt, kompot t mtrl fykt Ku mtt pä glj, mttuk lrj (pmmä mtttv gl) määrää
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
Lisätiedot= ωε ε ε o =8,853 pf/m
KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys
LisätiedotElektroniikka. Mitä sähkö on. Käsitteistöä
Elektroniikka Mitä sähkö on Sähkö on elektronien liikettä atomista toiseen. Negatiivisesti varautuneet elektronit siirtyvät atomista toiseen. Tätä kutsutaan sähkövirraksi Sähkövirrasta puhuttaessa on sovittu,
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
Lisätiedot