Alias-ilmiö eli taajuuden laskostuminen

Koko: px
Aloita esitys sivulta:

Download "Alias-ilmiö eli taajuuden laskostuminen"

Transkriptio

1 Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan nyt prosessin näkökulmasta Alias-ilmiö eli taajuuden laskostuminen Signaali f ja sen Fourier-muunnos F ovat Tarkastellaan jaksollista taajuustason signaalia (jakso ) Tämän Fourier-sarja on 1

2 Alias-ilmiö eli taajuuden laskostuminen Kompleksinen Fourier-sarja Nimittäin Alias-ilmiö eli taajuuden laskostuminen Kertoimet Osoitetaan seuravaksi, että sarjan kertoimet ovat itse asiassa näytepisteet. Huomaamalla, että ja vaihtamalla muuttujaa integraaleissa Alias-ilmiö eli taajuuden laskostuminen Siis funktio f(kh), k =...-1, 0, 1,2,3,4,... määrää yksikäsitteisesti funktion F s ( ). Jos aikatason signaalin spektri on nolla taajuusalueen (- 0, 0 ) ulkopuolella ja jos näyteväli valitaan siten, että niin eli signaalin spektri saadaan täysin määrättyä näytteiden (spektrin) avulla. Informaatiota ei ole kadonnut näytteenotossa. Näytteenotto ja jatkuvan signaalin rekonstruointi Shannonin näyttenottoteoreema: Jatkuva signaali, jonka Fourier-muunnos on nolla välin [-w 0, w 0 ] ulkopuolella, on yksikäsitteisesti määritelty tasavälisillä näytteillä (signaalin arvoilla), jos näytteenottotaajuus w s on suurempi kuin 2w 0. Jatkuva signaali voidaan tällöin määrittää näytteistään interpolointiyhtälön avulla: Taajuutta w N = w s /2 kutsutaan Nyquistin taajuudeksi. 2

3 Näytteenotto ja jatkuvan signaalin rekonstruointi Johdetaan vielä Shannonin rekonstruointikaava Alias-ilmiö eli taajuuden laskostuminen Eli käytännössä: kun jatkuvasta signaalista, jolla on Fouriermuunnos F, otetaan tasavälisesti näytteitä (näytteenottotaajuudella w s ), niin saadaan diskreetti signaali, jolla on Fourier-muunnos F s. F s on periodinen funktio; itse asiassa sama kuin F, joka vain toistuu w s :n välein. Vaihtamalla integroinnin ja summalausekkeen järjestystä saadaan jossa integroinnin laskeminen auki antaa suoraan Shannonin kaavan Kun kahdesta jatkuvasta eri signaalista otataan näytteitä (h = 1), niin saadaan täysin identtinen näytejoukko y 1 (t) = sin(0.2pi t) y 2 (t) = sin(1.8pi t) Alias-ilmiö eli taajuuden laskostuminen Alias-ilmiö eli taajuuden laskostuminen Lasketaan edellisen esimerkin Fourier-muunnokset ja tarkastellaan niiden suhdetta näytteenotto- ja Nyquistin taajuuksiin. Puhtaasti harmoniselle värähtelylle on helppo laskea Fouriermuunnos, koska signaalit sisältävät ainoastaan yhtä taajuutta. Alkuperäiset signaalit ovat toistensa aliaksia kyseisellä näytteenottotaajuudella 3

4 Alias-ilmiö eli taajuuden laskostuminen Näiden kuvaajat ovat Näytteenoton jälkeen kummankin diskreetin signaalin Fouriermuunnos on identtinen Alias-ilmiö eli taajuuden laskostuminen Voidaan todeta, että kaikki taajuudet peilautuvat Nyquistin taajuuden kautta peilikuvina yhtä kauas Nyquisin taajuuden toiselle puolelle. Näitä peilikuvataajuuksia ja alkuperäisiä taajuuksia, joita ei voida eroittaa toisistaan diskreetissä tasossa kutsutaan toistensa aliaksiksi ja ne voidaan määrittää kuten alla on esitetty. Taajuus on siis alias taajuuksille Esisuodatus Shannonin näytteenottoteoreeman mukaan Nyquistin taajuutta suuremmat taajuudet laskostuvat matalammille taajuuksille ja ideaalisessa tapauksessa signaalien Fourier-muunnosten pitäisi kadota Nyquistin taajuutta suuremmilla taajuuksilla. Käytännön signaaleilla näin ei luonnollisesti tapahdu, joten mikäli signaalin laskostuminen tahdotaan välttää on korkeat taajuudet suodatettava signaalista pois. Toinen vaihtoehto on tietysti kasvattaa näytteenottotaajuutta, jolloin myös Nyquistin taajuus siirtyy pidemmälle taajuusakselilla (tämä luonnollisesti pätee vain silloin kuin signaalissa ei ole erittäin korkeita taajuuksia). Esisuodatus Mikäli signaalissa, josta otetaan näytteitä, on korkeita taajuuksia, niin ne tavallisesti poistetaan suodattimella. Yleensä käytetään näytteenoton edessä analogista suodatinta. Tyypillinen toisen kertaluvun suodatin on esimerkiksi Hyvin yleisesti käytetty suodatin on myös Besselin suodatin. 4

5 Esisuodatus, esimerkki Esisuodatus, esimerkki Tarkastellaan esisuodatuksen merkitystä esimerkin avulla Askelfuntioon lisätty sinimuotoista kohinaa. Vasemmalla signaali ja sen suora näytteistys.(alias- ilmiö) Oikealla suodatetut signaalit. (ylh. jatkuvasta, alh. diskretoidusta signaalista) Jatkuvan säätimen diskreetti approksimaatio Tutkitaan jälleen diskretointia, mutta tällä kertaa eri lähtökohdista. Aikaisemmin jatkuva säädettävä prosessi ja pitopiiri (ZOH) tunnettiin ja prosessille muodostettiin diskreetti, tarkka malli, jota käytettiin hyväksi diskreetin, mallipohjaisen säätimen suunnittelussa. Nyt säädettävän prosessin mallia ei tunneta (tai siitä ei välitetä). Prosessille on olemassa jatkuva-aikaiseen teoriaan perustuva säädin (esim. PID), jota tahdotaan approksimoida vastaavalla diskreetillä säätimellä. Säätimelle tuleva signaali muuttuu näytteenottohetkien välillä, joten ZOH-oletusta ei voida tehdä. Usein oletetaan signaalin olevan pehmeä. Jatkuvan säätimen diskreetti approksimaatio Siirtofunktion approksimaatiossa tavoitteena on kehittää diskreetti systeemi, joka vastaa jatkuvan ajan siirtofunktiota. Tämä on jo kertaalleen tehty prosessin diskretoinnin yhteydessä (olettamalla nollannen kertaluvun pito). Säätimillä ei kuitenkaan voida olettaa olevan nollannen kertaluvun pitoa (lähtösignaali y muuttuu mielivaltaisesti ja säädin ottaa signaalin vastaan sellaisenaan) ja kysehän on jatkuvan säätimen diskreetistä approksimaatiosta. Tavallisesti nämä approksimaatiot lähtevät derivaatan ja integraalin diskreeteistä approksimaatioista olettaen signaalin olevan pehmeä. 5

6 Derivaatan approksimaatiot Yleiset derivaatan approksimaatiot lähtevät derivaatan määritelmistä Derivaatan approksimaatiot Näistä määritelmistä saadaan etenpäinderivoinnin ja taaksepäinderivoinnin approksimaatiot. Eteenpäinderivointia kutsutaan myös Eulerin menetelmäksi. Saadaan approksimaatiot Pehmeillä funktioilla, joiden derivaatat ovat jatkuvia nämä määritelmät antavat saman tuloksen Derivaatan approksimaatiot Integraalin approksimaatiot Jatkuvasta integraalista voidaan kehittää vastaavat diskreetit approksimaatiot summien avulla Samat approksimaatiot voidaan helposti johtaa myös rekursiivisesti, jos tahdotaan välttää geometrisen sarjan summan käyttö. Esim. 6

7 Integraalin approksimaatiot Integraalin approksimaatiot Saadaan integraalin approksimaatiot ja ohjelmoitavissa jo! Vertaamalla näitä approksimaatioita derivaatan approksimaatioihin, niin voidaan todeta niiden olevan identtiset Integraalin approksimaatiot Johdetaan vielä yksi tärkeä integraalin approksimaatio. Integraalin trapetsiyhtälöstä saadaan Tustinin approksimaatio eli bilineaarinen approksimaatio. Tustin approksimaatio on kahden edellä esitetyn integraalin approksimaation keskiarvo: Taaksepäinderivoinnnin approksimaatio Eulerin approksimaatio. Tustinin approksimaatio. Integraalin approksimaatiot Differentiaaliyhtälössä jokainen derivointioperaattori p korvataan vastaavalla siirto-operaattorin q lausekkeella. 7

8 Taaksepäinderivoinin approksimaatio Eulerin approksimaatio. Tustinin approksimaatio. Siirtofunktion approksimaatiot Kun siirtofunktiolle tahdotaan kehittää sitä vastaava approksimatiivinen pulssinsiirtofunktio, niin operaattorien p ja q sijasta käytetään muuttujia s ja z. Kehitetään differenssiyhtälölle ja sitä vastaavalle siirtofunktiolle diskreetit approksimaatiot eri menetelmillä. Jatkuva-aikainen differentiaaliyhtälö: Sitä vastaava siirtofunktio: Tulosignaalin oletetaan noudattavan nollannen kertaluvun pitoa, jolloin saadaan differenssiyhtälö ja pulssinsiirtofunktio perinteisillä diskretointikaavoilla Taaksepäinderivoinnin approksimaatiolla Eulerin approksimaatiolla Tustinin approksimaatiolla 8

9 Muille approksimaatioille Vastaavasti voidaan johtaa pulssinsiirtofunktiot Vertaillaan eri approksimaatioita simuloimalla Kokeillaan aluksi askelfunktiota (tulosignaali noudattaa ZOHoletusta) Korkealla näytteenottotaajuudella kaikki approksimaatiot toimivat hyvin, mutta eivät matalammilla näytteenottotaajuuksilla 9

10 Koska tulosignaali noudattaa ZOHoletusta, niin ZOHmenetelmillä johdettu pulssinsiirtofunktio pätee kaikilla näytteenottotaajuuksilla. Taaksepäinderivoinnin approksimaatio pärjää hyvin tarkasteltavilla näytteenottotaajuuksilla Eulerin approksimaatioantaa epästabiilin vasteen matalilla näytteenottotaajuuksilla Tustinin approksimaatio pätee kohtuullisen hyvin tarkas-teltavilla näytteenottotaajuuk-silla 10

11 Approksimoitujen siirtofunktioiden stabiilius Pehmeillä signaaleilla approksimaatiot pätevät paremmin kuin ZOHsignaaleilla. Nyt sinimuotoinen signaali näytteenottovälillä h = 1 ZOH Euler B.D Tustin Aikaisemmat esimerkit osoittavat, että täysin stabiilin systeemin diskreetti approksimaatio saattaa olla suurilla näyteväleillä epästabiili (Esimerkeissä Eulerin approksimaatio). Jokainen jatkuvan järjestelmän napa s P kuvautuu diskreetin tason navaksi z P approksimaation mukaisesti. Pienillä näytteenottoajoilla eli korkeilla näytteenottotaajuuksilla kaikki diskretointimenetelmät käyttäytyvät identtisesti (lähestyvät jatkuvaa järjestelmää) ja niiden navat lähestyvät pistettä Approksimoitujen siirtofunktioiden stabiilius Diskretointimenetelmästä riippumatta diskreetti järjestelmä on stabiili vain ja jos vain kaikki sen pulssinsiirtofunktion navat ovat yksikköympyrän sisäpuolella. Näin ollen on mielenkiintoista tarkastella miten jatkuvan reaali/imaginääri-tason stabiilisuusalue (vasen puolitaso) kuvautuu diskreettiin tasoon. Kuviin on piirretty yksikköympyrä (diskreetti stabiiliusalue) ja varjostettuna alue, johon jatkuva-aikainen stabiiliusalue kuvautuu. Approksimoitujen siirtofunktioiden stabiilius Nähdään, että vain ZOH:lla ja Tustinin approksimaatiolla stabiilius on identtinen jatkuvassa ja diskreetillä systeemillä. Taaksepäin derivointi kuvaa kyllä kaikki jatkuvat stabiilit systeemit stabiileina diskreetteinä systeemeinä, mutta se antaa myös joukolle epästabiileja jatkuvia systeemejä stabiilin diskreetin mallin. Eulerin menetelmä taas antaa joukolle stabiileja jatkuvia systeemejä epästabiilin diskreetin mallin (kuten simuloinneista kävi ilmi). ZOH BD Euler Tustin 11

12 Diskreetti PID-säädin Diskreetti PID-säädin on tänä päivänä kaikkein yleisin säädin. Se voidaan johtaa helposti jatkuvasta PID-säätimestä. Teoreettinen oppikirjaversio jatkuvasta PID-algoritmista on Diskreetti PID-säädin Tämän takia derivointi tavallisesti toteutetaan suodatettuna. Ideaalista derivointia ei voida (eikä myöskään pitäisi) toteuttaa PIDsäätimessä. Käytännön systeemeissä on aina kohinaa ja derivointi vahvistaa korkeataajuisia häiriöitä kuten valkoista kohinaa. Muita tyypillisiä käytännön modifikaatioita ovat: - Derivointitermin osalta ajatellaan referenssin olevan vakio, jolloin siis derivoidaan pelkästään lähtösignaalia (negatiivisena). Diskreetti PID-säädin Kehitetään aikaisemman oppikirjaversion diskreetti esitys Diskreetti PID-säädin Diskreetti PID-säädin saadaan jatkuvasta korvaamalla erosuureen integraali summalla, erosuureen derivaatta erosuureen muutoksella ja jakamalla aikaparametrit T I ja T D näytteenottovälillä h. (Euler) Yhtäpitävästi, huomaa edelleen oppikirjaversio Laplace-tasossa (BD) ja siitä saatavat approksimaatiot korvaamalla s kuten esitetty aiemmin. 12

13 Diskreetti PID-säädin z-tason pulssinsiirtofunktiona säädin on (integroinnissa Euler, derivoinnissa BD) Ohjauksen muutokselle saadaan: Diskreetti PID-säädin Edellä esitettyä algoritmia kutsutaan asento- eli absoluuttialgoritmiksi, koska sen avulla lasketaan absoluuttinen ohjauksen arvo. Se edellyttää summalausekkeen laskemista (tai päivittämistä), mikä ei ole algoritmisesti taloudellista. Huomattavasti yleisempi muoto käytännön sovelluksissa on nopeus- eli inkrementtialgoritmi, jonka avulla voidaan laskea ohjaussignaalin muutos edellisestä näytteenottohetkestä (ja jonka avulla voidaan välttää summalauseke). Diskreetti PID-säädin Kaikki jatkuvan PID-säätimen modifikaatiot voidaan myös toteuttaa diskreetillä PID-säätimellä. Tärkeimpiä modifikaatioita integraattorille ovat antiwinup-toiminto saturoituville toimilaitteille, pehmeä moodinvaihto automatiikan ja käsiajon moodinvaihdoissa ja hyppäyksettömät parametripäivitykset itsevirittyvissä ja adaptiivisissa PID-algoritmeissa. Esim. toimilaitteen saturoituessa on vaarana, että integraattori jatkaa integroimistaan kohtuuttoman suuriin arvoihin. Kun tilanne normalisoituu (toimilaite esimerkiksi vaihdetaan uuteen), säätöpiirin toiminnan palautuminen normaaliksi kestää kauan juuri integraattorin takia. Integrator windup ja antiwindup Ilmiö on nimeltään Integrator windup ja sen korjaava toiminta antiwindup. Yksinkertaisin tapa antiwindup-toiminnolle on yksinkertaisesti lopettaa integrointi epänormaalissa tilanteessa. Katkoviivalla on kuvattu windup-ilmiön vaikutus säätöpiirin toiminnalle. Kiinteä viiva puolestaan kuvaa samaa tilannetta, kun antiwindup-piiri on toiminnassa. Antiwindup-toimintoa ei saa unohtaa käytännön säätöpiirien toteutuksessa! 13

14 Integrator windup ja antiwindup Esimerkki antiwindup-piiristä Kun toimilaite toimii normaalisti, kyseessä on tavallinen PID-säädin (huom. derivoidaan vain lähtösignaalia). Jos toimilaite saturoituu, signaali e s saa nollasta poikkeavia arvoja ja korjaa integraattorin tulotermiä oikeaan suuntaan (vrt. edellisen sivun kuva). LOPPU Välikoe ja tentti ke 8.4 klo 10:00-12:00 AS2 (Tu2 vara) Tenttialue: luvut 1-12 ja vastaavat harjoitukset 2. välikoe: luvut 7-12 ja vastaavat harjoitukset Molemmat kokeet saa halutessaan nähtäviksi, ja voi päättää kumman tekee. Aikaisemmasta tiedosta poiketen: seuraavassa rästitentissä voi tehdä/uusia kevään Säätötekniikka-kurssin 1. tai 2. välikokeen. Esim. 2005/2011 tutkintosäännön opiskelijat voivat tällä tavoin edelleen saada suorituksen Analogisesta / Digitaalisesta säädöstä. 14

ELEC-C1230 Säätötekniikka

ELEC-C1230 Säätötekniikka Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä ELEC-C1230 Säätötekniikka Luku 10: Digitaalinen säätö, perusteet, jatkuu A/D-muunnoksessa analoginen signaali näytteistetään (sampling);

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 10: Digitaalinen säätö, perusteet, jatkuu

ELEC-C1230 Säätötekniikka. Luku 10: Digitaalinen säätö, perusteet, jatkuu ELEC-C230 Säätötekniikka Luku 0: Digitaalinen säätö, perusteet, jatkuu Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä r(tk) _ e(tk) Säädin u(tk) D/A u(t) Prosessi y(t) A/D y(tk)

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2

Lisätiedot

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Tilaesityksen hallinta ja tilasäätö. ELEC-C1230 Säätötekniikka. Luku 6: Tilasäätö, tilaestimointi, saavutettavuus ja tarkkailtavuus

Tilaesityksen hallinta ja tilasäätö. ELEC-C1230 Säätötekniikka. Luku 6: Tilasäätö, tilaestimointi, saavutettavuus ja tarkkailtavuus Tilaesityksen hallinta ja tilasäätö ELEC-C1230 Säätötekniikka Luku 6: Tilasäätö, tilaestimointi, saavutettavuus ja tarkkailtavuus Edellisessä luvussa tarkasteltiin napoja ja nollia sekä niiden vaikutuksia

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)

Lisätiedot

12. Laskostumisen teoria ja käytäntö

12. Laskostumisen teoria ja käytäntö 12.1. Aliakset eli laskostuminen ja näytteistys 12. Laskostumisen teoria ja käytäntö Monet seikat vaikuttavat kuvien laatuun tietokonegrafiikassa. Mallintamisesta ja muista tekijöistä syntyy myös artefakteja,

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)

Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste) Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

MATLAB harjoituksia RST-säädöstä (5h)

MATLAB harjoituksia RST-säädöstä (5h) Digitaalinen säätöteoria MATLAB harjoituksia RST-säädöstä (5h) Enso Ikonen Oulun yliopisto, systeemitekniikan laboratorio November 25, 2008 Harjoituskerran sisältö kertausta (15 min) Napojensijoittelu

Lisätiedot

Y (s) = G(s)(W (s) W 0 (s)). Tarkastellaan nyt tilannetta v(t) = 0, kun t < 3 ja v(t) = 1, kun t > 3. u(t) = K p y(t) K I

Y (s) = G(s)(W (s) W 0 (s)). Tarkastellaan nyt tilannetta v(t) = 0, kun t < 3 ja v(t) = 1, kun t > 3. u(t) = K p y(t) K I Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 6. harjoituksen ratkaisut. Laplace-tasossa saadaan annetulle venttiilille W (s) W (s)

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA

DIFFERENTIAALI- JA INTEGRAALILASKENTA DIFFERENTIAALI- JA INTEGRAALILASKENTA Timo Mäkelä Tässä tekstissä esitellään yhden muuttujan reaaliarvoisten funktioiden differentiaalilaskentaa sekä sarjoja. Raja-arvot Raja-arvoja voidaan laskea käyttämällä

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

ELEC-C5070 Elektroniikkapaja (5 op)

ELEC-C5070 Elektroniikkapaja (5 op) (5 op) Luento 5 A/D- ja D/A-muunnokset ja niiden vaikutus signaaleihin Signaalin A/D-muunnos Analogia-digitaalimuunnin (A/D-muunnin) muuttaa analogisen signaalin digitaaliseen muotoon, joka voidaan lukea

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

3. kierros. 1. Lähipäivä

3. kierros. 1. Lähipäivä 3. kierros 1. Lähipäivä Viikon aihe (viikko 1/2) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Mitä on signaalien digitaalinen käsittely

Mitä on signaalien digitaalinen käsittely Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona Varauspumppu-PLL Vaihevertailija vertaa kelloreunoja aikatasossa. Jos sisääntulo A:n taajuus on korkeampi tai vaihe edellä verrattuna sisääntulo B:hen, ulostulo A on ylhäällä ja ulostulo B alhaalla ja

Lisätiedot

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen 8. Luento: Laitteiston ohjaaminen Arto Salminen, arto.salminen@tut.fi Agenda Johdanto Säätäjiä P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen Mittaaminen Johdanto Tavoitteena: tunnistaa

Lisätiedot

5. OSITTAISINTEGROINTI

5. OSITTAISINTEGROINTI 5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Osatentti

Osatentti Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.

Lisätiedot

8. Kuvaustekniikat. Tämän kuvauksen esittäminen ei ole kuitenkaan suoraviivaista. Niinpä se käydään läpi kaksivaiheisena

8. Kuvaustekniikat. Tämän kuvauksen esittäminen ei ole kuitenkaan suoraviivaista. Niinpä se käydään läpi kaksivaiheisena 8. Kuvaustekniikat Tietokonegrafiikassa hyödynnetty termi tekstuuri on oikeastaan hieman kehno, sillä se on jossakin määrin sekoittava eikä tarkoita pinnan pienimittakaavaisen geometrian käsittelyä sanan

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Analoginen (jatkuva-aikainen) säätöjärjestelmä

Analoginen (jatkuva-aikainen) säätöjärjestelmä Esittely ELEC-C1230 Säätötekniikka Åström K. J., Wittenmark B.: Computer Controlled Systems - Theory and Design (3rd ed.), Prentice-Hall, 1997. Franklin, Powell, Workman: Digital Control of Dynamic Systems.

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

Signaalien digitaalinen käsittely

Signaalien digitaalinen käsittely Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Alipäästösuotimen muuntaminen muiksi perussuotimiksi Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen

Lisätiedot