1 PID-taajuusvastesuunnittelun esimerkki

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "1 PID-taajuusvastesuunnittelun esimerkki"

Transkriptio

1 Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + ) 2 ( + ) (5 + ) Vaatimukset säädölle: ² tasapainotilan poikkeama max 5% ² ylitystä max 5% ² nopea vaste ² yleinen robustisuus ² implementointi PID-säätimellä

2 Amplitude. P-säätö P-säädöllä suljetulle piirille saadaan ( ) ( ) = P ( ) + P ( ) Tasapainotilan poikkeama askeleelle asetusarvossa on lim ( )= P ()! + P () = P + P Tp-poikkeaman tuli olla alle 5%, joka toteutuu jos P-säädön vahvistuksena P käytetään 95 P 5 + P ) P = =9 5 Simuloidaan P-säädettyä järjestelmää, jolloin askelvasteesta (kuva ) nähdään että ylitys on enemmän kuin 4%. Prosessin ulostulo värähtelee reippaasti. P-säätimellä ei siten päästä haluttuihin vaatimuksiin. Step Response.4 P-säätö Time (seconds) Figure : P-säätö (askelvaste) 2

3 .2 PD-säätö Tarkastellaan seuraavaksi PD-säädön mahdollisuuksia. PD-säätimen D-termillä voidaan kasvattaa järjestelmän vaihevaraa. Tämä on tarkoituksiin sopivaa, sillä vaihevaran pm ja ylityksen p välillä on yhteys vaimennussuhteen kautta: p ¼ pm Ã! ¼ exp p 2 Jälkimmäisestä yhtälöstä saadaan 5% ylitystä vastaavaksi vaimennussuhteeksi 6, ja tästä edelleen vaihevaraksi 6 o. Tätä voidaan käyttää taajuustason suunnittelun lähtökohtana. Tarkastetaan vielä vaihevara jo suunnitellulle P-säätimelle, ja todetaan että vaihevara jää alle 3 o :een (kts. kuva 2). Gm = Inf db (at Inf rad/s), Pm = 28. deg (at.596 rad/s) Figure 2: P-säätö (Bode) PD-säädön (l. vaiheenjohtokompensaattorin) suunnittelussa pyritään sijoittamaan maksimaalinen vaiheenjohto vahvistuksen ylimenotaajuudelle. Piirretään Bode, kuva 2, jolloin näemme että P-säädölle ylimenotaajuus on gc = 6rad/s. Sijoitetaan D-termi sinne. Tiedämme, että vaiheenjohtokompensaattorin maksimivaihe on löytyy taajuudelta ( )= D + D + max = r Valitsemalla (peukalosäännön mukaan) derivoinnin suodatuksen aikavakio kymmenen kertaa nopeammaksi kuin itse derivaattatermi, eli D = D, saadaan p p D = = max 6 =5 3s 3

4 ja D = 53 sekuntia. Kompensaattoriksi suunniteltiin siis µ D + PD ( )= =9 5 D + µ Tarkkaan ottaen kyseessä on PD-säätimen approksimointi, sillä µ µ D + ( D + D ) + PD ( ) = ¼ D + D + µ = + + mutta tarkkuus on aivan riittävä, ja voimme huoletta puhua PD-säätimestä. Suunnittelu näkyy hyvin tarkastelemalla Boden vaihe- ja vahvistuskuvaajia, kuva 3. P- säädetyn prosessin vaihevara on vaatimaton, mutta kasvattamalla vaihetta D-termillä vaihevara kasvaa. Uusi vaihevara on 55 o, kts kuva K P P D K DP P Figure 3: P, D ja L Bode-kuvaajat 4

5 Gm = Inf db (at Inf rad/s), Pm = 54.9 deg (at.55 rad/s) Figure 4: L:n Bode ja marginaalit 5

6 D-termi sisältää kuitenkin myös vahvistusta, jonka seurauksena L:n ylimenotaajuus kasvaa 6 rad/s:stä 55 rad/s:ään. Niinpä suunniteltu vaiheenjohto ei ole maksimaalinen juuri tällä kriittisellä taajuudella. Iteroidaan hieman, ja lasketaan uusi D-termi niin että max = 8 rad/s (eli keskiarvo ( 6+ 55) 2). Vaiheenjohtokompensaattoriksi saadaan PD ( )= eli P =9 5, =2 9ja = 29 sekuntia. Piirretään Bode-kuvaajat (kuvat 5 6), ja todetaan että vaihevara on jo 7 o eli riittävä D K D P P D K P DP Figure 5: iteroitu Fig3 Vaihevaran suunnittelun tavoite on saavutettu. Tarkastetaan vielä vaste simuloimalla aikatasossa. Askelvasteet prosessille, P-säädetylle prosessille sekä PD säädetylle prosessille on esitetty kuvassa 7. Todetaan, että sekä ylityksen että tasapainotilan virheen kriteerit täyttyvät. PDsäädetyn järjestelmän askelvaste asetusarvomuutostilanteessa on nopea. Ero avoimen piirin vasteeseen on dekadin luokkaa. 6

7 Amplitude Phase (deg) Gm = Inf db (at Inf rad/s), Pm = 7.5 deg (at.9 rad/s) Figure 6: Iteroitu Fig4 Step Response 2.8 prosessi P-säätö PD-säätö Time (seconds) Figure 7: Askelvaste 7

8 .3 PI-säätö Tarkastellaan seuraavaksi PI-säädöllä tehtävää toteutusta. Tiedämme, että PI-säätö poistaa automaattisesti tasapainotilan poikkeaman, joten suunnittelutehtäväksi jää riittävän vaihevaran aikaansaaminen. PD-suunnittelusta muistamme, että vaihevaraksi tarvittiin vähintään 6 o. PIsäätimellä vaihevaran kasvattaminen ei onnistu, joten riittävä vaihevara voidaan saavuttaa vain vahvistusta pienentämällä. Silloinhan ylimenotaajuus siirtyy vasemmalle, matalammalle taajuudelle, jossa vaihevaraa on enemmän. Valitsemalla P =2nähdään Bode-kuvaajasta (kuva 8) että vaihevaraksi tulee 63 o. Gm = Inf db (at Inf rad/s), Pm = 62.9 deg (at.237 rad/s) Figure 8: PI-Bode 8

9 Tasapainotilan virheen poistamiseksi lisätään nyt integraattori, eli µ PI ( )= P + I Koska PI-säädin tuo mukanaan vaiheenjättöä matalille taajuuksille, sijoitetaan kulmataajuus niin että jättö kriittisillä taajuuksilla on pieni. P-säädetyn järjestelmän ylitystaajuus on 24 rad/s (kts kuva 8), joten sijoitetaan I-termin kulmataajuus dekadia pienemmälle taajuudelle: I = gc = 24 = 42 Suunnittelu näkyy mainiosti tarkastelemalla Bode-kuvaajaa, kuva 9. I-termi vaikuttaa vain matalilla taajuuksilla, missä se kasvattaa silmukkasiirtofunktion vahvistusta. Samalla se jätättää silmukkasiirtofunktion vaihetta, mutta ylimenotaajuuden kohdalla jättö on jo pientä. Vaihevara on edelleen lähes 6 o, kts kuva K P P I K IP P Figure 9: Bode P-säätö, I j L-PI-säädölle 9

10 Gm = Inf db (at Inf rad/s), Pm = 57. deg (at.238 rad/s) Figure : L-PI:n marginaalit

11 Amplitude Tarkistetaan vielä aikatason vaste. Kuva esittää prosessin, P-säädetyn prosessin, sekä PI-säädetyn prosessin askelvasteet. Suunnittelun kriteerit täyttyvät ylityksen ja tp-tilan virheen suhteen täyttyvät. Vaste asetusarvosta on kuitenkin selkeästi hitaampi kuin PD-säädössä (vrt. kuva 7), ja varsinkin asettumisaika on pitkähkö ( 5%:een asetusarvosta pääseminen kestää liki 6 sekuntia, kun PD-säädössä siihen meni vain muutama sekunti). Toisaalta, lopullinen tasapainotilan poikkeama PI-säädössä on %. Step Response 2.8 prosessi P-säätö PI-säätö Time (seconds) Figure : Aikatason vaste

12 .4 PID-säätö PID-säädin voidaan koostaa PD ja PI-termeistä. Muodostetaan nyt kaskadimuotoinen PIDsäädin µ µ D + PID ( )= P + D + I Integrointi- ja derivointiosat on jo suunniteltu, joten lähdetään liikkeelle ajatuksesta että taajuuskaistat ovat erilliset ja säätimen osat voidaan yksinkertaisesti linkittää toisiinsa. Tämä voidaan tarkistaa Bode-kuvaajasta, kuva C PD 45 C PI Figure 2: Bode PD ja PI 2

13 Amplitude Valitaan vielä (epäakateemisesti) vahvistukseksi aiemmin suunniteltujen keskiarvo, = ( ) 2 =5 75 ja katsotaan miten käy. Askelvasteet PD, PI, ja PID säätimille on esitetty kuvassa. Kuvasta 3 nähdään, että PID-säädin yhdistää PD ja PI termien ominaisuuksia (nopea vaste alussa, tasapainotilan poikkeaman puuttuminen) Step Response.4 PD-säätö PI-säätö PID-säätö Time (seconds) Figure 3: Askelvasteet PD, PI ja PID. 3

14 Imaginary Axis Nyquist Diagram 3 PD PI PID Real Axis Figure 4: Nyquist (PD, PI, PID) Tarkastellaan lopuksi PD, PI ja PID säädettyjen järjestelmien taajuustason (kuva 5) ja aikatason (kuva 6) vasteita neljän koplan (vs. gang-of-six) avulla. ² Muistetaan, että stabiilisuusmarginaali m voitiin katsoa sensitiivisyysfuktion maksimista. Kuvasta 5 nähdään, että PI-säädin on stabiilisuusominaisuuksiltaan heikoin. Tämän voi nähdä myös tarkastelemalla Nyquist-kuvaajaa (kuva 4), jossa PI-säädetyn järjestelmän silmukkasiirtofunktio selvästi kulkee lähinnä pistettä. ² Komplementaarinen sensitiivisyysfunktio kuvaa siirtofunktiota prosessin ulostulon ja asetusarvon välillä (tätähän on jo tutkittu askelvasteissa). Lisäksi se kertoo säätimen vasteesta kuormahäiriöön. Matalilla taajuuksilla säätimien välillä ei juuri eroja ole. Kuvan 5 skaalauksesta ei näy, mutta :n vahvistus matalilla taajuuksilla PD-säätimellä jää 44 db:hen (joka vastaa 95:n vahvistusta), kun muilla säätimillä vahvistus on db. Korkeilta taajuuksilta havaitaan, että PI-säädetyn järjestelmän taajuuskaista on muita pienempi. ² Sisäänmenon sensitiivisyysfunktio kuvaa prosessin ulostulon ja kuormahäiriön välistä siirtofunktiota. PD-säädin ei selviä askelmaisesta kuormahäiriöstä, vaan se jää vaikuttamaan prosessin ulostuloon. ² Ulostulon sensitiivisyysfunktio kuvaa säätimen ulostulon ja mittauskohinan tai asetusarvon välistä siirtofunktiota. Kuvista 6 5 nähdään, että PD ja PID säätimet ovat hyvin ärhäköitä: ohjaus saa suuria arvoja askelvasteen alussa, samoin vahvistukset ovat suuria korkeilla taajuuksilla. PI-säätö on huomattavasti rauhallisempi ja toimilaiteystävällisempi. 4

15 Phase (deg) Phase (deg) Phase (deg) S T PS CS Figure 5: Neljän kopla, taajuustason vasteet 5

16 Amplitude Amplitude Amplitude Amplitude S T Time (seconds) Time (seconds) PS CS.8.6 PD PI PID Time (seconds) Time (seconds) Figure 6: Neljän kopla, aikatason vasteet 6

17 PD PI PID Figure 7: PD, PI ja PID säädettyjen systeemien silmukkasiirtofunktiot. PD,PI, ja PID säädettyjen järjestelmien silmukkasiirtofunktioiden Bode-kuvaajat on esitetty yhteenvetona kuvassa 7. Suunnitellun PID-säätimen ylimenotaajuus on 7rad/s, ja vaihevara on 75 o 7

18 Figure 8: Säätöpiiri Simulinkissä. Enemmät simulointitutkimukset (erilaisille häiriöille, jne) voi tehdä Simulinkin avulla, tutkimalla esim kuvan 8 kaltasella lohkokaaviolla asetusarvon ja häiriöiden vasteita prosessin ja säätimen ulostuloon. 8

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a

Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu. Vinkit 1 a ELEC-C3 Säätötekniikka 9. laskuharjoitus Taajuustason tekniikat: Boden ja Nyquistin diagrammit, kompensaattorien suunnittelu Vinkit a 3. Vaiheenjättökompensaattorin siirtofunktio: ( ) s W LAG s, a. s Vahvistus

Lisätiedot

Osatentti

Osatentti Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.

Lisätiedot

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit

Hyvyyskriteerit. ELEC-C1230 Säätötekniikka. Luku 8: Säädetyn järjestelmän hyvyys aika- ja taajuustasossa, suunnittelu taajuustasossa, kompensaattorit Hyvyyskriteerit ELEC-C1230 Säätötekniikka Aikaisemmilla luennoilla on havainnollistettu, miten systeemien käyttäytymiseen voi vaikuttaa säätämällä niitä. Epästabiileista systeemeistä saadaan stabiileja,

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.47 Prosessiautomaation perusteet Tentti.4. Tehtävä. Vaihtoehtotehtävät. Oikea vastaus +,5p, väärä vastaus -,5p ja ei vastausta p Maksimi +5,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA

Lisätiedot

Osatentti

Osatentti Osatentti 2.8.205 Nimi: Opiskelijanumero: Ohjeet: Vastaa kysymyspaperiin ja kysymyksille varattuun tilaan. Laskin ei ole sallittu. Tenttikaavasto jaetaan. Kaavastoon EI merkintöjä. Palauta kaavasto tämän

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Boost-hakkuri. Hakkurin tilaesitykset

Boost-hakkuri. Hakkurin tilaesitykset Boost-hakkuri Boost-hakkurilla on toiminnassaan kaksi tilaa. Päällä, jolloin kytkimestä virtapiiri on suljettu ja pois silloin kun virtapiiri on kytkimestä aukaistu. Kummallekin tilalle tulee muodostaa

Lisätiedot

MATLAB harjoituksia RST-säädöstä (5h)

MATLAB harjoituksia RST-säädöstä (5h) Digitaalinen säätöteoria MATLAB harjoituksia RST-säädöstä (5h) Enso Ikonen Oulun yliopisto, systeemitekniikan laboratorio November 25, 2008 Harjoituskerran sisältö kertausta (15 min) Napojensijoittelu

Lisätiedot

PID-sa a timen viritta minen Matlabilla ja simulinkilla

PID-sa a timen viritta minen Matlabilla ja simulinkilla PID-sa a timen viritta minen Matlabilla ja simulinkilla Kriittisen värähtelyn menetelmä Tehtiin kuvan 1 mukainen tasavirtamoottorin piiri PID-säätimellä. Virittämistä varten PID-säätimen ja asetettiin

Lisätiedot

3. kierros. 2. Lähipäivä

3. kierros. 2. Lähipäivä 3. kierros. Lähipäivä Viikon aihe (viikko /) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

MASSASÄILIÖN SIMULOINTI JA SÄÄTÖ Simulation and control of pulp tank

MASSASÄILIÖN SIMULOINTI JA SÄÄTÖ Simulation and control of pulp tank MASSASÄILIÖN SIMULOINTI JA SÄÄTÖ Simulation and control of pulp tank Sonja Lindman Kandidaatintyö 10.4.2014 LUT Energia Sähkötekniikan koulutusohjelma TIIVISTELMÄ Lappeenrannan teknillinen yliopisto Teknillinen

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi ELEC-C123 Säätötekniikka Luku 7: Taajuusanalyysi Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi

Esimerkki: Laaduntasaussäiliö. Esimerkki: Laaduntasaussäiliö. Taajuusanalyysi. ELEC-C1230 Säätötekniikka. Luku 7: Taajuusanalyysi Taajuusanalyysi ELEC-C1230 Säätötekniikka Luku 7: Taajuusanalyysi Aikaisemmilla luennoilla on tarkasteltu systeemien käyttäytymistä aikatasossa (differentiaaliyhtälöt, herätteet ja vasteet) tai Laplace-tasossa

Lisätiedot

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen

Agenda. Johdanto Säätäjiä. Mittaaminen. P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen 8. Luento: Laitteiston ohjaaminen Arto Salminen, arto.salminen@tut.fi Agenda Johdanto Säätäjiä P-, I-,D-, PI-, PD-, ja PID-säätäjä Säätäjän valinta ja virittäminen Mittaaminen Johdanto Tavoitteena: tunnistaa

Lisätiedot

ELEC-C1230 Säätötekniikka

ELEC-C1230 Säätötekniikka Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä ELEC-C1230 Säätötekniikka Luku 10: Digitaalinen säätö, perusteet, jatkuu A/D-muunnoksessa analoginen signaali näytteistetään (sampling);

Lisätiedot

ELEC-C1230 Säätötekniikka

ELEC-C1230 Säätötekniikka Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä ELEC-C1230 Säätötekniikka Luku 10: Digitaalinen säätö, perusteet, jatkuu A/D-muunnoksessa analoginen signaali näytteistetään (sampling);

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

12. Stabiilisuus. Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) :

12. Stabiilisuus. Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) : 1. Stabiilisuus Olkoon takaisinkytketyn vahvistimen vahvistus A F (s) : AOL ( s) AF ( s) (13 10) 1+ T ( s) A OL :n ja T:n määrittäminen kuvattiin oppikirjan 1-7 kappaleessa. Näiden taajuus käyttäytyminen

Lisätiedot

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla

Säätötekniikkaa. Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla Säätötekniikkaa Säätöongelma: Hae (mahdollisesti ulostulon avulla) ohjaus, joka saa systeemin toimimaan halutulla tavalla servo-ongelma: ulostulon seurattava referenssisignaalia mahdollisimman tarkasti,

Lisätiedot

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op)

LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi. Servokäyttö (0,9 op) LTY/SÄTE Säätötekniikan laboratorio Sa2730600 Säätötekniikan ja signaalinkäsittelyn työkurssi Servokäyttö (0,9 op) JOHDNTO Työssä tarkastellaan kestomagnetoitua tasavirtamoottoria. oneelle viritetään PI-säätäjä

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

HARJOITUSTYÖ Pudotusputken pinnankorkeuden ja DD-pesurin syöttövirtauksen säätö

HARJOITUSTYÖ Pudotusputken pinnankorkeuden ja DD-pesurin syöttövirtauksen säätö RAPORTTI 9.4.29 HARJOITUSTYÖ Pudotusputken pinnankorkeuden ja DD-pesurin syöttövirtauksen säätö 278116 Hans Baumgartner xxxxxxx nimi nimi 1 SISÄLLYSLUETTELO KÄYTETYT MERKINNÄT JA LYHENTEET... 2 1. JOHDANTO...

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2

Lisätiedot

Hakkuritehola hteet Janne Askola Jari-Matti Hannula Jonas Nordfors Joni Kurvinen Semu Mäkinen

Hakkuritehola hteet Janne Askola Jari-Matti Hannula Jonas Nordfors Joni Kurvinen Semu Mäkinen Hakkuritehola hteet 4.5.2012 Janne Askola Jari-Matti Hannula Jonas Nordfors Joni Kurvinen Semu Mäkinen Fysikaalinen toiminta Buck-Boost -hakkuriteholähde on DC/DC -muunnin. Se on yhdistelmä Buck- ja Boost

Lisätiedot

Luento 7. LTI-järjestelmät

Luento 7. LTI-järjestelmät Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =

Lisätiedot

Kon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)

Kon Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Kon-4.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 204 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 0:00-3:00 (4:00) Päivämäärät: Opetushenkilöstö Asko

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Vcc. Vee. Von. Vip. Vop. Vin

Vcc. Vee. Von. Vip. Vop. Vin 5-87.2020 Elektroniikka II Tentti ja välikoeuusinnat 27.05.2011 1. Våitikokeen tehtiivät l-4,2. välikokeen tehtävät 5-8 ja tentin tehtävät l,2,6ja 8. Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin

Lisätiedot

Y (s) = G(s)(W (s) W 0 (s)). Tarkastellaan nyt tilannetta v(t) = 0, kun t < 3 ja v(t) = 1, kun t > 3. u(t) = K p y(t) K I

Y (s) = G(s)(W (s) W 0 (s)). Tarkastellaan nyt tilannetta v(t) = 0, kun t < 3 ja v(t) = 1, kun t > 3. u(t) = K p y(t) K I Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 6. harjoituksen ratkaisut. Laplace-tasossa saadaan annetulle venttiilille W (s) W (s)

Lisätiedot

SMITH-PREDICTOR Kompensaattori PI-Säätimellä. Funktiolohko Siemens PLC. SoftControl Oy

SMITH-PREDICTOR Kompensaattori PI-Säätimellä. Funktiolohko Siemens PLC. SoftControl Oy SMITH-PREDICTOR Kompensaattori PI-Säätimellä Funktiolohko Siemens PLC SoftControl Oy 1.0 Smith Predictor kompensaattori PI-säätimellä... 3 1.1 Yleistä...3 1.2 Sovellus...3 1.3 Kuvaus...4 1.4 Muuttujat...5

Lisätiedot

Automaatiotekniikan laskentatyökalut (ALT)

Automaatiotekniikan laskentatyökalut (ALT) Ohjeita ja esimerkkejä kurssin 477604S näyttökoetta varten Automaatiotekniikan laskentatyökalut (ALT) Enso Ikonen 6/2008 Oulun yliopisto, Prosessi- ja ympäristötekniikan osasto, systeemitekniikan laboratorio

Lisätiedot

3. kierros. 1. Lähipäivä

3. kierros. 1. Lähipäivä 3. kierros 1. Lähipäivä Viikon aihe (viikko 1/2) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen

Flash AD-muunnin. Ominaisuudet. +nopea -> voidaan käyttää korkeataajuuksisen signaalin muuntamiseen (GHz) +yksinkertainen Flash AD-muunnin Koostuu vastusverkosta ja komparaattoreista. Komparaattorit vertailevat vastuksien jännitteitä referenssiin. Tilanteesta riippuen kompraattori antaa ykkösen tai nollan ja näistä kootaan

Lisätiedot

2. kierros. 2. Lähipäivä

2. kierros. 2. Lähipäivä 2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit

Lisätiedot

Tietokoneavusteinen säätösuunnittelu (TASSU)

Tietokoneavusteinen säätösuunnittelu (TASSU) Ohjeita ja esimerkkejä kurssin 470463A näyttökoetta varten Tietokoneavusteinen säätösuunnittelu (TASSU) Enso Ikonen 9/2006 Oulun yliopisto, Prosessi- ja ympäristötekniikan osasto, systeemitekniikan laboratorio

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

Analogiapiirit III. Tentti 15.1.1999

Analogiapiirit III. Tentti 15.1.1999 Oulun yliopisto Elektroniikan laboratorio nalogiapiirit III Tentti 15.1.1999 1. Piirrä MOS-differentiaalipari ja johda lauseke differentiaaliselle lähtövirralle käyttäen MOS-transistorin virtayhtälöä (huom.

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Analogiatekniikka. Analogiatekniikka

Analogiatekniikka. Analogiatekniikka 1 Opintojakson osaamistavoitteet Opintojakson hyväksytysti suoritettuaan opiskelija: osaa soveltaa ja tulkita siirtofunktiota, askelvastetta, Bodediagrammia ja napa-nolla-kuvaajaa lineaarisen, dynaamisen

Lisätiedot

4.1. Sovitusopas. Sisällysluettelo. Maaliskuu 2015. Tässä oppaassa on yksityiskohtaiset ohjeet kuulokojeen sovittamiseen Phonak Target -ohjelmalla.

4.1. Sovitusopas. Sisällysluettelo. Maaliskuu 2015. Tässä oppaassa on yksityiskohtaiset ohjeet kuulokojeen sovittamiseen Phonak Target -ohjelmalla. 4.1 Maaliskuu 2015 Sovitusopas Tässä oppaassa on yksityiskohtaiset ohjeet kuulokojeen sovittamiseen Phonak Target -ohjelmalla. Katso myös Phonak Target -aloitusnäytön kohta [Uutisia]. Sisällysluettelo

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

Matlabin perusteet. 1. Käyttöliittymä:

Matlabin perusteet. 1. Käyttöliittymä: Matlabin perusteet Matlabin (MATrix LABoratory) perusfilosofia on, että se käsittelee kaikkia muuttujia matriiseina, joiden erikoistapauksia ovat vektorit ja skalaariluvut. Näin ollen se soveltuu erityisesti

Lisätiedot

Luento 7. tietoverkkotekniikan laitos

Luento 7. tietoverkkotekniikan laitos Luento 7 Luento 7 LTI järjestelmien taajuusalueen analyysi II 7. LTI järjestelmän taajuusvaste Vaste kompleksiselle eksponenttiherätteelle Taajuusvaste, Boden diagrammi 7.2 Signaalin muuntuminen LTI järjestelmässä

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

Tehtävä 1. Vaihtoehtotehtävät.

Tehtävä 1. Vaihtoehtotehtävät. Kem-9.7 Proeiautomaation peruteet Perutehtävät Tentti 9.. Tehtävä. Vaihtoehtotehtävät. Oikea vatau,p, väärä vatau -,p ja ei vatauta p Makimi,p ja minimi p TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN

Lisätiedot

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula

Voimalaitoksen lisästabiloinnin virittämisohje. Voimalaitospäivä Scandic Park Antti Harjula Voimalaitoksen lisästabiloinnin virittämisohje Voimalaitospäivä Scandic Park 24.2.2016 Antti Harjula Sisältö Pohjoismainen voimajärjestelmä ja lisästabiloinnit VJV 2013, vaatimukset lisästabiloinnille

Lisätiedot

Luento 7. Järjestelmien kokoaminen osista

Luento 7. Järjestelmien kokoaminen osista Luento 7 Lineaaristen järjestelmien analyysi Järjestelmä yhdistelmät, takaisinkytkentä Taajuusvaste Stabiilisuus analyysi taajuustasossa 8..6 Järjestelmien kokoaminen osista Lineaaristen järjestelmien

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Moottorin säätö. Miikka Ihonen 67367P Sampo Salo 79543L Kalle Spoof 83912K John Boström 83962B Venla Viitanen 84514C

Moottorin säätö. Miikka Ihonen 67367P Sampo Salo 79543L Kalle Spoof 83912K John Boström 83962B Venla Viitanen 84514C Moottorin säätö Miikka Ihonen 67367P Sampo Salo 79543L Kalle Spoof 83912K John Boström 83962B Venla Viitanen 84514C Tehtävän määrittely Tehtävän aiheena on moottorin tyhjäkäynnin säätö. Tehtävässä tulee

Lisätiedot

ELEC-C1230 Säätötekniikka. Luku 10: Digitaalinen säätö, perusteet, jatkuu

ELEC-C1230 Säätötekniikka. Luku 10: Digitaalinen säätö, perusteet, jatkuu ELEC-C230 Säätötekniikka Luku 0: Digitaalinen säätö, perusteet, jatkuu Johdanto: Digitaalinen (diskreetti, diskreettiaikainen) säätöjärjestelmä r(tk) _ e(tk) Säädin u(tk) D/A u(t) Prosessi y(t) A/D y(tk)

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.

Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen. 25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

KANDIDAATINTYÖ. Tuukka Junnikkala SÄHKÖTEKNIIKAN KOULUTUSOHJELMA

KANDIDAATINTYÖ. Tuukka Junnikkala SÄHKÖTEKNIIKAN KOULUTUSOHJELMA KANDIDAATINTYÖ Tuukka Junnikkala SÄHKÖTEKNIIKAN KOULUTUSOHJELMA 2015 KANDIDAATINTYÖ Tuukka Junnikkala Ohjaajat: Kari Määttä, Antti Mäntyniemi SÄHKÖTEKNIIKAN KOULUTUSOHJELMA 2015 Junnikkala T. (2015) Kandidaatintyö.

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

Järjestelmien kokoaminen osasysteemeistä. ELEC-C1230 Säätötekniikka. Lohkokaaviomuunnokset: Signaalit. Signaalin kulkeminen lohkon läpi

Järjestelmien kokoaminen osasysteemeistä. ELEC-C1230 Säätötekniikka. Lohkokaaviomuunnokset: Signaalit. Signaalin kulkeminen lohkon läpi Järjestelmien kokoaminen osasysteemeistä ELEC-C1230 Säätötekniikka Luku 4: Lohkokaaviomuunnokset, PID-säädin ja kompensaattorit, Edellisillä luennoilla on tarkasteltu yksittäisiä ilmiöitä ja niiden malleja

Lisätiedot

Kon Hydraulijärjestelmät

Kon Hydraulijärjestelmät Kon-41.4040 Hydraulijärjestelmät Laboratorioharjoitus 2: Sähköhydraulisen järjestelmän säätö Jyri Juhala Jyrki Kajaste (Heikki Kauranne) Hydraulijärjestelmän venttiilin ohjausmenetelmät Ohjaus Kompensointi

Lisätiedot

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:

Lisätiedot

IRMPX asettelu ja asennusohje

IRMPX asettelu ja asennusohje IRMPX asettelu ja asennusohje 3.7.3 Läkkisepäntie 2A 62 HELSINKI MPX asetteluohje Termostaatin asettelulämpötilan muuttaminen 1. Paina SEL painiketta 2. Muuta haluttu lämpötila näyttöön nuolinäppäimillä

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

Alias-ilmiö eli taajuuden laskostuminen

Alias-ilmiö eli taajuuden laskostuminen Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan

Lisätiedot

M 4MEG 1N I 3MEG 1N J 1.69MEG 1.78N L 533K 5.62N D 178K 5.62N B 562K 1.78N

M 4MEG 1N I 3MEG 1N J 1.69MEG 1.78N L 533K 5.62N D 178K 5.62N B 562K 1.78N Johdanto Harjoitustyön ohjeet Laboratoriotyössä harjoitellaan sähköisten piirien simulointia, ja simuloinnit tehdään työasemaympäristössä käyttäen kaupallista ohjelmistopakettia, joka sisältää piirikaavioeditorin

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Parametristen mallien identifiointiprosessi

Parametristen mallien identifiointiprosessi Parametristen mallien identifiointiprosessi Koesuunnittelu Identifiointikoe Epäparametriset menetelmät Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Mallin validointi Mallin käyttö &

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin taajuusominaisuuksien

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Transientti- ja korrelaatioanalyysi tähtäävät impulssivasteen (askelvasteen) mallintamiseen Kuvaus aikatasossa Taajuus- Fourier- ja spektraalianalyysi tähtäävät

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Vahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka

Vahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka Vahvistimet Vahvistaa pienen jännitteen tai virran suuremmaksi Vahvistusta voidaan tarvita monessa kohtaa mittausketjua (lähetys- ja vastaanottopuolella) Vahvistuksen valinta Käytetään kvantisointi alue

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Säätökeskus RVA36.531

Säätökeskus RVA36.531 Säätökeskus Asennusohje 1. Johdanto Tämä ohje koskee säätökeskusta joka on tarkoitettu lämmönsäätöön pientaloissa jossa on vesikiertoinen lämmitysjärjestelmä.ohje tulee säilyttää lähellä säädintä.. Säätökeskus

Lisätiedot