Mitä on signaalien digitaalinen käsittely

Koko: px
Aloita esitys sivulta:

Download "Mitä on signaalien digitaalinen käsittely"

Transkriptio

1 Mitä on signaalien digitaalinen käsittely Signaalien digitaalinen analyysi: mitä sisältää, esim. mittaustulosten taajuusanalyysi synteesi: signaalien luominen, esim. PC:n äänikortti käsittely: oleellisen poimiminen, suodattaminen Signaali on mikä tahansa suure, joka vaihtelee ajan, paikan tai minkä tahansa muuttujan funktiona: ääni kuva mittalaitteen mittaustulos (c) Antti Kosonen

2 Sovelluksia: häiriöiden poisto mittaussignaalista informaatiota sisältävien taajuuksien poimiminen taajuusanalyysi (mittaustulokset) puheentunnistus audiosovellukset: CD, DVD, DAT, MD, äänikortit kuvankäsittely: pakkaus, hahmontunnistus (c) Antti Kosonen

3 Mitä digitaalinen signaalinkäsittely on käytännössä: Suunnittelua ja toteutusta o sopivan suodattimen valinta ja analyysi näytteenottotaajuus, stabiilius, rakenne jne. o suodattimen toteutus ohjelmallinen (DSP, yleiskäyttöinen tietokone) piiritoteutus (PLD, ASIC, FPGA) rajallisen bittimäärän vaikutukset Analysointia (c) Antti Kosonen

4 Mitä digitaalisen signaalinkäsittelyn opintojaksoilla opiskellaan Signaalien digitaalinen käsittely: Signaalien ja järjestelmien ominaisuudet ja niiden analysointi Suodatinten suunnittelun ja toteuttamisen perusteet DFT:n ja FFT:n perusteet Digitaalinen suodatus: Äärellisen sananpituuden vaikutukset ja niiden estäminen Suodatinten suunnittelu ja toteutus ohjelmallisesti Näytteenottotaajuuden muuttaminen Mediaani ja adaptiiviset suodattimet Säätötekniikan ja signaalinkäsittelyn työkurssi: Edellä oleviin opintojaksoihin liittyviä harjoitus ja laboratoriotöitä Digitaalisen signaalinkäsittelyn erikoiskurssi: Satunnaissignaalien käsittely, spektrin estimointi (c) Antti Kosonen

5 Luentoaiheet 1. Johdanto: näytteenoton periaate 2. Diskreettiaikaiset signaalit ja järjestelmät 3. z muunnos ja sen soveltaminen lineaaristen aikainvarianttien järjestelmien analyysiin 4. Taajuustason analyysimenetelmät 5. Diskreetti Fourier muunnos (DFT) 6. Nopea Fourier muunnos (FFT) (c) Antti Kosonen

6 Signaalit, järjestelmät ja signaalinkäsittely Signaali on mikä tahansa suure, joka vaihtelee ajan, paikan tai minkä tahansa muuttujan tai muuttujien funktiona o Esim ajan funktiona, paikan funktiona Aina signaalin tarkka matemaattinen esittäminen ei ole mahdollista o Esim. puhe tällainen signaali voidaan esittää sinisignaalien summana sin 2π (c) Antti Kosonen

7 Signaaleja saadaan aikaan eri tavoin signaalin lähde järjestelmä, joka vastaa herätteeseen Järjestelmällä tarkoitetaan myös laitetta (eng. hardware), joka käsittelee signaalia o Esim. häiriöiden suodatus Laitteen suorittamaa tehtävää nimitetään signaalinkäsittelyksi Digitaalisen signaalinkäsittelyn yhteydessä järjestelmän määrittelyä on tarkoituksenmukaista laajentaa käsittämään konkreettisten laitteiden lisäksi myös operaatioiden ohjelmalliset toteutukset (eng. software) (c) Antti Kosonen

8 Esimerkki puhesignaalista 1 Amplitudi Aika [s] Kuva. Graduate.wav ääninäyte. graduate.wav (c) Antti Kosonen

9 Digitaalisen signaalinkäsittelyjärjestelmän perusosat ) = C E A JK I EC = = E N = J ) = C E A I EC = = E I EJJA E O = J ) = C E A D J I EC = = E Kuva. Analoginen signaalinkäsittely. ) = C E A = EF I J I = JE ), K K E, EC EJ= = E A I EC = = E I EJJA E, ) K K E ) = C E A = EF I J I = JE %! " # $ Kuva. Digitaalisen signaalinkäsittelyjärjestelmän lohkokaavio. (c) Antti Kosonen

10 Digitaalisen signaalinkäsittelyn edut ja haitat + Joustavuus = muutosten tekeminen helppoa (ohjelman muuttaminen) + Tarkkuus = tarkkuus on määritettävissä matemaattisen tarkasti (bittien lukumäärä jne.) + Tallennettavuus = off line analysointi + Edullisuus = jossain tapauksissa verrattuna analogiseen toteutukseen + Monimutkaisten algoritmien toteutus mahdollista Laajakaistaisten signaalien käsittely (hw ongelma) Ohjelmallisen toteutuksen hitaus (hw ongelma) Kalleus yksinkertaisissa tehtävissä (A/D muunnos) Informaation häviäminen (kvantisointi) (c) Antti Kosonen

11 Signaalien luokittelu monikanavainen ja moniulotteinen signaali Monikanavainen: o Esim. maanpinnan nopeus kolmen akselin suunnassa (kuva) Moniulotteinen (lisäksi monikanavainen) o Esim. TV signaali (kirkkaus paikan ja ajan funktiona),,,,,,,, Kuva. Maanpinnan nopeus. Kolme kanavaa. (c) Antti Kosonen

12 Tällä opintojaksolla käsitellään pääasiassa yksikanavaisia ja yksiulotteisia signaaleja, jotka voivat olla reaalisia tai kompleksisia o Esim. sin 3π cos 3π sin 3π Nämä signaalit voivat olla minkä tahansa riippumattoman muuttujan funktioita, tavallisesti kuitenkin ajan Kuva. Kaksiulotteinen signaali. (c) Antti Kosonen

13 Signaalien luokittelu jatkuva ja diskreettiaikaiset signaalit Jatkuva aikaiset signaalit o Analogiset signaalit: määritelty kaikilla ajanhetkillä jollakin aikavälillä (a,b) Diskreettiaikaiset signaalit o Määritelty vain tiettyinä ajanhetkinä o Tietyt ajanhetket : ajanhetkien ei tarvitse olla tasavälein, mutta usein näin kuitenkin on o Esim. tasavälein, 0, 1, 2,, missä on aikaindeksi ja aikaväli Diskreettiaikaisia signaaleja saadaan 1. Valitsemalla analogisen signaalin arvoja diskreetteinä ajanhetkinä: näytteenotto (eng. sampling). 2. Laskemalla yhteen muuttujan arvoa tietyn aikavälin aikana: esimerkiksi tietä ajavien autojen lukumäärä tunnissa. (c) Antti Kosonen

14 Esimerkki diskreettiaikaisesta signaalista Signaalin diskreettiaikaisuutta voidaan korostaa merkitsemällä signaalia :llä :n sijasta Esim. 0,8, jos 0 0, muuten 1 x(n) n Kuva. Diskreettiaikaisen signaalin graafinen esitys. (c) Antti Kosonen

15 Signaalien luokittelu jatkuva ja diskreettiarvoiset signaalit Signaalin arvot voivat olla jatkuvia tai diskreettejä: Jatkuva aikainen, jatkuva( arvoinen) signaali Jatkuva aikainen, diskreetti(arvoinen) signaali Diskreetti aikainen, jatkuva( arvoinen) signaali Diskreetti aikainen, diskreetti(arvoinen) signaali x a (t) 0 x a (t) t t (a) (b) x(n) 0 x(n) n n (c) Kuva. Signaalin neljä eri kategoriaa sen aikamuuttujan ja arvojen suhteen. (d) (c) Antti Kosonen

16 Signaalien luokittelu deterministiset ja satunnaissignaalit Deterministiset Matemaattinen malli Signaali tunnetaan tarkasti ilman epävarmuutta Satunnaiset Tilastollinen käsittely Ei ennustettavissa käytännössä Ei voida kuvata matemaattisesti Luokittelu tärkeää Voi johtaa vääränlaisiin tuloksiin, koska jotkut menetelmät soveltuvat ainoastaan deterministisille ja toiset vain satunnaisille signaaleille (c) Antti Kosonen

17 Jatkuva ja diskreettiaikaisten signaalien taajuus Jatkuva aikaiset sinisignaalit cos ΩΘ, cos 2πΘ, missä alaindeksi a merkitsee analogista on amplitudi Ω on kulmataajuus [rad/s] Θ on (nolla)vaihekulma [rad] Ω2π(huom! Iso kirjain ) N = J 6 F. ) )? I 3 J Kuva. Analoginen sinisignaali. (c) Antti Kosonen

18 Jatkuva aikaisella sinisignaalilla on seuraavat ominaisuudet: 1. Signaali on jaksollinen 1 on sinisignaalin perusjakso 2. Eritaajuiset sinisignaalit ovat eri signaaleita. 3. Taajuuden kasvattaminen johtaa värähdysten lukumäärän kasvamiseen tiettynä aikavälinä. Samat ominaisuudet pätevät myös kompleksisille signaaleille cossin Taajuus voi olla myös negatiivinen (matemaattisessa mielessä) (c) Antti Kosonen

19 cos Ω Θ 2 Analogisen signaalin taajuusalue on siis 2 1 ) 9 9 J 3 9 J 3 4 A ) Kuva. Kosinifunktion esittäminen kahdella vaiheosoittimella. 9 (c) Antti Kosonen

20 Diskreettiaikaiset sinisignaalit cos,, cos 2π,, missä on amplitudi on kulmataajuus [rad/s] on (nolla)vaihekulma [rad] 2π(huom! Pieni kirjain ) N ) Kuva. Diskreettiaikainen sinisignaali, kun π 6ja π 3. (c) Antti Kosonen

21 Diskreettiaikaisella sinisignaalilla on seuraavat ominaisuudet: 1. Diskreettiaikainen signaali on jaksollinen, jos, Pienin jakso, jolle yo. yhtälö pätee, on perusjakso. Todistus Yo. yhtälön mukaan pitää olla cos 2π cos 2π Yhtälö pätee, jos on olemassa vakio, jolloin eli jos 2π 2π Siten diskreettiaikainen signaali on jaksollinen vain, jos sen taajuus voidaan ilmaista kahden kokonaisluvun suhteena (siis on rationaaliluku). (c) Antti Kosonen

22 Perusjakson selvittämiseksi :stä on supistettava yhteiset tekijät. Esimerkiksi, jos , mutta Diskreettiaikaiset sinisignaalit, joiden taajuuksien ero on 2π:n monikerta, ovat samoja Todistus Tarkastellaan signaalia cos : cos 2π cos 2π cos Siten siis kaikki sinimuotoiset sekvenssit cos, 0, 1, 2, 2π, π π ovat yhtäsuuria. Toisaalta kaksi eritaajuista sekvenssiä väliltä π πtai ovat eri sekvenssejä Sinisignaalilla, jonka πtai 1 2, on ekvivalenttinen signaali, jonka π. Signaalia πnimitetään vastaavan signaalin π laskostumaksi (eng. alias). (c) Antti Kosonen

23 3. Diskreettiaikaisen sinisignaalin suurin värähtelytaajuus saadaan, kun π(tai π) tai vastaavasti (tai ). Seuraa ominaisuudesta 2 Matlab esimerkki (c) Antti Kosonen

24 Diskreettiaikaisten signaalien ominaisuudet demonstraatio % jaksollisuus.m % % Demonstroi diskreettien sinisignaalien ominaisuuksia: % % - laskostuminen % - maksimitaajuus % - laskostuminen % Nmax = 40; n = 0:Nmax; f = [0 1/32 1/16 1/8 1/4 1/2 3/4 7/8 15/16 31/32 1]; Nf = length(f); for i = 1:Nf x = cos(2*pi*f(i)*n); stem(n,x) title(['\itf\rm_0 = ' num2str(f(i))]); axis([0 Nmax ]); grid on pause end (c) Antti Kosonen

25 Harmonisessa suhteessa toisiinsa olevat kompleksiset eksponenttifunktiot Joukko jaksollisia kompleksisia eksponenttisignaaleja, jotka ovat yksittäisen positiivisen taajuuden monikertoja Jatkuva aikaiset harmoniset eksponenttisignaalit, 0, 1, 2, Jaksollisen signaalin ominaistaajuus on Jaksonpituus on 1 Kaikilla :n kokonaislukuarvoilla saatavat signaalit voidaan erottaa toisistaan, eli jos, niin Peruseksponenttisignaaleista voidaan muodostaa lineaarikombinaatio missä, 0,1,2, ovat kompleksisia vakioita (c) Antti Kosonen

26 Signaalin perusjakso on 1 Edellä ollutta summalauseketta kutsutaan :n Fourier sarjaksi Vastaavat harmoniset eksponenttisignaalit voidaan muodostaa diskreettiaikaisille eksponenttisignaaleille Koska diskreettiaikainen kompleksinen eksponenttisignaali on jaksollinen, jos sen taajuus on rationaaliluku, valitaan 1 Toisaalta, 0, 1, 2, Siten onkin olemassa vain kappaletta toisistaan erotettavissa olevaa jaksollista kompleksista eksponenttisignaalia, 0,1,2,,1 (c) Antti Kosonen

27 Lineaarikombinaatio on jaksollinen funktio, jonka perusjakso on Tämä on jaksollisen diskreettiaikaisen signaalin Fourier sarja (c) Antti Kosonen

28 A/D ja D/A muunnokset A/D muunnos voidaan jakaa kolmeen vaiheeseen 1. Näytteenotto:, missä on näytteenottoväli 2. Kvantisointi: Kvantisointivirhe: 3. Koodaus: bittinen binääriluku ), K K E N = J O JJA A JJ N L = JEI E JE N = K I ) = C E A I EC = = E, EI HA A JJE= E = E A I EC = = E L = JEI EJK I EC = = E, EC EJ= = E A I EC = = E Kuva. A/D muuntimen perusosat. (c) Antti Kosonen

29 D/A muunnosta ei tarvita kaikissa sovelluksissa D/A muunnos yhdistää diskreettiaikaisen signaalin pisteet jatkuva aikaiseksi käyttäen jonkinlaista interpolointia Nollannen asteen pitopiiri on yksinkertaisin (eng. zero order hold) Lineaarinen interpolaattori on toinen vaihtoehto ) F E 6 " 6 $ 6 & 6 ) E = Kuva. Nollannen asteen pitopiiri (D/A muunnos), missä alkuperäinen signaali on katkoviivalla ja porrasapproksimaatio yhtenäisellä viivalla. (c) Antti Kosonen

30 Näytteenotto Jaksollinen näytteenotto,, missä on näytteenottoväli 1 on näytteenottotaajuus [Hz] Jatkuva aikaisen signaalin aikamuuttujan ja diskreettiaikaisen signaalin aikaindeksin välillä on yhteys O JJA A JJ ) = C E A I EC = = E N = J N = J. I 6 N N N = 6 N = J, EI HA A JJE= E = E A I EC = = E N N = 6 J! " # $ % & ' 6 6 # 6 ' 6 J 6 Kuva. Analogisen signaalin jaksollinen näytteistys. (c) Antti Kosonen

31 Mikä on taajuusmuuttujien (tai Ω) ja (tai ) välinen riippuvuussuhde cos 2π Θ cos 2π cos 2π Toisaalta cos 2π. Siten 2π 2π 2πΩ Ω Edeltä muistetaan taajuusalueet (c) Antti Kosonen

32 Ω ππ Kun nyt tunnetaan yhteydet ja Ωsaadaan diskreettiaikaisen signaalin taajuusrajoituksista rajoitukset näytteenottotaajuudella näytteitettävälle analogiasignaalille tai 2 2 π Ωπ näytteenottoteoreema (c) Antti Kosonen

33 Näytteenottoteoreema Jos analogiasignaalin sisältämä suurin taajuus on ja signaalista otetaan näytteitä taajuudella 2 2, niin voidaan rekonstruoida tarkasti näytearvoistaan, kun käytetään interpolointifunktiota sin 2π sinc 2 2π Matlab esimerkki interpolointifunktiosta: % Interpolointifunktio % t = -5:1e-3:5; B = 1; g = sinc(2*b.*t); figure plot(t,g); title('interpolointifunktio') grid on (c) Antti Kosonen

34 Näytteenottoteoreema jatkuu Näytteenottoteoreeman perusteella rekonstruoitu signaali voidaan ilmaista muodossa N = J O JA N = JI J= missä Jos näytteenottotaajuus on minimiarvo 2 sin 2π 2 2 2π Kuva. Ideaalinen D/Amuunnos (interpolointi). Tällainen rekonstruointi on ideaalinen, mutta vaadittu näytteiden ääretön määrä tekee käytännön toteuttamisen mahdottomaksi J Näytteenottotaajuutta 22 kutsutaan Nyquist taajuudeksi (c) Antti Kosonen

35 Näytteenotto esimerkki Esimerkki Analogiasignaalin kuvaa funktio 3cos 50π 10 sin 300π cos 100π Mikä on signaalin Nyquist taajuus? (c) Antti Kosonen

36 Näytteenotto ratkaisu Ratkaisu Signaali sisältää taajuudet 25 Hz, 150 Hz, 50 Hz Siten 150 Hz ja Nyquist taajuus 2. Siten 300 Hz Huomaa, jos 300 Hz, niin 3cos 50π 300π 100π 10sin cos valitaan 300 Hz 3cos π 10sin π 6 cos π 3 (c) Antti Kosonen

37 Laskostuminen Mitä tapahtuu analogiasignaalin taajuuksille 2 ne laskostuvat taajuusalueelle 2 Olkoon cos 2π Θ, jota näytteistetään taajuudella 1 cos 2π missä (olkoon 2 2) Tarkastellaan sitten signaaleja, joiden taajuus on, 1,2, cos 2π Θ (c) Antti Kosonen

38 Näytteistettävä signaali on siten cos 2π cos 2π 2π cos 2π Taajuudet ( 2) näyttävät samalta kuin taajuus (c) Antti Kosonen

39 B M F. I. I. I. I. F 1 Kuva. Yhteys jatkuva ja diskreettiaikaisten signaalien taajuusmuuttujien välillä jaksollisessa näytteenotossa. Amplitudi Aika [s] Kuva. Laskostumisen havainnollistaminen. (c) Antti Kosonen

40 Laskostuminen esimerkki Esimerkki Tarkastellaan analogista signaalia 3cos 2000π 5 sin 6000π 10 cos 12000π a) Mikä on signaalin Nyquist taajuus? b) Signaalista otetaan näytteitä näytteenottotaajuudella 5000 Hz. Mitä taajuuksia saatava diskreettiaikainen signaali sisältää? Jos tapahtuu laskostumista, miltä taajuuksilta laskostuvat taajuudet näyttävät? c) Mikä analoginen signaali saadaan signaalista, jos käytettävissä on ideaalinen interpolaattori? Ratkaisu Esitetään luennolla. (c) Antti Kosonen

41 Laskostuminen esimerkki Esimerkki Eräästä signaalista tiedetään, että sen sisältämä energia on kokonaan taajuuksien 90 MHzja 100 MHz välissä. Signaalista muodostetaan näytteenotolla digitaalinen signaali. Mikä on tarvittava miniminäytteistystaajuus? Ratkaisu Signaalin taajuuskaista 10MHz. Koska alkuperäinen taajuuskaista on tunnettu, eikä signaali sisällä muita taajuuksia, voidaan käyttää näytteenottotaajuutta 2, koska tällöin kaikki signaalin taajuuskomponentit laskostuvat taajuusalueelle 0 2. Siten, 20 MHz. (c) Antti Kosonen

42 Kvantisointi Kvantisointivirhe signaalin kvantisointi hävittää informaatiota Pyöristyksessä missä Δ 2 Δ 2 Δ 1 missä on kvantisointitasojen lukumäärä :n kasvattaminen pienentää kvantisointiporrasta Δ kvantisointivirhe pienenee ja tarkkuus kasvaa Analogisten signaalien kvantisointi hävittää aina informaatiota Kvantisointivirheen suuruutta voidaan kuvata signaali kvantisointikohinasuhteen (eng. signal to quantization noise ratio, SQNR) avulla (c) Antti Kosonen

43 Esim. diskreettiaikainen signaali: 0,9, 0 0, 0 saadaan ottamalla näytteitä analogisesta eksponenttisignaalista 0,9, 0 taajuudella 1 Hz & $ " N ' N = J ' J L = JE I E JE = K A & $ " N = J ' J N G, L = JEI E JE J= I L = JEI E JE = I A! " # $ % & 6 Kuva. Näytteitä analogisesta signaalista.! " # $ % & 6 Kuva. Kvantisoidut näytteet analogisesta signaalista pyöristämällä. (c) Antti Kosonen

44 Sinimuotoiselle signaalille voidaan johtaa desibeleinä SQNR SQNR db 10 log SQNR 3 10log 2 2 1,766,02 Sananpituuden kasvattaminen yhdellä bitillä kasvattaa signaalikvantisointikohinasuhdetta siis noin 6 db Esim. CD: 16 bittiä 96 db ) F E ",!,,,,,!, ", ) F EI HA J E JE L = JEI EJK O JA N G 6 ) E EI HA J E JE L = JEI E = J O JA N = 6 ) K F A H E A = = C E= I EC = = E N = J, ) K K JE A D J 0 N G J 6 6! 6 " 6 # 6 $ 6 % 6 & 6 ' 6 ) E = Kuva. Sinimuotoisen signaalin näytteenotto ja kvantisointi. J, L = JEI E JE = I A L = JEI E JE = K A L = JEI E JE J= I (c) Antti Kosonen

45 Kvantisointisoitujen tasojen koodaminen Koodauksessa kukin kvantisointitaso kuvataan omalla binääriluvulla Jos kvantisointitasoja on kappaletta, tarvitaan vähintään eri binäärilukua Sananpituudella bittiä voidaan kuvata 2 eri binäärilukua Siten on oltava 2, joten tarvitaan vähintään log bittiä (c) Antti Kosonen

46 Näytteistys esimerkki Esimerkki PCM (eng. pulse code modulation) äänen välitykseen on käytössä kanava, missä bps. Etsi sopivat arvot kvantisoinnissa käytettävälle bittimäärälle, kvantisointitasoille ja näytteistystaajuudelle oletuksella 3,2 khz. (c) Antti Kosonen

47 Näytteistys ratkaisu Ratkaisu Kavavalle bps, Hz joten b s s 5,6 5 ja , 7,2kHz CD standardi: 16, 44,1 khz 705,6 kbps kaksi kanavaa (stereo) 2 1,4112 Mbps 20 log 2 96 db(dynaaminen alue) Lisäksi virheenkorjausinformaatio yms. (c) Antti Kosonen

Signaalien digitaalinen käsittely

Signaalien digitaalinen käsittely Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

Virheen kasautumislaki

Virheen kasautumislaki Virheen kasautumislaki Yleensä tutkittava suure f saadaan välillisesti mitattavista parametreistä. Tällöin kokonaisvirhe f määräytyy mitattujen parametrien virheiden perusteella virheen kasautumislain

Lisätiedot

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen

1 Diskreettiaikainen näytteistys. 1.1 Laskostuminen. Laskostuminen AD/DA muunnos Lähteet: Pohlman. (1995). Principles of digital audio (3rd ed). Zölzer. (008). Digital audio signal processing (nd ed). Reiss. (008), Understanding sigma-delta modulation: The solved and

Lisätiedot

Digitaalinen audio & video I

Digitaalinen audio & video I Digitaalinen audio & video I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva + JPEG 1 Johdanto Multimediassa hyödynnetään todellista ääntä, kuvaa ja videota

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Alias-ilmiö eli taajuuden laskostuminen

Alias-ilmiö eli taajuuden laskostuminen Prosessiorientoituneet mallit Todellista hybridijärjestelmää ELEC-C1230 Säätötekniikka Luku 12: Näytteenottoteoreema ja jatkuvien säätimien diskreetit approksimaatiot Prosessiorientoituneet mallit katsotaan

Lisätiedot

T140103 Sähkömittaustekniikka

T140103 Sähkömittaustekniikka T140103 Sähkömittaustekniikka Pekka Rantala Kevät 2015 (9.3.2015) Vaadittavat suoritukset Välikokeiden tai tentin hyväksytty suorittaminen Harjoituksissa/labrassa läsnäolo (100 %) Harjoitusten/labrojen

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus

Lisätiedot

LABORATORIOTYÖ 2 A/D-MUUNNOS

LABORATORIOTYÖ 2 A/D-MUUNNOS LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

puheen laatu kärsii koodauksesta mahdollisimman vähän. puhe pakkautuu mahdollisimman pieneen määrään bittejä.

puheen laatu kärsii koodauksesta mahdollisimman vähän. puhe pakkautuu mahdollisimman pieneen määrään bittejä. Luku 1 Puheen koodaus Puheen koodauksella tarkoitetaan puhesignaalin esittämiseen tarvittavan bittimäärän pienentämistä sillä tavalla, että puhesignaalin laatu ja ymmärrettävyys kärsivät mahdollisimman

Lisätiedot

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio

Digitaalinen audio & video, osa I. Johdanto. Digitaalisen audion sovellusalueet. Johdanto. Taajuusalue. Psykoakustiikka. Johdanto Digitaalinen audio Digitaalinen audio & video, osa I Johdanto Digitaalinen audio + Psykoakustiikka + Äänen digitaalinen esitys Digitaalinen kuva +JPEG Petri Vuorimaa 1 Johdanto Multimediassa hyödynnetään todellista ääntä,

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio

Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka. Vfo135 ja Vfp124 Martti Vainio Johdanto tieto- viestintäteknologian käyttöön: Äänitystekniikka Vfo135 ja Vfp124 Martti Vainio Akustiikka Äänityksen tarkoitus on taltioida paras mahdo!inen signaali! Tärkeimpinä kolme akustista muuttujaa:

Lisätiedot

Digitaalinen Audio & Video I

Digitaalinen Audio & Video I Digitaalinen Audio & Video I Johdanto Digitaalinen audio Psykoakustiikka Äänen digitaalinen esitys Monikanavaääni ja äänen digitaalinen siirto Digitaalinen kuva Diskreetti kosiinimuunnos JPEG 1 Johdanto

Lisätiedot

T-61.246 DSP: GSM codec

T-61.246 DSP: GSM codec T-61.246 DSP: GSM codec Agenda Johdanto Puheenmuodostus Erilaiset codecit GSM codec Kristo Lehtonen GSM codec 1 Johdanto Analogisen puheen muuttaminen digitaaliseksi Tiedon tiivistäminen pienemmäksi Vähentää

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon

Lisätiedot

SGN-4200 Digitaalinen audio

SGN-4200 Digitaalinen audio SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

11. kierros. 1. Lähipäivä

11. kierros. 1. Lähipäivä 11. kierros 1. Lähipäivä Viikon aihe AD/DA-muuntimet Signaalin digitalisointi Kvantisointivirhe Kvantisointikohina Kytkinkapasitanssipiirit Mitoitus Kontaktiopetusta: 6 tuntia Kotitehtäviä: 4 tuntia Tavoitteet:

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

Puhetie, PCM järjestelmä, johtokoodi

Puhetie, PCM järjestelmä, johtokoodi Puhetie, PCM järjestelmä, johtokoodi PCM~PulseCodeModulation Näytteenotto Kvantisointi ÿ Lineaarinen ÿ Epälineaarinen Kvantisointisärö TDM-kanavointi PCM-kehysrakenne, CRC -ylikehys PCM, PCM, PCM 8, PCM

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

Juha Henriksson. Digitaalinen äänentallennus. 5.12.2005 Dr. Juha Henriksson Finnish Jazz & Pop Archive

Juha Henriksson. Digitaalinen äänentallennus. 5.12.2005 Dr. Juha Henriksson Finnish Jazz & Pop Archive Juha Henriksson Digitaalinen äänentallennus 1 Äänen korkeus Ääni on värähtelyä, joka etenee ilmassa ilmamolekyylien harventumina ja tiivistyminä Äänen korkeutta kutsutaan äänen taajuudeksi Taajuuden yksikkö

Lisätiedot

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen

AV-muotojen migraatiotyöpaja - ääni. KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen AV-muotojen migraatiotyöpaja - ääni KDK-pitkäaikaissäilytys 2013 -seminaari 6.5.2013 / Juha Lehtonen Äänimuodot Ääneen vaikuttavia asioita Taajuudet Äänen voimakkuus Kanavien määrä Näytteistys Bittisyvyys

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus

1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus 1. Perusteita 1. Äänen fysiikkaa 2. Psykoakustiikka 3. Äänen syntetisointi 4. Samplaus ja kvantisointi 5. Tiedostoformaatit 1.1. Äänen fysiikkaa ääni = väliaineessa etenevä mekaaninen värähtely (aaltoliike),

Lisätiedot

8000203: Johdatus signaalinkäsittelyyn 1

8000203: Johdatus signaalinkäsittelyyn 1 TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste -23 Heikki

Lisätiedot

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi. 3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn

Lisätiedot

Perusmittalaitteet. Oskilloskooppi. Oskilloskooppi. Mittaustekniikan perusteet / luento 3. Oskilloskooppi. Oskilloskooppi

Perusmittalaitteet. Oskilloskooppi. Oskilloskooppi. Mittaustekniikan perusteet / luento 3. Oskilloskooppi. Oskilloskooppi Mittaustekniikan perusteet / luento 3 Perusmittalaitteet Oskilloskooppi Tärkein ja monipuolisin elektroniikkamittalaite Mittauksia: jännite, taajuus, muutosilmiöt, kohina, säröytyminen... Oskilloskooppi

Lisätiedot

Perusmittalaitteet. Oskilloskooppi. Tärkein ja monipuolisin elektroniikkamittalaite. Piirtää mitattavasta suureesta graafin

Perusmittalaitteet. Oskilloskooppi. Tärkein ja monipuolisin elektroniikkamittalaite. Piirtää mitattavasta suureesta graafin Mittaustekniikan perusteet / luento 2 Perusmittalaitteet Tärkein ja monipuolisin elektroniikkamittalaite Mittauksia: jännite, aaltomuoto, taajuus, muutosilmiöt, kohina, säröytyminen... Hyvä työkalu häiriöiden

Lisätiedot

Kuvan pakkaus JPEG (Joint Photographic Experts Group)

Kuvan pakkaus JPEG (Joint Photographic Experts Group) Kuvan pakkaus JPEG (Joint Photographic Experts Group) Arne Broman Mikko Toivonen Syksy 2003 Historia 1840 1895 1920-luku 1930-luku Fotografinen filmi Louis J. M. Daguerre, Ranska Ensimmäinen julkinen elokuva

Lisätiedot

Signaalinkäsittelyn sovellukset

Signaalinkäsittelyn sovellukset Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita Flash AD-muunnin Flash AD-muunnin koostuu monesta peräkkäisestä komparaattorista, joista jokainen vertaa muunnettavaa signaalia omaan referenssijännitteeseensä. Referenssijännite aikaansaadaan jännitteenjaolla:

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu

S-38.1105 Tietoliikennetekniikan perusteet. Jukka Manner Teknillinen korkeakoulu S-38.1105 Tietoliikennetekniikan perusteet Jukka Manner Teknillinen korkeakoulu Luento 3 Signaalin siirtäminen Tiedonsiirron perusteita Jukka Manner Teknillinen korkeakoulu Luennon ohjelma Termejä, konsepteja

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Heikki Huttunen Signaalinkäsittelyn perusteet

Heikki Huttunen Signaalinkäsittelyn perusteet Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 24: Tampere University of Technology. Department of Signal Processing. Lecture Notes 24: Heikki Huttunen Signaalinkäsittelyn perusteet

Lisätiedot

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt

Lisätiedot

A / D - MUUNTIMET. 2 Bittimäärä 1. tai. A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter )

A / D - MUUNTIMET. 2 Bittimäärä 1. tai. A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter ) A / D - MUUNTIMET A / D muunnin, A/D converter, ADC, ( Analog to Digital Converter ) H. Honkanen Muuntaa analogisen tiedon ( yleensä jännite ) digitaalimuotoon. Lähtevä data voi olla sarja- tai rinnakkaismuotoista.

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia, 3 op 9 luentoa, 3 laskuharjoitukset ja vierailu mittausasemalle Tentti Oppikirjana Rinne & Haapanala:

Lisätiedot

Signaalinkäsittelyn menetelmät

Signaalinkäsittelyn menetelmät Signaalinkäsittelyn laitos. Opetusmoniste 25: Institute of Signal Processing. Lecture Notes 25: Heikki Huttunen Signaalinkäsittelyn menetelmät Tampere 25 Opetusmoniste 25: Signaalinkäsittelyn menetelmät

Lisätiedot

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

Signaalien datamuunnokset. Näytteenotto ja pito -piirit

Signaalien datamuunnokset. Näytteenotto ja pito -piirit Signaalien datamuunnokset Muunnoskomponentit Näytteenotto ja pitopiirit Multiplekserit A/D-muuntimet Jännitereferenssit D/A-muuntimet Petri Kärhä 26/02/2008 Signaalien datamuunnokset 1 Näytteenotto ja

Lisätiedot

8000253: Johdatus signaalinkäsittelyyn 2

8000253: Johdatus signaalinkäsittelyyn 2 TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23

Lisätiedot

Peruskerros: OFDM. Fyysinen kerros: hajaspektri. Hajaspektri: toinen tapa. FHSS taajuushyppely (frequency hopping)

Peruskerros: OFDM. Fyysinen kerros: hajaspektri. Hajaspektri: toinen tapa. FHSS taajuushyppely (frequency hopping) Fyysinen kerros: hajaspektri CSMA/CA: Satunnaisperääntyminen (Random backoff) samankaltainen kuin Ethernetissä Kilpailuikkuna : 31-1023 aikaviipaletta oletusarvo 31 kasvaa, jos lähetykset törmäävat, pienee

Lisätiedot

KERTALUKUANALYYSI KAIVOSKONEEN MELUKARTOITUKSESSA 1 JOHDANTO 2 MITTAUKSET. Velipekka Mellin

KERTALUKUANALYYSI KAIVOSKONEEN MELUKARTOITUKSESSA 1 JOHDANTO 2 MITTAUKSET. Velipekka Mellin Velipekka Sandvik Mining and Construction Oy PL 434, 20101 TURKU velipekka.mellin@sandvik.com 1 JOHDANTO Kertalukuanalyysi (engl. order analysis) on pyörivään komponenttiin verrannollisen vasteen amplitudin

Lisätiedot

S 38.1105 Tietoliikennetekniikan perusteet. Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet

S 38.1105 Tietoliikennetekniikan perusteet. Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet S 38.1105 Tietoliikennetekniikan perusteet Luento 2 25.1.2006 Informaatioteorian alkeita Tiedonsiirron perusteet Luennon aiheet Analogisesta digitaaliseksi signaaliksi Signaalin siirtoa helpottavat / siirron

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä

S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 1-17.03.2006. Jarkko.Vuori@evtek.fi. Yleistiedot

Digitaalinen Signaalinkäsittely T0125 Luento 1-17.03.2006. Jarkko.Vuori@evtek.fi. Yleistiedot Digitaalinen Signaalinkäsittely T0125 Luento 1-17.03.2006 Jarkko.Vuori@evtek.fi Oi sielu, rohkenetko, lähteä matkaani kohti tuntematonta seutua, missä ei ole maata astella, ei polkua seurata. Darest Thou

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

Mitä on multimedia? Multimedia. Jatkuva-aikainen media. Yleisimmät mediatyypit. Jatkuvan median käsittelyvaiheet. Interaktiivuus

Mitä on multimedia? Multimedia. Jatkuva-aikainen media. Yleisimmät mediatyypit. Jatkuvan median käsittelyvaiheet. Interaktiivuus Multimedia Mitä on multimedia? Mediatyypit +Teksti + Grafiikka + Audio + Kuva +Video Siirtoformaatit Mitä on multimedia? Multimedia = monta mediaa Käyttäjän vuorovaikutus = interaktiivisuus Käsikirjoitus

Lisätiedot

TEEMU VALLINAHO MEKAANISTEN HÄLYTINÄÄNIEN TUNNISTAMINEN

TEEMU VALLINAHO MEKAANISTEN HÄLYTINÄÄNIEN TUNNISTAMINEN TEEMU VALLINAHO MEKAANISTEN HÄLYTINÄÄNIEN TUNNISTAMINEN Diplomityö Tarkastaja: professori Ireneusz Defee, laboratorioinsinööri Heimo Ihalainen Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka

Anturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla

Lisätiedot

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2)

Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2) Yleistä Digitaalisen äänenkäsittelyn perusteet Jouni Smed jouni.smed@utu.fi syksy 2006 laajuus: 5 op. (3 ov.) esitiedot: Java-ohjelmoinnin perusteet luennot: keskiviikkoisin 10 12 12 salissa β perjantaisin

Lisätiedot

Tahdonalaisen lihasaktiviteetin havaitseminen EMG-signaalista neuroverkon avulla. Pekka-Henrik Niemenlehto

Tahdonalaisen lihasaktiviteetin havaitseminen EMG-signaalista neuroverkon avulla. Pekka-Henrik Niemenlehto Tahdonalaisen lihasaktiviteetin havaitseminen EMG-signaalista neuroverkon avulla Pekka-Henrik Niemenlehto Tampereen yliopisto Tietojenkäsittelytieteiden laitos Pro gradu -tutkielma Joulukuu 2004 Tampereen

Lisätiedot

Mono- ja stereoääni Stereoääni

Mono- ja stereoääni Stereoääni 1 Mitä ääni on? Olet ehkä kuulut puhuttavan ääniaalloista, jotka etenevät ilmassa näkymättöminä. Ääniaallot käyttäytyvät meren aaltojen tapaan. On suurempia aaltoja, jotka ovat voimakkaampia kuin pienet

Lisätiedot

Mul$media. Jyry Suvilehto Alkuperäiset kalvot Petri Vuorimaa

Mul$media. Jyry Suvilehto Alkuperäiset kalvot Petri Vuorimaa Mul$media Jyry Suvilehto Alkuperäiset kalvot Petri Vuorimaa Luennon sisältö Mitä on mul$media? Mediatyypit Teks$ Grafiikka Audio Kuva Video Siirtoformaa$t 19.3.2010 Petri Vuorimaa / Mediatekniikan laitos

Lisätiedot

MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET

MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET DIGITAALIAJAN RATKAISUT DVB-T - Tuotteet PROFILER-SARJA MONIKANAVAISET OHJELMOITAVAT VAHVISTIMET Selektiivisesti vahvistetut kanavaniput digitaalisille ja analogisille signaaleille. Helposti ohjelmointipyörällä

Lisätiedot

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä?

Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? Ongelma 1: Onko datassa tai informaatiossa päällekkäisyyttä? 2012-2013 Lasse Lensu 2 Ongelma 2: Voidaanko dataa tai informaatiota tallettaa tiiviimpään tilaan koodaamalla se uudelleen? 2012-2013 Lasse

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR Risto Vehmas, Juha Jylhä, Minna Väilä ja prof. Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Myönnetty rahoitus: 50 000 euroa Esityksen

Lisätiedot

Marko Neitola (1999) Analoginen korrelaattori WCDMA-vastaanottimessa. Diplomityö. Oulun yliopisto, Sähkötekniikan osasto, 60 s.

Marko Neitola (1999) Analoginen korrelaattori WCDMA-vastaanottimessa. Diplomityö. Oulun yliopisto, Sähkötekniikan osasto, 60 s. 2 Marko Neitola (1999) Analoginen korrelaattori WCDMA-vastaanottimessa. Diplomityö. Oulun yliopisto, Sähkötekniikan osasto, 60 s. TIIVISTELMÄ Tässä työssä toteutettiin analoginen korrelaattorirakenne WCDMAvastaanottimeen.

Lisätiedot

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 9 MITTAUSTIEDON KERUU JA KÄSITTELY

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 9 MITTAUSTIEDON KERUU JA KÄSITTELY OAMK / Tekniikan yksikkö MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 9 MITTAUSTIEDON KERUU JA KÄSITTELY Heikki Kurki TEHTÄVÄN MÄÄRITTELY TEORIA VÄLINEET Työn tehtävänä on tutustua mittausjärjestelmään, jossa

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Analogiatekniikka. Analogiatekniikka

Analogiatekniikka. Analogiatekniikka 1 Opintojakson osaamistavoitteet Opintojakson hyväksytysti suoritettuaan opiskelija: osaa soveltaa ja tulkita siirtofunktiota, askelvastetta, Bodediagrammia ja napa-nolla-kuvaajaa lineaarisen, dynaamisen

Lisätiedot

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset TAMPEREEN TEKNILLINEN KORKEAKOULU 83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset email: ari.asp@tut.fi Huone: TG 212 puh 3115 3811 1. ESISELOSTUS Vastaanottimen yleisiä

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Tiedonsiirron perusteet ja fyysinen kerros. Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93

Tiedonsiirron perusteet ja fyysinen kerros. Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93 Tiedonsiirron perusteet ja fyysinen kerros Tietoliikenne kohtaa todellisuuden OSI-mallin alimmainen kerros Kirja sivut 43-93 Data ja informaatio Data: koneiden tai ihmisten käsiteltävissä oleva tiedon

Lisätiedot

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto

Åbo Akademi 3.5.2011 klo 12-16. Mietta Lennes mietta.lennes@helsinki.fi. Nykykielten laitos Helsingin yliopisto Åbo Akademi 3.5.2011 klo 12-16 Mietta Lennes mietta.lennes@helsinki.fi Nykykielten laitos Helsingin yliopisto Praat-puheanalyysiohjelma Mikä on Praat? Mikä on Praat? Praat [Boersma and Weenink, 2010] on

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014) TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

SWEPT SINE MITTAUSTEKNIIKKA (NOR121 ANALYSAATTORILLA)

SWEPT SINE MITTAUSTEKNIIKKA (NOR121 ANALYSAATTORILLA) SWEPT SINE MITTAUSTEKNIIKKA (NOR121 ANALYSAATTORILLA) KÄYTTÖKOHTEET: mittaukset tiloissa, joissa on kova taustamelu mittaukset tiloissa, joissa ääni vaimenee voimakkaasti lyhyiden jälkikaiunta-aikojen

Lisätiedot

DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA

DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA Opinnäytetyö (AMK) Tietotekniikka Sulautetut ohjelmistot 2014 Jami Koivisto DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA OPINNÄYTETYÖ (AMK) TIIVISTELMÄ TURUN AMMATTIKORKEAKOULU Tietotekniikan

Lisätiedot

D-LUOKAN AUDIOVAHVISTIMEN MODULOINTIMENETELMIEN VERTAILU JA VALINTA

D-LUOKAN AUDIOVAHVISTIMEN MODULOINTIMENETELMIEN VERTAILU JA VALINTA LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT energia, Sähkötekniikan koulutusohjelma, Sovelletun elektroniikan laboratorio KANDIDAATIN TYÖ D-LUOKAN AUDIOVAHVISTIMEN MODULOINTIMENETELMIEN VERTAILU JA VALINTA

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

Lähettimet ja vastaanottimet

Lähettimet ja vastaanottimet Aiheitamme tänään Lähettimet ja vastaanottimet OH3TR:n radioamatöörikurssi Kaiken perusta: värähtelijä eli oskillaattori Vastaanottimet: värähtelijän avulla alas radiotaajuudelta eri lähetelajeille sama

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

AUTOMAATTINEN PUHUJAN TUNNISTUS. Tomi Kinnunen

AUTOMAATTINEN PUHUJAN TUNNISTUS. Tomi Kinnunen AUTOMAATTINEN PUHUJAN TUNNISTUS Tomi Kinnunen Joensuun yliopisto Tietojenkäsittelytieteen laitos Pro gradu tutkielma 15.12.1999 i TIIVISTELMÄ Tutkielmassa perehdytään kirjallisuuden pohjalta automaattiseen

Lisätiedot