DIGITAALINEN SIGNAALINKÄSITTELY lneaarset järjestelmät OSA DIGITAALISEN SIGNAALINKÄSITTELYN PERUSTEET Ramo K. Joknen Turku Insttute of Technology Taga Technology Salo, Fnland
Kannen suunnttelu: Prkanmaan käs ja tadeteollnen opplatos Krjasn: Otskot Chevara 6 p. Asatekst Tmes New Roman p. Krja on tulostettu happovapaalle paperlle, johon tarvttava puu on kaadettu nn, ette ole yltetty metsän vuotusta lsäystä. 998 Ramo Joknen Kakk okeudet pdätetään. Tämän teoksen osttanenkn lanaamnen kopomalla, tallentamalla sähkösest ta jollakn muulla tavon ta lähettämnen radotetse ta kaapela ptkn on kelletty lman tekjänokeuden haltjalta etukäteen saatua krjallsta lupaa. Julkastu Suomessa Uudstettu
Tämä krja on omstettu vamollen Helenalle ja pojallen Janlle. Tämä krja on omstettu myös nlle lukemattomlle hljaslle teteen tekjölle, joden tutkmustyön tuloksena on syntynyt valtava dgtaalsen sgnaalnkästtelyn teoreettnen ja käytännöllnen osaamnen. Ilman näden tutkjoden työn tuloksa tätä krjaa e ols votu krjottaa.
Espuhe Tämä lneaarsen dgtaalsen sgnaalnkästtelyn teoraa tarkasteleva estys on syntynyt lyhyen opetuskokemuksen jälkeen käytännöllsest suuntautuneden teknkan korkeakouluopskeljoden parssa. Dgtaalnen sgnaalnkästtely, DSP, on ylesest melletty yhdeks matemaattsmmsta kurssesta nformaatoteknkan, ta sähköteknkan, kentässä. Opskeljat evät ole ennen korkeakouluun tuloa joutuneet tutustumaan matemaattseen asoden estystapaan ja stä syystä tämäntyyppnen materaal on työläs omaksua ja tekee kursssta vakean. Tosaalta matematkkaa e kutenkaan vo jättää pos, sllä sllon katoaa opskeljolta myös kyky soveltaa dgtaalsta sgnaalnkästtelyä. Edelläkuvattu tlanne on varmast totta, mutta osa asoden vakeudesta tulee myös oppkrjojen vakeasta luettavuudesta, joka e sellasenaan lty matematkkaan. Opettajana tommsen vaatmuksn kuuluu myös 35 ov:n opntokokonasuus opettamsesta ja kasvatustetestä, jota suortan tällä hetkellä. Tähän opskeluun kuuluu päättötyö ja melestän sopva ahe on tutka DSP:n oppmateraaln soveltuvuutta opskeluun. Tällä hetkellä kakk ahealueen oppkrjat ovat englannnkelsä ja tämä on kokemuksen mukaan yks merkttäväst oppmsta vakeuttava tekjä. Tästä syystä on melenkntosta yrttää krjottaa kursllen oppmateraal, joka helpottas opskeljoden oppmsta vakeast omaksuttavassa muodossa olevan materaaln suhteen. Tämänhetksten dgtaalsen sgnaalnkästtelyn oppkrjojen ssältö on hyvn ptkälle standardotunut. Samon oman teollsuudessa DSP suunntteljana ja tutkjana hanktun ptkäakasen kokemuksen mukaan olen päätynyt suunnlleen samankaltaseen ssältöön penn pokkeuksn. Tämä kokemus antaa tovottavast kyvyn yhdstää teoreettnen rakenne käytännön näkemykseen. Monssa oppkrjossa on mukana ohjelmstopakett, ta ohjelmalstauksa, jolla vodaan laskea mona dgtaalsessa sgnaalnkästtelyssä esntyvä tehtävä. Tässä estyksessä olen päätynyt tosenlaseen ratkasuun. Kaupallsest on saatavssa defacto standardks muodostunut matematkkaohjelma Matlab, joka ssältää käytännöllsest kakk DSP funktot. Lsäks Matlab mahdollstaa oman funktokrjaston luomsen. Matlabn käyttö tarjoaa melestän parhaan ratkasun laskentaohjelman tarpeen tyydyttämseen. Matlabn anoa merkttävä hatta on sen korkea hnta, joskn tässäkn suhteessa opskeljaversoden hnnat ovat varsn kohtuullsa. Tässä estyksessä sgnaalnkästtely on jaettu kahteen samalaseen osaa, analognen ja dgtaalnen sgnaalnkästtely (kuva ep.). Kummassakn menetelmässä on löydettävssä samat lmöt ja myös matematkka on kummassakn tapauksessa hyvn samankaltasta. Tyypllsest opskeljoden alottaessa dgtaalsen sgnaalnkästtelyn opskelun, hellä on takanaan jo vastaavat analogsen sgnaalnkästtelyn, ASP, opnnot. Tämä tarkottaa, että
Espuhe Sgnaalnkästtely Analognen Sgnaalnkästtely Matematkka Dfferentaalyhtälöt Laplace muunnos Fourer muunnos Dgtaalnen Sgnaalnkästtely Matematkka Dfferenssyhtälöt Z-muunnos Dskreett Fourer muunnos Srtofunkto Srtofunkto Hs () Ns () Ds () H() N () D () Sgnaalt Sgnaalt A A t nt Taajuusvaste Taajuusvaste A A f f Impulssvaste Impulssvaste A A t nt Kytkentäkaavo Lohkokaavo x() t yt () xn ( ) yn ( ) Kuva ep. Sgnaalnkästtely vodaan jakaa analgseen ja dgtaalseen osaan, jolla on hyvn samankaltanen ssältö. v
Espuhe opskeljolla on jo olemassa perustetämys monsta sgnaalnkästtelyn lmöstä ja tehtävänä on lttää uus dgtaalsen sgnaalnkästtelyn teora tähän ennestään tuttuun yhteyteen. Dgtaalnen sgnaalnkästtely (okeamp term saattas olla dgtaalteknkka) vodaan jakaa osa-auesn useallakn tavalla. Yks mahdollnen jako on estetty kuvassa ep.. Ideana tässä tapauksessa on ollut jakaa DSP perusteoraan, soveltavaan osaan ja toteutukseen ta tuottestukseen. Lsäks on olemassa dgtaalsta sgnaalnkästtelyä svuava aheta, jotka on ryhmtelty oman otskkonsa Dgtaalsta sgnaalnkästtelyä tukevat aheet alle. Samon on näden otskoden alle sjotettu nhn sopva kursseja. Tämä estys kästtele lneaarsta dgtaalsta sgnaalnkästtelyä ekä epälneaarsen DSP:n aheta ole otettu mukaan. Ssältö ja organsaato Tässä estyksessä lneaarnen dgtaalnen sgnaalnkästtely on jaettu 4 lukuun, josta kukn kästtelee omaa erllstä kokonasuutta. Näden lukujen ulkopuolelle jää velä joukko DSP:n errllsalueta, jota e kutenkaan ole haluttu ssällyttää perusteoraa kästtelevään kokonasuuteen. Lukujen ssällöt ovat pääprtessään seuraavat. Johdanto dgtaalseen sgnaalnkästtelyyn esttelee dgtaalsen sgnaalnkästtelyn hstoraa. Samon kästellään dgtaalsen sgnaalnkästtelyn edut ja hatat ja jotakn sovellutusalueta. Dskreettakaset sgnaalt keskustelee dgtaalssta sgnaalesta, operaatosta sgnaalella ja sgnaalen omnasuukssta. Dgtaalsn sgnaalehn lttyvä matematkka kuvataan samonkun dgtaalsten suodattmen yhtälöt. Kaks dgtaalsten suodattmen päätyyppä, äärellsen mpulssvasteen, FIR, ja äärettömän mpulssvasteen, IIR, suodattmet estellään. Luvussa tarkastellaan lmötä sekä aka- että taajuustasossa. Lneaarset järjestelmät luvussa tarkastellaan lneaarsten järjestelmen perusteta ja määrtellään LTI-järjestelmä. Samon kehtetään lneaarsen dgtaalsen järjestelmän vaste. Jatkuva-.akasten sgnaalen dgtaalnen prosessont määrttelee analoga-dgtaal ja dgtaal-analoga-muunnosten teoreettsen perustan. Näytteenotto jatkuva-akassta sgnaalesta määrtellään ja näytteenoton lmötä tarkastellaan suhteessa tulosgnaaln omnasuuksn. Myös analogsen sgnaaln kästtelyä dgtaalsessa järjestelmässä valotetaan. Z-muunnos luku määrttelee erttän tehokkaan työkalun, -muunnoksen ja sen kääntesmuunnoksen ratkasta dgtaalsen sgnaalnkästtelyn ongelma. Dgtaalsen suodatnsunnttelun perusta tarjoaa yleskatsauksen dgtaalseen suodatnsuunntteuun. Äärellsen mpulssvasteen suodattmen suunnttelu kattaa FIR-suodattmen suunnttelun. Äärettömän mpulssvasteen suodattmen suunnttelu tarjoaa tehokkaat menetelmät IIR-suodattmen suunntteluun. välllä. v
Espuhe Tässä estyksessä lneaarsen sgnaalnkästtelyn teora on jaettu kahteen kursn. Usemmlle opskeljolle peruskurss, Dgtaalsen sgnaalnkästtelyn perusteet on anoa DSP-kurss. Tämä tlanne on vakuttanut lukujen jakoon ja ssältöön. Peruskursslasllekn on haluttu luoda katsaus koko dgtaalsen sgnaalnkästtelyn kenttään valtsemalla johdanto-luvun ssältö tätä slmälläptäen. Tosaalta esmerkks äärellsen sanaptuuden vakutukset on kerätty yhteen lukuun jakamatta ahetta esmerkks suodatnlukuhn. Nän on pyrtty takaamaan peruskurssn sopva anesto, jotta sltä pohjalta opskelja pystyy suunnttelemaan yksnkertasa DSP-järjestelmä ja suodattma CAD työkaluja hyväks käyttäen. Matlab muodostaakn oleellsen osan opntojaksoa v
Lyhenteet, symboolt ja erkosfunktot LYHENTEET Lyhenne Alkuperä Suomalanen vastne AC Alternatng current vahtovrta Accumulator akku ACF Autocorrelaton functon autokorrelaatofunkto A/D Analog to dgtal converson analoga dgtaal-muunnos A-D Analog to dgtal converson analoga dgtaal-muunnos ADPCM A daptve dfferental pulse code modulaton adaptvnen dfferentaalnen pulsskood modulaato AGC Automatc gan control automaattnen vahvstuksen säätö ALU Arthmetc logc unt artmeetts loognen ykskkö AM Ampltude modulaton ampltudmodulaato AR Autoregressve autoregressvnen Address regster osoterekster ASP Analog sgnal processng analognen sgnaalnkästtely BLMS Block least mean squares lohkottanen penn keskmääränen nelö BP Bandpass kastanpäästä BPF Bandpass flter kastanpäästösuodatn BS Bandstop kastan esto CD Compact dsc dgtaalnen äänlevy CDMA Code dvson multple acces koodjako CELP Codebook of exted lnear predcton lneaarsen ennustuksen koodkrja CMOS Complementary metal oxde slcon COFDM Coded orthogonal frequency koodattu ortogonaalnen dvson multplex taajuusjakomultpleksont CPU Central processng unt keskus prosessontykskkö D/A Dgtal to analog converson dgtjaal analoga-muunnos D-A Dgtal to analog converson dgtaal analoga-muunnos DC Drect current tasavrta DCT Dscrete cosne transform dskreett kosn-muunnos DFS Dscrete Fourer seres dskreett Fourer-sarja DFT Dscrete Fourer transform dskreett Fourer-muunnos DIF Decmaton n frequency taajuustason desmont DIT Decmaton n tme akatason desmont DM Delta modulaton deltamodulaato (eromodulaato) DMA Dynamc memory allocaton dynaamnen mustn varaus DPCM Dfferental pulse code modulaton dfferentaalnen pulsskoodmodulaato DPSK Dfferental phase shft keyng dfferentaalnen vahesrto modulaato DR Data regster datarekster DSB Double sdeband kakssvunauha DSP Dgtal sgnal processng dgtaalnen sgnaalnkästtely DTFT Dscrete tme Fourer transform dskreett Fourer-muunnos ESD Energy spectral densty energatheysspektr EVR Egenvalue rato omnasarvosuhde FFT Fast Fourer transform nopea Fourer-muunnos FIR Fnte mpulse response äärellnen mpulssvaste FM Frequency modulaton taajuusmodulaato FS Fourer seres Fourer-sarja FSK Frequency shft keyng taajuussrtomodulaato FT Fourer transform Fourer-muunnos Lyhenne Alkuperä Suomalanen vastne x
Lyhenteet, symboolt ja erkosfunktot HP Hghpass ylpäästö I Imagnary component magnäärkomponentt IBR Instructon buffer regster käskybuffer IDFT Inverse dscrete Fourer transform kääntenen dskreett Fourer-muunnos IF Intermedate frequency vältaajuus IIR Infnte mpulse response ääretön mpulssvaste IR Instructon regster käskyrekster ISI Intersymbol nterference kesknässymbool nterferenss KCL Krchhoff's laws Krchhoffn lak LMS Least mean squares penn keskmääränen nelö LO Local oscllator pakallsoskllaattor LOS Lne of sght LP Lowpass alpäästö LPC Lnear predctve codng lneaarnen ennustava koodaus LS Least squares penn nelö LTI Lnear tme nvarant lneaarnen akanvarantt M Memory must MA Movng average lukuva keskarvo MAC Multply and accumulate kertomnen ja summaamnen MATLAB MATrx LABoratory DSP software product matematkkaohjelma MFSK Multple frequency shft keyng MMSE Mnmum mean square error penn keskmääränen nelövrhe MODEM MOS Modulator/demodulator Mean opnon score (for speech qualty assesment) Metal oxde slcon (transstor) MQ Multpler quotent regster MPE Multpulse extaton monnkertanen heräte MSE Mean square error keskmääränen nelövrhe MSI Medum scale ntegrated NPSD Nose power spectral densty kohnan tehotheys spektr OP Operaton code operaatokood PAM Pulse ampltude modulaton pulssampltudmodulaato PC Program counter ohjelmalaskur PCM Pulse code modulaton pulsskoodmodulaato pdf probablty densty functon todennäkösyystheys funkto PFE Partal fracton expanson osamurtolukuhn jako PLL Phase locked loop vahelukttu slmukka PM Phase modulaton vahemodulaato PN Pseudo nose näennässatunnanen kohna PO Percentage overshoot PPM Pulse poston modulaton pulssn pakkamodulaato PR Perfect reconstructon täydellnen rekonstrukto PSD Power spectral densty tehotheys spektr PSK Phase shft keyng PWM Pulse wdth modulaton pussnleveysmodulaato Q Quantser kvantsoja Lyhenne Alkuperä Suomalanen vastne R Real component reaalkomponentt x
Lyhenteet, symboolt ja erkosfunktot RAM Random access memory Res Resdue resdy ROC Regon of convergence suppenemsalue ROM Read only memory RLS Recursve least squares rekursvnen penn nelö RMS Root mean square tehollsarvo SAQ Self assesment queston SBC Sub-band coder alkasta kooder SG Stochastc gradent S/H Sample and hold näyte ja pto S-H Sample and hold näyte ja pto SNR Sgnal-to-nose rato sgnaal-kohnasuhde TDM Tme dvson multplex THD Total harmonc dstorton harmoonnen särö VHSIC Very hgh speed ntegrated crcut hyvn nopea ntegrotu pr VLSI Very large scale ntegrated hyvn suur ntegrotu pr WWW World Wde Web ZOH Zero order hold nollannen kertaluvun ptopr SYMBOOLIT a A b B D e(n) e(nt) e(t) f f h f p f s F h(n) h D (n) h(t) H(e jω ) H(s) H() H(ω) I I dgtaalsen suodattmen rekursvsen osan kerron A-lan PCM kompandern vako ampltud dgtaalsen suodattmen e rekursvsen osan kerron vako kastaleveys kohnateho desmontkerron, näytteenottotaajuuden alennuskerron dskreettakanen vrhesgnaal dskreettakanen vrhesgnaal, jonka näytteenottoväl on T jatkuva-akanen vrhesgnaal taajuusmuuttuja taajuusmuuttujan ylemp raja päästökastan rajataajuus estokastan rajataajuus näytteenottotaajuus dskreettakasen järjestelmän mpulssvaste deaalsen suodattmen mpussvaste jatkuva-akasen järjestelmän mpulssvaste dskreettakasen järjestelmän taajuusvaste Laplace srtofunkto -srtofunkto jatkuva-akasen järjestelmän taajuusvaste magnäärmuuttuja nterpolontkerron, näytteenottotaajuuden nostokerron nollannen kertaluvun modfotu Besseln funkto x
Lyhenteet, symboolt ja erkosfunktot Im j K L p magnäärosa magnäärmuuttuja ampltud p:s norm M( ) argumentn tsesarvo M(ω) ampltudvaste n nano -9 rppumaton kokonaslukumuuttuja N dgtaalsen suodattmen kertaluku dskreetn Fourer-muunnoksen näytteden lukumäärä p P napa teho q kvantsontaskel Q{ } kvantsontoperaattor r tsesarvo r nollan säde R säde R[ ] dskreettakanen järjestelmäoperaattor Re reaalosa s s p,k s,k s(t) s q (t) Laplace muuttuja k:n lohkon Laplace napa k:n lohkon Laplace nolla jatkuva-akanen sgnaal kvantsotu jatkuva-akanen sgnaal T näytteenottoväl T g ryhmävve T p vahevve T( ) jatkuva järjestelmäoperaattor T[ ] dskreett järjestelmäoperaattor T{ } dskreett järjestelmäoperaattor u V N w(n) x(n) x(nt) x'(nt) x>( n ) x(t) X(f) X(k) X(s) X() y(n) pulssn leveys N:n asteen Chebyshev polynoom kkunafunkto dskreett sgnaal dskreett sgnaal, jonka näytteenottoväl T kvantsotu dskreett sgnaal dskreetn sgnaaln estmaatt jatkuva sgnaal dskreetn Fourer-muunnoksen ulostulon spektr kun ssäänmenona on x(n) dskreetn Fourer-muunnoksen ulostulotaajuus k x(t):n Laplace muunnos x(n):n -muunnos prosessotu dskreett ulostulosgnaal x
Lyhenteet, symboolt ja erkosfunktot Y(f) p,k,k δ δ p δ s δ(nt) δ(t) ε η λ lähtösgnaaln y(n) dskreett Fourer-muunnos -tason muuttuja -tason nolla k:n lohkon -tason napa k:n lohkon -tason nolla Dracn delta funkto päästökasta aaltolu estokastan aaltolu dskreett ykskkömpulss jatkuva-akanen mpulss aaltoluparametr hyötysuhde estokastan vamennusparametr µ odotusarvo θ(e jω ) θ(ω) σ σ dskreett vahevaste jatkuva-akanen vahevaste keskhajonta varanss τ akavako, pulssn leveys φ( ) argumentn vahe Φ kulma ω ω' ω c Ω kulmataajuus esväärstetty kulmataajuus rajataajuus analognen taajuus ERIKOISFUNKTIOT E[ ] tlastollnen odotusarvo-operaattor akakeskarvo konvoluuto a * a:n komplekskonjugaatt F[ ] Fourer muunnosoperaattor F - [ ] kääntenen Fourer muunnosoperaattor L[ ] Laplace muunnosoperaattor L - [ ] kääntenen Laplace muunnosoperaattor sa(x) näytteenottofunkto sgn(x) merkkfunkto snc(x) snc funkto Z - kääntenen -muunnos Z -muunnos x
Ssällysluettelo SISÄLLYSLUETTELOT OSA Espuhe Lyhenteet, symboolt ja erkosfunktot Johdanto dgtaalseen sgnaalnkästtelyyn Dgtaalsen sgnaalnkästtelyn hstora Dgtaalsen sgnaalnkästtelyn edut Dgtaalsen sgnaalnkästtelyn sovellutukset Dskreettakaset sgnaalt ja lneaarset järjestelmät Johdanto Dskreettakaset sgnaalt Operaatot sgnaalella Dskreetten sgnaalen omnasuuksa Lneaarset järjestelmät Johdanto Dskreett järjestelmät Lneaarset akanvarantt järjestelmät Dgtaalset suodattmet Analoga-dgtaal- ja dgtaal-analoga-muunnokset Näytteenotto Dgtaal-analoga-muunnos Kvantsont Jatkuva-akasten sgnaalen dgtaalnen prosessont Z-muunnos Z-muunnos Kääntenen -muunnos Dskreettakasten järjestelmen analyys Dgtaalsten suodattmen perusteet Dgtaalset suodattmet Dgtaalsten suodattmen tyypt: FIR- ja IIR-suodattmet Valnta FIR- ja IIR-suodattmen välllä Suodattmen suunntteluprosess FIR-suodattmet Johdanto Lneaarnen vahevaste FIR-suodattmen kertomen laskenta Ikkunamenetelmä Optmmenetelmä FIR suodatnrakenteta IIR-suodattmet Johdanto IIR-suodattmen kertomen laskenta Blneaarmuunnos xv
JOHDANTO DIGITAALISEEN SIGNAALINKÄSITTELYYN Ramo Joknen Dgtaalsen sgnaalnkästtelyn hstora Dgtaalnen dgnaalnkästtely ja sen edut Dgtaalsen sgnaalnkästtelyn sovellutusalueet Dgtaalsen sgnaalnkästtelyn sovellutuskohteden määrä kasvaa tällä hetkellä hyvn nopeast. Monessa tapauksessa dgtaalnen sgnaalnkästtely tarjoaa mahdollsest anoan toteutusmahdollsuuden ta toteutus e ole taloudellsest perusteltua muulla teknkalla. Dgtaalsesta sgnaalnkästtelystä on tulossa eräs perusteknkka, jonka osaamnen on välttämätöntä jokaselle nformaatoteknkan nsnöörlle.
Johdanto dgtaalseen sgnaalnkästtelyyn DIGITAALISEN SIGNAALINKÄSITTELYN HISTORIA Dgtaalsen sgnaalnkästtelyn käytännön sovellutusten hstora on varsn lyhyt. Ensmmäsä haparova askeleta otettn 96 luvulla. Alan lateteknkan kehtys on ollut hyvn vahvast sdoksssa ntegrotujen pren kehtykseen. Myöskään dskreettakasten järjestelmen teora e ole juur sen vanhempaa. Nyt ylletään tämän vuossadan alkuvuosn. Tlanne muuttuu radkaalst tosenlaseks jos tarkasteluun otetaan mukaan järjestelmät, joden vodaan ajatella hyödyntäneen jossakn muodossa dskreetten järjestelmen peraatteta. Nässä varhasmmssa sovellutuksssa e kysymys ollut tetosesta dskreettakasten järjestelmen kehttelystä saat teoran luonnsta. Pkemmnkn kysymys ol teknkan kehtyksen asteen mahdollstamsta kommunkaatojärjestelmstä. Jotta vodaan tarkastella erkseen jatkuva ja dskreettejä menetelmä, määrtellään aluks dgtaalnen järjestelmä. Dskreett tla vodaan määrtellä x(n )T,,...,4 ja - n jossa n on dskreett pste ulottuvuudessa ja T on dskreetten psteden välnen lyhn etäsyys. Dgtaalsessa järjestelmässä pste x(n ) vo saada äärellsen määrän dskreettejä arvoja etukäteen määrtellystä joukosta. Nän määrteltynä useat munaset vestjärjestelmät ovat dgtaalsa ja nden vodaan katsoa kehttyneen rnnan jatkuven järjestelmen kanssa. DIGITAALISTEN JÄRJESTELMIEN KEHITYS Ehkä vanhn dgtaalseks luokteltava vestjärjestelmä on perustunut rumpujen käyttöön hmskunnan aamuhämärässä. Antkn Krekassa ol kehtetty kahta sohtua käyttävä menetelmä välttää sanoma näköetäsyyden päähän. Samantapanen lppuja käyttävä järjestelmä on yhä edelleen käytössä er lavastossa. Samon antkn akana kehtettn optnen pelejä käyttävä menetelmä yhteydenptoon. Tähän kehtys Euroopassa pysähtykn tuhansks vuosks. Samanakasest Amerkassa ol kehtetty lähetten kuljettamat solmulangat, Quput. Dgtaalsten vestjärjestelmen luokkaan vodaan laskea mukaan myös Amerkassa käytetty savumerkkjärjestelmä. Vakka optsa vestjärjestelmä kehtettn edelleen nn seuraava suur edstysaskel otettn vasta sähkön käyttöönoton jälkeen. Amerkkalanen tademaalar ja keksjä Samuel Morse rakens ensmmäsen käyttökelposen lennättmen, jossa hän käytt laatmaan "Morsen aakkosa". Yhdysvaltojen halltuksen taloudellsella tuella Morse rakens ensmmäsen langallsen lennätnyhteyden Washngtonn ja Baltmoren vällle 844. Morsen aakkoset on selväst dgtaalnen järjestelmä. Aakkosto perustuu kahteen ajallsest ermttaseen merkkn, psteeseen ja vvaan. Jokanen aakkosten krjan ja välmerkt koostuvat yhdestä kuuteen psteen ja vvan yhdstelmään. Ideana ol käyttää lyhmpä koodeja ylesmmlle krjamlle. Yhteys dgtaalseen järjestelmään nähdään selvemmn, jos pste korvataan nollalla ja vva ykkösellä. Nähdään, että kysymyksessä on muuttuvamttanen dgtaalnen kood. Morsen aakkoset levsvät laajaan käyttöön. Varsnkn radon alkuakona sähkötys ol merlkenteessä anoa kommunkontmuoto maa-asemen kanssa. Jatkuva-akaset puheeseen perustuvat menetelmät alkovat syrjäyttää sähkötystä 8-luvun loppupuolelta alkaen ensn langallsessa vestnnässä ja vähtellen myös radojärjestelmssä.
Johdanto dgtaalseen sgnaalnkästtelyyn e. 9 ----. l.-.... u..- f..-. s... v...-..--- h... 4...- 8 ---.. 5... d -..?..--.. t - b -... y -.-- m -- 6 -... q --.- o --- k -.- 3...-- ch ---- x -..- 7 --... ----- r.-. /.-..- a.- p.--...-.-.- w.-- å.--.-, --..-- j.--- c -.-. : ---....---- ä.-.- - -...- n -. ü..-- ( ) -.--.- g --. --.. vrhe...-. ö ---. -...- " ".-..-. Kuva jo. Ylesmmät Morseaakkoset, vasemmalla on merkk, keskellä pernteellnen pste ja vva estys ja okealla vastaava bnäärkood. Kahden krjamen väl on kolme pstettä ja sanojen vs pstettä. Radon alkuakona käytössä ol ns. kpnälähettmet, jotka evä soveltuneet puheen lähetykseen. Nän anoan käyttökelposen vestmenetelmän tarjos sähkötys. 96 kekstty radoputk muutt tlanteen vähtellen nn, että 9 luvulla kpnälähettmet korvautuvat putklähettmllä. Lopulta kpnälähetykset kellettn kokonaan lan laajakastasna. Nyt ol myös radotetolkenne valms srtymään jatkuva-akasn järjestelmn. Avan kokonaan sähkötys e ole veläkään postunut käytöstä koska sllä on puolellaan eräs dgtaalsten järjestelmen merkttävstä edusta. Merkk on tunnstettavssa hyvnkn häröllsessä ympärstössä. Nähn akohn n. 9 lähetettn myös ensmmäset dgtodut kuvat Atlannn pokk pohjaan upotettuja kaapeleta ptkn. Dgtaalsten järjestelmen kehtys taantu tämän jälkeen kymmenks vuosks kunnes 96- luvulla knnostus alko jälleen elpyä kehttyneen komponenttteknologan ansosta. Tällön alettn tutka dgtaalteknkan käyttöä puheen smulontn, sesmologaan ja lääketeteen sovellutuksn. Sgnaalen prosessont suortettn senakasa tetokoneta käyttäen. Nätä kokeluja seuras varsn nopeast ensmmäset laajat dgtaalsen sgnaalnkästtelyn kaupallset sovellutukset. Ensmmäsenä eht markknolle analogsen äänlevyn korvaava dgtaalnen äänlevy, CD (compact dsc). Stä seuras nopeast perässä televson dgtaalnen äänkanava. Lehttalot ottvat käyttöön dgtaalset kuvan srto ja tallennusmenetelmät. Tällä hetkellä on menossa vallankumouksen kaltanen srtymnen analogssta järjestelmstä dgtaalsn. PROSESSOREITTEN KEHITYS Keskajalla läht alkuun teknnen kehtys, joka joht lopulta nykysn tetokonesn ja sgnaalprosessorehn. Tällön rakennettn ensmmäset mekaanset laskukoneet, josta alkanut kehtys vodaan jakaa jaksohn käytetyn pääasallsen teknologan mukaa. Nykyään kehtys on ollut tapana jakaa neljään vaheeseen. 3
Johdanto dgtaalseen sgnaalnkästtelyyn Mekaanset tetokoneet - nollas sukupolv Ensmmäsenä näyttää ehtneen Tübngenn ylopston professor Wlhelm Schckhard, joka vuonna 63 suunnttel ja rakens laskukoneensa. Omana akanaan hänen työnsä jä varsn tuntemattomaks ekä stä tedetä nykyäänkään paljoa. Schckhardn merktys laskukoneen kehttäjänä jä nänollen varsn vähäseks. Suuremp vakutus mekaansen laskukoneen kehtykseen ol ranskalasen Blase Pascaln vuonna 64 rakentamalla yhteen- ja vähennyslaskun suorttavalla koneella. Pascaln koneessa ol kaks kuuden numerokekon sarjaa, jotka edustvat desmaallukuja. Kuhunkn kekkoon ol kaverrettu luvut nollasta yhdeksään tasan jaettuna kekolle. Kekon asento ndko syötetyn luvun arvoa. Tonen kekkosarja W w 5 w 4 w 3 w w w tom kuuden dgtn ' ' ' ' ' ' ' akkuna ja tosta sarjaa W wwwwww 5 4 3 käytettn syötettäessä lukua, joka lsättn ta vähennettn akusta. Kekot ol kytketty tosnsa sten, että kerrettäessä w ' :tä k ykskköä nn myös w kekko kerty k ykskköä näyttäen tulosta w ± k. Pascaln pääasallnen teknllnen nnovaato ol säpplate, joka automaattsest srs mustnumeron kekolta w kekolle w + ana kun kekko w yltt väln yhdeksästä nollaan. Negatvset luvut kästeltn komplementtena jollon sama mekaannen lke soveltu sekä yhteen- että vähennyslaskuun. Saksalanen flosof ja matemaatkko Gottfred Lebn jatko Pascaln koneen kehtystä ja julkst n. vuonna 67 mekaansen laskukoneen, joka kyken suorttamaan kerto- ja jakolaskuja automaattsest. Lebnn laskukone koostu kahdesta osasta, josta ensmmänen suortt yhteen- ja vähennyslaskuja. Tämä osa ol lähes denttnen Pascaln koneen kanssa. Tosen osan muodost kerto- ja jakolaskukone koostuen ketjusta ja pyörstä. Labnn kone ol edelläkävjä myöhemmlle mekaanslle nellaskmlle. Ne jävät tuona akana lähnnä akateemsks kurosteeteks ana 8-luvulle ast jollon alko mekaansten laskmen kaupallnen tuotanto. Seuraava peraatteellselta kannalta vallankumouksellnen kehtysaskel otettn, kun englantlanen Charles Babbage suunnttel omat mekaanset tetokoneensa. Ensmmänen ol 83 estelty Dfferensskone ja jälkmmänen 834 estelty Analyyttnen kone. Useastakn syystä kumpkaan kone e akanaan valmstunut kokonaan. Analyyttnen kone vodaan katsoa ohjelmotaven tetokoneden ensmmäseks edustajaks. Babbage suunnttel dfferensskoneen matemaattsten taulukoden automaattseen laskentaan. Babbage ol kyllästynyt käsnlasketussa taulukossa esntyvn suurn vrhemäärn. Kone kyken suorttamaan anoastaan yhteenlaskuja. Käyttämällä äärellsten dfferenssen nmellä tunnettua menetelmää yhteenlasku rtt uselle käytännön funktolle. Oletetaan, että f ( x) n ax on n:nnen asteen vakokertomnen polynoom, joka on määrtelty x:n arvolla x, x,..., x n jotka eroavat tosstaan vakoaskeleen x verran. Kun y j f(x j ), y j :n, :s dfferenss vodaan määrtellä rekursvsest y j y j y y y j j+ j 4
Johdanto dgtaalseen sgnaalnkästtelyyn jossa. Vodaan osottaa, että n vako ja y j kun > n. Oletetaan, että y j :n n + ensmmästä nollasta pokkeavaa dfferenssä tunnetaan, tällön y j+ :s dfferenss vodaan laskea rekursvsesta kaavasta + yj yj y j + Nyt lähten y :sta vodaan laskea y j :n perättäset arvot. Vodaan nähdä, että anoa tarvttava operaato on yhteenlasku. Tosaalta mkä tahansa jatkuva funkto vodaan aproksmoda melvaltasella tarkkuudella polynomlla ja äärellsten dfferenssen menetelmää vodaan käyttää nden laskemseen. Laskentatulokset dfferensskone lävst kaverruslevylle, josta ne votn panaa. Esm. Lasketaa funkton snx arvot, kun. x.5 ja ntervall on.. Ratkasu Sn-funkto vodaan esttää potensssarjana 3 5 7 x x x sn x x + + 3! 5! 7! josta otetaan tässä tapauksessa kaks ensmmästä termä aproksmomaan snx:ää. Tässä tapauksessa neljä dfferenssä on laskettava y j+ y j + y j y j+ j j + y j y j+ j j + 3 y j 3 y j+ 3 j j Laskennan alottamseks tarvtaan alkuarvot y, y, y, 3 y, jotka vodaan laskea määrttelevästä polynomsta y x - x 3 /3! määräämällä y, y, y ja y 3 ja käyttämällä yhtäläsyyttä y. y y - y y y - y + y 3 y y 3-3y + 3y - y Vdellä desmaallla lasketut tulokset ovat taulukossa jo.. Taulukko jo. Äärellsten dfferenssen menetelmällä lasketut y snx arvot x j y j snx j y j y j 3 y j...9983 -. -...9983.9883 -. -...9866.9683 -.3 -..3.9549.9383 -.4 -..4.3893.8983 -.5 -..5.4795.8483 -.6 -. 5
Johdanto dgtaalseen sgnaalnkästtelyyn a l k u a r v o t 3 y y y 3 rekster summan rekster summan rekster summan t u l o k s e t Kuva jo. Babbagen Dfferensskoneen rakenne y rekster y Kuvassa jo. on dfferensskoneen loognen rakenne. Se koostuu mekaanssta reksterestä, jona tomvat numerokekot, dfferenssen tallentamseks. Jokanen verekkässtä reksterestä on yhdstetty yhteenlaskuelmeen, joka tom Pascaln koneen peraatteen mukaan. Kun alkuarvot on syötetty kuhunkn rekstern dfferensskone laskee automaattsest y:n perättäset arvot sopvaan moottorn, esmerkks höyrykoneeseen, yhdstettynä. Babbage ehdott Dfferensskoneen, joka vos käyttää kuudennentosta asteen polynomeja ja dgtn tarkuutta, rakentamsta. Työ alotettn 93 ja päätty 94. Kone e valmstunut lopullsest koskaan vakka projektn ol upotettu Brtannan halltuksen rahoja 7 puntaa. Työn epäonnstumseen ol kaks pääasallsta syytä. Ensks senakanen teknkka e pystynyt Dfferensskoneen vaatmaan tarkkuuteen ja toseks Babbage ol menettänyt knnostuksensa Dferensskoneeseen ja alkanut kehttää Analyyttseks koneeks nmttämäänsä kunnanhmosempaa suunntelmaa. Myöhemmn on rakennettu usetakn tomva Dfferensskoneta. Nästä vodaan manta ruotsalasen Georg Scheutn kone, joka kästtel kolmannen kertaluvun polynomeja 5 dgtn tarkkuudella. Scheutn kone rakennettn vuosen 837 ja 853 välsenä akana. Babbagen Analyyttnen kone ol tarkotettu laskemaan kakk laskutomtukset automaattsest. Se koostu, kuva jo.3, muststa ja myllystä, joka vastaa nykysten prosessoretten artmeetts-loogsta ykskköä. Must koostu numerokekosta ja mylly kyken suorttamaan kakk neljä peruslaskutomtusta. Koneen operaatosekvenssn kontrollontn Babbage ehdott käytettäväks rejtettyjä kortteja, jotka ol akasemmn kehtetty Jacguard kutomakonetta varten. Kortt, jotka ssälsvät Analyyttsen koneen ohjelman, ol jaettu kahteen ryhmään.. Operaatokortt, jotka ohjasvat myllyn tomntaa. Jokanen kortt valts yhden operaaton neljästä mahdollsesta suortettavaks kullakn ohjelma-askeleella.. Muuttujakortt, jolla valttn mustpakat käytettäväks kullakn operaatolla. Nällä kortella valttn lähdeoperandt ja kohdemustpakka. 6
Johdanto dgtaalseen sgnaalnkästtelyyn Keskusykskkö Tulostmet Mylly (ALU) Must Lähtöportt Krjotn Rekäkorttlävstn Ohjelma Operaatokortt Muuttujakortt Kuva jo.3 Babbagen Analyyttsen koneen rakenne Data, vakot, votn syöttää koneeseen joko rekäkortella ta käsn asettamalla numerokekot.tulostus tapahtu joko lävstämällä rekäkortelle ta panamalla paperlle. Esm. Analyyttsen koneen ohjelma yhtälöparn ax + ax b a x + a x b ratkasemseks. Tämän hypoteettsen ohjelman kehtt Babbagen akalanen L. F. Menebrea. Muuttujen x ja x arvot lasketaan suhtesta x x a b a a ab a a a b a a ab a a Käytetään merkntöjä W, W,... osottamaan mustpakkoja (numerokekkojen sarjoja). Laskennassa tarvttavat vakot on alustettu mustpakkohn W a, W a, W b, W 3 a, W 4 a ja W 5 b. Kuvassa jo.3 on ohjelma muuttujan x laskemseks. Ohjelma Operaatokortt Muuttujakortt Lähteet Kohde Kommentt W, W 4 W 8 W 8 a b W, W 5 W 9 W 9 a b W, W 4 W W a a W, W 3 W W a a W 8, W 9 W W a b a b W, W W 3 W 3 a a a a W, W 3 W 4 W 4 W W 3 Kuva jo.4 Analyyttsen koneen ohjelma muuttujanx laskemseks.samanlanen sekvenss tarvtaan x :n laskemseks. 7
Johdanto dgtaalseen sgnaalnkästtelyyn Eräs Babbagen merkttävä dea ol mekansm, joka sall ohjelman muuttaa sekvenssn järjestystä automaattsest. Nykysn termen Babbage kehtt ehdollsen hyppykäskyn. Haarautumnen tehtn tutkmalla lukujen etumerkkä. Postvsella etumerkllä suortettn jokn sekvenss ja negatvsella jokn tonen. Lsäks Babbage ehdott mekansma, joka salls haarautumsen tapahtua sekä eteen että taaksepän. Analyyttsen koneen suunntelma ssäls kakk automaattsen yleskäyttösen laskukoneen omnasuudet. Jälleen Babbage ehdott koneen rakentamsta jättkoossa. Mustn kooks ehdotettn tuhat 5 dgtn desmaallukua. Hän arvo yhteenlaskun kestävän sekunnn ja kertolaskun non mnuutn. Babbagen jälkeen seuraavat yrtykset ohjelmotavan koneen, tetokoneen, rakentamseks tehtn vasta 93-luvulla, jollon useat henklöt ja ryhmät rakensvat useassa maassa tosstaan rppumatta omat koneensa. Saksassa teknkan opskelja Konrad Zuse rakens sarjan reletä käyttävä mekaansea koneta, josta ensmmänen Z valmstu 936. Snä käytettn bnäärartmetkkaa. Zusen seuraava kone bnäärsä lukulukuja käyttävä Z3 valmstu 94. Z3 lenee ensmmänen tomva yleskäyttönen ohjelmotava tetokone. Sota lopett Zusen tetokoneden kehtystyön ja jo rakennetut koneet tuhoutuvat lttoutuneden pommtuksssa 944. Nällä konella e ole ollut kovn suurta vakutusta tetokonetten, ta prosessoretten, myöhempään kehtykseen. Yhdysvallossa George Stbbt Bell Laboratorosta rakens koneen jota demonstrotn konferensssa Dartmouthn ylopstolla 94. Harvardn ylopstossa vakuttanut fyyskko Hovard Aken ehdott 937 yleskäyttösen mekaansen tetokoneen rakentamsta. Ehdotus hyväksyttn ja rakentamnen alko 939. IBM huoleht käytännön rakentamsesta Akenn sunntelmen pohjalta. Kone valmstu käyttökuntoon 944. Alunpern suunntelma kulk nmellä Automatc sequence Controlled Calculator mutta sa myöhemmn nmen Harvard Mark. Mark käytt Analyyttsen koneen tavon numerokekosta koostunutta keskusmusta, jonka koko ol 7 3 dgttstä kymmenjärjestelmän sanaa. Käskyjakson aka ol 6 s. Konetta kontrollotn rekänauhalla. Käskyn muoto ol A A Op jossa Op on operaatokood ja A ja A operanden osotteet. A ol myös tuloksen tallennusosote. Aken rakens velä yhden reletä käyttävän koneen Harvard Mark II:n. Elektronsten tetokoneden aka - Ensmmänen sukupolv Ensmmänen yrtys rakentaa elektronnen putka käyttävä tetokone tehtn Iowan ylopstossa 93 luvun lopulla John V. Atanasoffn tomesta. Kone ol tarkotettu lneaarsten yhtälöryhmen ratkasemseen. Atanasoffn kone ol hyvn edstyksellnen. Snä käytettn bnäärartmetkkaa ja kondensaattoresta muodostettuja musteja. Kondensaattoreden varaustlan sälyttämseks ntä vrkstettn säännöllsn välen. Dynaamset RAM mustt käyttävät nykyään samaa peraatteetta. Konetta e koskaan saatu täysn tomvaks. Englannssa valmstu 943 edellsä suuremp elektronnen tetokone nmeltään Colossus, joka rakennettn salakelsten kooden murtamseen. Brtten tedustelupalvelu ol saanut haltuunsa saksalasten salakrjotuskoneen ENIGMAn. Sepatut sanomat ol saatettava 8
Johdanto dgtaalseen sgnaalnkästtelyyn nopeast selväkelseen asuun ja tähän tarvttn tehokasta tetokonetta. Koneen merktys jä kehtyksen kannalta olemattomaks, sllä se julstettn salaseks 3 vuodeks. Ensmmänen laajemmn tunnettu yleskäyttönen elektronnen tetokone ol Pennsylvanan ylopston ENIAC ( Electronc Numercal Integrator and Calculator). Rakennustyöt alkovat 943 John W. Mauchlyn ja J. Presper Eckertn johdolla ja kone valmstu 946. ENIAC ol tarkotettu alunpern ammusten ballststen ratojen laskentaan. Kone pano 3 tonna, snä ol 8 putkea, 5 relettä ja sen tehonkulutus ol 4 kw. ENIACn slmnpstävn omnasuus ol sen nopeus. MARK tarvts 3 s. -dgttsen luvun kertolaskuun kun ENIAC selvyty samasta tehtävästä 3 ms:ssa. ENIAC käytt kymmenjärjestelmää, jossa esmerkks mekaansten koneden numerokekko ol korvattu putksta muodostetulla rengaslaskurella. Kuva jo.4 esttää ENIACn arkktehtuura. Rekstert A, A,..., A tomvat yhdstettynä työmustena ja yhteen- ja vähennyslaskuelmnä. Koneessa on lsäks erllset yksköt kertoja jakolaskua varten josta jälkmmänen laskee myös nelöjuuren. Koneen ohjelmont tapahtu kytkmen ja kaapelehn kytkettyjen lttmen avulla. Nämä sjatsvat ohjelmontpöydäks nmetyssä osassa (Master programmng unt). Data syötettn koneeseen tavallsest rekäkorttlukjan avulla. Funktotaulukot ol erkosmust, johon tulokset talletettn. ENIACIn valmstuttua sota ol oh ja sen tarvetta alkuperäseen tarkotukseen e enää ollut. Suunntteljat savatkn luvan käyttää stä opetustarkotuksn. Mauchley ja Eckert järjestvät kesäsemnaarn estelläkseen työtään tedemeskolleegolleen. Tästä vrs räjähdyksenomanen melenknto rakentaa suura dgtaalsa tetokoneta. Syöttölate Tulostmet Krjotn Rekäkortnlukja Rekäkorttlävstn Datalnjat Kertoja Jakaja ja nelöjuur Funkto taulukot A A A Ohjelmontlnjat Ohjelmont pöytä Kuva jo.4 ENIACn lohkokaavo 9
Johdanto dgtaalseen sgnaalnkästtelyyn Mustykskkö Keskus prosessont ykskkö Keskusmust Artmeettsloognen ykskkö I/O-latteet Tosomust Kaukokrjotn Kuva jo.5 Tyypllnen ensmmäsen sukupolven putka käyttäven tetokoneden rakenne Ohjaus ykskkö Rekäkortnlukja Krjotn ja rekäkortn lävstn Kesäsemnaar pok nopeassa tahdssa joukon koneta. Ensmmäsenä eht Maurce Wlkes Cambdgen ylopstosta rakentamalla EDSACn 949. Muta olvat mm. Rand yhtön JOHNIAC, Illnosn ylopston ILLIAC, Los Alamos laboratoron MANIAC ja WEIZAC Israelssa. Nästä ja musta putklla rakennettusta konesta vodaan käyttää yhtestä nmtystä ensmmäsen sukupolven tetokoneet. Näden 4-luvun lopun ja 5-luvun alun kuoneden tyypllnen arkktehtuur on estetty kuvassa jo.5. Analyyttsestä koneesta ENIACn data ja ohjelma sjatsvat omssa erllsssä mustessa. Ohjelman lataamnen ja muuttamnen olvat erttän työlätä tomenptetä. Idea yhtesestä data- ja ohjelmamuststa on ylesest ltetty ENIAC- suunntteluryhmään ja sellä ertysest unkarlassyntyseen matemaatkkoon John vonneumannn, joka tom ENIAC projektssa konsulttna. VonNeumann estt dean 945 ehdotuksessaan rakentaa uus tetokone, EDVAC (Electronc Dscrete Varable Computer). Eckert ja Mauchley alkovat rakentaa EDVACa, joka valmstu 95. Pats, että mustn ladattava ohjelma helpott ohjelmonta, se mahdollst ohjelman ajonakasen muokkaamsen. Menetelmää e tosn enää juurkaan käytetä shen lttyven vakeuksen taka. EDVAC eros myös multa osn merkttäväst edeltäjstään. Sen keskusmustn kapasteett ol 4 sanaa ja sen lsäks käytössä ol hdas klosanan tosomust, jona tom magneettlanka. Edeltäjstä pokkes myös käytetty bttsarjallnen bnäärartmetkka. Ennenkun EDVAC kyken suorttamaan ohjelman, se ol ladattava kokonaan keskusmustn. Artmetkkakäsyn muoto ol A A A 3 A 4 Op jossa Op on operaatokood, A ja A ovat operanden osotteet, A 3 ol tuloksen tallennusosote ja A 4 ssäls seuraavan käskyn osotteen. Hyppykäskyn ssälto pokkes jonknverran artmetkkakäskystä samonkun lankamusta käyttävät käskyt. EDVACn valmstumsta hattas pahast, että Eckert ja Mauchley kesken rakennustyön oman tetokoneyrtyksen
Johdanto dgtaalseen sgnaalnkästtelyyn Eckert-Mauchley Computer Corporaton, josta monen värkkäden vaheden jälkeen tul Unsys Corporaton. VonNeumann sensjaan men 946 Prncetonn ja alko kolleegoneen suunntella uutta muststa ajettavaa tetokonetta, jota he kutsuvat nmellä IAS-tetokone. Edeltäjästään poketen tässä koneessa käytettn katodsädeputkea keskusmustna, joka mahdollst kokonasen sanan samanakasen haun ta tallennuksen. Musttyypn myötä kone rakennettn käyttämään rnnakkasta bnäärartmetkkaa. Kukn käsky ssäls van yhden osotteen ja sen muoto ol Op A IAS:n sananptuus ol 4 bttä. Yhdessä sanassa vo olla etumerkllnen kokonasluku ta kaks käskyä. Operaatokoodn ptuus ol 8 bttä ja sten osote bttä, jolla votn osottaa koneen koko 496 sanan mustavaruus. Lyhyen käskynptuuden mahdollst knteden reksteren käyttö ja ohjelman tallentamnen mustn käskyjen suortusjärjestyksessä. Knteän rekstern osote ol määrtelty mplsttsest operaatokoodssa. Seuraavan käskyn osotteen tarve on elmnotu, sllä se on seuraavassa mustosotteesa. Pokkeamsen peräkkäsestä käskyjen suortuksesta votn tehdä erllsllä haarautumskäskyllä. Vakka koneen I/O omnasuudet olvat puutteellset IAS:n vodaan katsoa olevan ensmmäsen modernn tetokoneen ja sllä on ollut valtava vakutus nykysten prosessoreden arkktehtuurn. Keskus prosessont ykskkö Datan prosessont ykskkö AC MQ Artmeetts-loogset prt I/O-latteet DR IBR IR PC AR Käskyt/data Keskusmust M Osote Ohjausprt Ohjaussgnaalt Ohjelman ohjausykskkö Kuva jo.6 IAS koneen rakenne
Johdanto dgtaalseen sgnaalnkästtelyyn Aka ol nyt kypsä tetokoneelle ja ntä rakennettnkn er tahojen tomesta merkttävässä määrn. Ensmmänen kaupallseen menestykseen yltänyt kone ol UNIVAC (Unversal Automatc Computer), jonka jakelu alko 95. IBM, joka ol rakentanut Harvard Mark :n, eht markknolle vuonna 953 koneellaan 7. Ensmmäsen sukupolven tetokoneden akana tapahtu kehtystä myös ohjelmonnssa käytetyn kelen osalta. Ohjelmat ol krjotettu bnäärlukusekvenssenä. Tämä on ohjelmojan kannalta työlästä ja kaukana havannollsuudesta vakkakn koneet pystyvät käyttämään ohjelmaa sellasenaan. Ohjelmojan työtä helpottamaan kehtettn 95-luvun ensmmäsnä vuosna koneden ymmärtämälle kelelle symboolnen estystapa, joka sop hmselle paremmn. Tämä uus ohjelmontkel, assembly, vaat kääntäjän, joka muutt symboolsen konekelkäskyn koneen ymmärtämäks konekelseks käskyks. Elektronsten tetokoneden ensmmäsen vuoskymmenen akana esteltn myös koneen kontrollontn mkro-ohjelmontteknkka. Konseptn estt ensmmäsenä Maurce V. Vlkes 95. Shen ast käytettyä kontrollmenetelmää vodaan sanoa langotetuks ohjaukseks, jossa konekelset käskyt ohjasvat suoraan dgtaallogkkaa. Mkro-ohjelmodussa koneessa ohjauksen hotaa erllnen ohjelma, mkro-ohjelma, joka huoleht konekelsten käskyjen noutamsesta, tulktsemsesta ja suortuksesta. Teknkka käytettn jossakn sekä ensmmäsen että tosen sukupolven tetokonessa, mutta laajempaan käyttöön se tul vasta 96-luvun puolväln jälkeen kolmannen sukupolven konessa. Tonen sukupolv - Transstort Tosen polven tetokoneet olvat käytössä n. vuodesta 955 vuoteen 965. Ntä lemaa pääasassa srtymnen putksta transstorehn, mutta muutakn kehtystä tapahtu.. Katodsädeputk- ja vvelnjamustt korvattn ferrttrengasmustella ja magneettrummulla.. Indeksrekstert ja lukulukuartmetkka otettn laajalt käyttöön. 3. Otettn käyttöön konerppumattomat korkean tason kelet, jota kelä olvat mm. ALGOL, COBOL ja FORTRAN. 4. Otettn käyttöön erkosproserrort huolehtmaan I/O-tomnnosta ja vapauttamaan CPU:n muuhun käyttöön. 5. Tetokonevalmstajat alkovat tomttaa konelleen järjestelmäohjelmstoja kuten kääntäjä ja alohjelmarutneja jne. Mon edellälueteltu parannus ol kehtetty jo ensmmäsen sukupolven konelle, mutta ne otettn laajemmn käyttöön tosen sukupolven konessa ta hybrdkonessa, jotka käyttvät sekä putka että transstoreta. Ensmmänen transstorotu tetokone lenee ollut Lncoln Laboratorossa (MIT) rakennettu TX- (Transstored expermental computer), joka ol tarkotettu testkoneeks laajempaa versota TX- varten. TX-:n merktys jä vähäseks, mutta projektssa työskennellyt Kenneth Olsen perust oman yrtyksen DECn. Sen ensmmäsenä tuotteena pääs markknolle PDP- vuonna 96. Tuotteen valmstumsta vvästytt rahottajen epäly tetokonemarkknohn. PDP-:tä myytn jotakn kymmenä kappaleta. Penenä ykstyskohtana vodaan manta, että yks kone pääty myös M.I.T.:n, jossa opskelja ohjelmovat slle maalman ensmmäsen tetokonepeln. Tämä ol mntetokoneden alku. Yhtön seuraava tuote PDP-8 yls jo kunnotettavaan 5
Johdanto dgtaalseen sgnaalnkästtelyyn kappaleen myyntn ollen akansa myydyn kone. Myös IBM ol vahvast mukana tosen sukupolven tetokonessa keskttyen suurn keskuskonesn. Nätä tosen sukupolven koneta käytettn myös tehtävn, jotka vodaan katsoa kuuluvan dgtaalsen sgnaalnkästtelyn prn. Tällön otettn ensmmäset askeleet puheen smulontn, sesmologsten sgnaalen kästtelyssä, lääketeteen sgnaalen tutkmsessa jne. Kolmas sukupolv - IC-prt ja mkroprosessort Ensmmänen kahden transstorn ntegrotu pr rakennettn vuonna 958. Tästä vaatmattomasta alusta läht lkkeelle kehtys, joka joht seuraavan vuoskymmenen puolväln mennessä muutaman portn ssältävn kokonasuuksn, jota votn käyttää tetokoneden pren rakentamseen. Seurauksena ol koneden koon penentymnen ja suortuskyvyn nousu. Uutta IC-teknkkaa käyttäven koneden sanotaan kuuluvan kolmanteen sukupolveen. Muta kolmannen tetokonesukupolven tunnusmerkkejä olvat.. Puoljohdmustt syrjäyttvät akasemmn käytetyt ferrttrengasmustt keskusmustena.. Mkro-ohjelmontteknkka tek läpmurron. 3. Konetten nopeutta parantava teknkota otettn käyttöön. Nätä olvat mm. ppelne ja monprosessorteknkat. 4. Käytettn tehokkata menetelmä koneen resurssen automaattseen jakamseen. IC-teknkan kehttyessä yhdelle prlle pakattujen transstoren määrä kasvo nopeast mahdollstaen entstä monmutkasemmat rakennelohkot. Kehtys joht shen, että Intel julkas ensmmäsen yhden prn prosessorn, mkroprosessorn, 44:n vuonna 97. Tämä ol CPU ykskkö neljän prn prsarjasta MCS-4, joka ol alunpern tarkotettu laskmn. Prosessorn sananptuus ol 4 bttä. Prsarjassa käytettn hdasta P-MOS teknkkaa. Lyhyt sananptuus ol seurausta lähnnä senakasen IC-prteknkan rajotukssta. Yhdelle ppalalle pakattujen transstoren määrä kasvo nopeast ja suuremmlla sananptuukslla varustettuja prosessoreta julkstettn nopeassa tahdssa useden valmstajen tomesta. 98-luvun puolväln tultaessa sananptuus ol kasvanut 3 bttn ja transstormäärä mljoonaan. Samanlasella nopeudella kasvo osotettavan mustn koko. Transstoren määrä yhdessä mkroprssä 6 Mbt RAM 56 kbt RAM 3 bttnen mkroprosessor 4 64 kbt RAM 6 bttnen mkroprosessor 4 kbt RAM kbt RAM 8 bttnen mkroprosessor 4 bttnen mkroprosessor MSI SSI 96 97 98 99 Vuos Kuva jo.7 Integrotujen pren pakkausteknkan kehttymnen 3
Johdanto dgtaalseen sgnaalnkästtelyyn Vuos Nm Tekjä Pääasallnen nnovaato 63 Schckhard Ensmmänen laskukone 64 Pascal Automaattnen mustnumero 67 Lebn Kerto- ja jakolasku 83 Dfferensskone Babbage Automaattnen taulukkolaskenta 834 Analyyttnen kone Babbage Ensmmänen ohjelmotava tetokone 936 Z Zuse Ensmmänen tomva erkostetokone 94 Z 3 Zuse Ensmmänen tomva ylestetokone 943 COLOSSUS Brtannan halltus Ensmmänen tomva putktetokone 944 Mark Aken Ensmmänen amerkkalanen kone 946 ENIAC Eckert/Mauchley Modernn tetokoneen hstora alkaa 949 EDSAC Wlkes Ensmmänen muststa ajettava ohj. 95 Whrlwnd M.I.T. Ensmmänen reaalakanen tetokone 95 UNIVAC Eckert/Mauchley Ensmmänen kaupallnen tetokone 95 IAS Von Neumann Ensmmänen modern arkktehtuur 96 PDP- DEC Ensmmänen mnkone (myyty 5) 96 4 IBM Ensmmänen myyntmenestys 96 794 IBM Domno teteellstä laskentaa 963 B5 Burroughs Ensmmänen korkean tason kel 964 36 IBM Ensmmänen tetokoneperhe 964 66 CDC Ensmmänen rnnakkanen tetokone 965 PDP-8 DEC Ensmmänen mnkone myyntmen. 97 PDP- DEC Domno mnkonemarkknota 97 44 Intel Ensmmänen mkroprosessor 974 88 Intel Ensmmänen ylesk. Mkroprosessor 974 CRAY- Cray Ensmmänen supertetokone 978 VAX DEC Ensmmänen 3 bttnen mnkone Kuva jo.8 Vrstanpylvätä tetokoneen kehtyskaaressa Sgnaalprosessort Integrodut prt mahdollstvat myös reaalakasten dgtaalsten sgnaalnkästtelyjärjestelmen rakentamsen. Prt olvat tällön lan penä kokonasen järjestelmän ntegromseks yhdelle plle. Sensjaan nämä prt ssälsvät hardware toteutuksena yksnkertasa kokonasuuksa kuten dgtaalsa suodattma. Suuremmat järjestelmät koottn yhdstämällä saatavlla oleva hardware lohkoja. Varsnasa kontrollrakenteta nässä ns. "hardware prosessoressa" e ollut. Peraatteessa mtä tahansa mkroprosessora vodaan käyttää dgtaalseen sgnaalnkästtelyyn. Tarvtaan van sopvat ltyntäprt, jolla sgnaalt saadaan sovtettua prosessorn dataformaattn. Usemmat ylesprosessort käyttävät vonneumann arkktehtuura, Kuva jo.9 Erllsstä prestä koottu dgtaalnen hardware sgnaalprosessor A/D- Dgtaalnen xt () muunnn- suodatnpr FFT-pr Xf ( ) pr 4
Johdanto dgtaalseen sgnaalnkästtelyyn Kuva jo. Texas Instrumentsn 6 bttnen knteän plkun sgnaalprosessor TMS3C54xx. jossa käskyt ja data käyttävät samaa väylää. Tämä e kutenkaan ole kovn tehokas tapa DSPjärjestelmen tekemseen ja nnpä sgnaalnkästtelyyn tarkotetussa prosessoressa on data ja käskyt erotettu normaalst omlle väyllleen mahdollstaen tehokkaan rnnakkasen käytön. Rakenne tunnetaan Harvard arkktehtuurna. Tosaalta dgtaalsessa sgnaalnkästtelyssä on huomattava määrä kertolaskuja, joden suortus yleskäyttösllä mkroprosessorella on akaavevää ja nnpä sgnaalprosessorelta vaadtaan tehokasta tukea kertolaskulle. Varsnasten dgtaalseen sgnaalnkästtelyyn tarkotettujen mkroprosessoretten, sgnaalprosessoretten kehtys erkan yleskäyttösten prosessoretten kehtyksestä Inteln julkstaessa 98 sgnaalprosessorn 9. Samohn akohn japanlanen NEC julkas oman prosessornsa µpd77. Nästä läht käyntn samantyyppnen nopea suortuskyvyn paranemnen kun ylesprosessorettenkn kohdalla. 98 Intel 9, NEC µpd77 98 TI TMS3 984 WE DSP3 988 TI TMS3C3 - ROM k*8 ja RAM 4k*8 ssäset mustt - ulkoset ja ssäset ohjelma ja datamustt yhteensä 6M*3-3 bttnen kokonasluku artmetkka - 6 ns käskyjakso - sarja- ja rnnakkas I/O, DMA 99 Motorola DSP56 DSP56 ol ensmmänen edustaja kokonasesta sgnaalprosessorperheestä. Perhe perustu 4 bttselle ytmelle 56k johon lsättn sovellutuksen vaatmat portt ja tarpeellset must. Muta sarjan edustaja olvat DSP56 ja DSP564. Myohemmn tuotn markknolle 5