Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma

Koko: px
Aloita esitys sivulta:

Download "Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma"

Transkriptio

1 Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin opiskeluun käytössä oleva tuntimäärä on hyvin rajallinen, joten tästä materiaalista on pyritty tekemään sellainen, että perusteet voi opiskella itsenäisestikin. Tarkoitus on keskittyä sellaisiin asioihin, joihin opiskelujen varrella monesti törmää. Moniin matemaattisiin ongelmiin Matlab on varsin hyödyllinen työkalu. Sen takia sen käyttöä opiskellaan Signaaliteorian kurssilla. Ohjelman käynnistäminen Nämä ohjeet pätevät Tekniikan yksikön verkosta käynnistyvään Matlab6p5-versioon. Ohjelmaa voi ajaa suoraan verkosta ilman minkäänlaisia asennuksia paikallisille koneille, joten se toimii (ainakin periaatteessa) missä tahansa Tekniikan yksikön verkkoon kytketystä koneesta. Verkosta saattaa löytyä vanhempiakin versioita (kuten esim. Matlab6p), mutta ne eivät toimi! Todennäköistä on, että Matlab ei löydy Windowsin START-valikosta tai työpöydältä. Yleensä se on käynnistettävä Windows Explorerin kautta klikkaamalla Tools -> Map Network Drive. Folderiksi valitaan \\s\apps\kotka\matlab6p5

2 Kyseisestä hakemistosta löytyy ikoni, jota tuplaklikkaamalla ohjelma käynnistyy. Joskus ohjelma ei käynnisty, vaan ruutuun ilmestyy "Licence Manager Error". Tässä tilanteessa ota yhteys ATK-tukeen (ensisijaisesti Pekka Hämäläinen). Käynnistyminen saattaa kestää verkon yli jonkin aikaa, joten ole kärsivällinen. Niin kauan kuin vasemmanpuoleisessa ikkunassa on teksti "initializing", on lataus käynnissä. Käyttöliittymä Käynnistyksen jälkeen käytössä on kolme ikkunaa, joihin osaan voi valita eri toimintoja. Tärkein ikkuna on komentoikkuna (Command Window). Sinne käyttäjä voi kirjoittaa haluamiaan komentoja. Oheisessa esimerkissä on lisäksi Workspaceikkuna, jossa näkyy sillä hetkellä käytössä olevat muuttujat. Muuttujaa tuplaklikkaamalla saa näyttöön Excel-tyylisen taulukon, jossa näkyy muuttujan arvot. Kolmas esimerkin ikkuna on Command History, jossa näkyy lista edellisistä komennoista. Ne voi toistaa tuplaklikillä. Myös unix-maailmasta tuttu nuoli ylös/alas toimii komentoikkunassa. Muitakin ikkunoita on, ne on valittavissa yläpalkin viewnapin takaa. Yksittäisten komentojen lisäksi on mahdollista kirjoittaa hyvinkin monimutkaisia komentosarjoja tiedostoihin (ns. M-tiedostot). Näin tehtyjä uusia funktioita voidaan käyttää kuin mitä tahansa Matlabin sisäänrakennettuja valmisfunktioita.

3 Yleistä Nimi "matlab" tulee sanoista Matrix Laboratory. Matlab on siis suunniteltu ensisijaisesti matriisilaskentaan. Tämän ei pidä antaa pelottaa vaikka matriisin käsite olisikin päässyt unohtumaan. Vektorihan on yksiulotteinen (eli 1xn tai nx1) matriisi. Yksittäinen luku (eli skalaari) voidaan ajatella 1x1-matriisiksi. Esimerkiksi 3x3- matriisi on joukko lukuja, jotka on järjestetty 3 riviksi ja 3 sarakkeeksi. Matlab on tulkkaava ohjelmointikieli, eli se lukee rivi riviltä käyttäjän antamat komennot ja suorittaa niitä sitä mukaa. Virhetilanteessa ohjelman suoritus keskeytyy virheilmoitukseen. Tulkkavuudesta johtuu, että ohjelmien suoritus on hidasta verrattuna "oikeisiin" kääntäviin ohjelmointikieliin (esim. C).. Matlabin suosio perustuu pitkälti siihen, että siihen on saatavissa lukuisa laajennusosia, Toolboxeja, joiden ansiosta kaikkea ei tarvitse koodata itse alusta asti. Toolboxeja on saatavissa mm. signaalinkäsittelyyn, kuvankäsittelyyn, optimointiin, systeemisuunnitteluun jne. Niitä tulee myös koko ajan lisää. Tehtävä: Käy ohjelman tekijän MathWorks Inc:n kotisivulla. Kokeile kirjoittaa komentoriville komentoja help, helpwin, info ja demo. Tehtävä: Mitä komennot whos, cd, pwd ja clear tekevät?

4 Muutamia perusjuttuja Muuttujat ja peruslaskutoimitukset Määrittele muuttujat a ja b, anna niille vaikkapa arvot 1 ja 2 ja kokeile peruslaskutoimituksia niillä: >>a+b >>a-b >>a*b >>a/b >>a\b >>a^b Rivin lopussa oleva puolipiste (;) estää tulostuksen näytölle. Tämä voi olla tarpeen jos tulostusta on paljon. Huomaa, että koska Matlab on suunniteltu matriisilaskentaan, on jakolasku hieman mutkikkaampi kuin tavallisissa ohjelmointikielissä. Miten edellä operaatioiden a/b ja a\b tulos on selitettävissä? Kompleksiluvut Sitten hieman kompleksilukuja. Määrittele luku z=1-2i ja selvitä, miten saat kompleksiluvun reaali- ja imaginääriosan, itseisarvon ja vaihekulman. Yksiulotteiset vektorit Vektori on taulukko, jossa on lukuja peräkkäin. Matlabissa taulukkojen indeksointi alkaa aina YKKÖSESTÄ, ei nollasta kuten esimerkiksi C:ssä. Vektori voidaan määritellä komennolla: >>x=[eka:askel:vika]; missä eka on vektorin ensimmäinen alkio, askel sanoo paljonko arvoa kasvatetaan ja vika on viimeinen alkio. Askeleen voi jättää pois, jolloin oletus on 1. Vektorin tiettyyn alkioon viitataan antamalla vektorin nimi ja sen perään suluissa numero, joka kertoo, monenteenko alkioon viitataan. Siis >>x(n) Tulostaa vektorin x n:nnen alkion. Kaksoispisteen avulla voidaan määritellä tulostettavaksi joukko peräkkäisiä alkioita: >>x(n1:n2) Tulostaa vektorin sisällön alkaen indeksistä n1 ja päättyen indeksiin n2. Esimerkki: Tehdään vektori x, joka saa arvot 0:sta 10:een 0.1 välein. >>x=[0:0.1:10]; x:n sisäl lön voi tarkistaa kirjoittamalla komentoikkunaan x, tai tuplaklikkaamalla sitä Workspacessa (sen pitäisi ilmestyä sinne tuon komennon jälkeen). Tulostetaan seuraavaksi x:n 1. alkio:

5 >>x(1) 0 Ellei jonkin operaation tulosta sijoiteta johonkin muuttujaan, Matlab sijoittaa sen automaattisesti muuttujaan ans. Se siis sisältää aina viimeisimmän laskutoimituksen tuloksen. Vastaavasti komento >>a=x(1) sijoittaa x:n ensimmäisen alkion arvon muuttujaan a (joka ilmestyy Workspaceen). Katsotaan seuraavaksi, mitä x:n 10 ensimmäistä alkiota ovat: >>x(1:10) Columns 1 through Columns 8 through Vektorin alkioihin voidaan myös sijoittaa arvoja. Esimerkiksi tässä asetetaan vektorin x 10 ensimmäiseen alkioon 0: >>x(1:10)=0; Pysty- ja vaakavektorit Matlabissa vektori voidaan esittää joko pysty- tai vaakavektorina. Oletusarvona Matlab tekee vaakavektorin. Sen voi muuttaa pystyvektoriksi eli transponoida komennolla x : >> x=[1:3] x = >> x' Tehtävä: Tee vektori x, joka sisältää kokonaisluvut 1-5 ja vektori y, joka sisältää luvut Kokeile yhteen-, vähennys, kerto- ja jakolaskuja. Mitä tapahtui?

6 Summa ja erotus on määritelty matemaattisesti vektoreille siten, että operaatio kohdistuu vektorien vastinalkioihin. Sen sijaan tulon ja osamäärän tapauksessa Matlab pyrkii laskemaan aina matriisitulon. Tehtävä: Selitä, mitä seuraavat operaatiot tekevät: x*y x *y Vastinalkioiden kerto- ja jakolasku on toki myös mahdollista. Se määritellään laittamalla operaattorin eteen PISTE. Siis esumerkiksi x.*y. Tehtävä: Laske vektorien x ja y alkioittainen tulo ja osamäärä. Matriisit Matriisi on kaksiulotteinen taulukko (vektori). Matriisin alkiot annetaan hakasulkujen sisällä rivi kerrallaan puolipisteillä erotettuna. Esimerkki: a=[1 2 3; 4 5 6; 7 8 9] a = >> a' Matriisin transponointi siis kääntää rivit sarakkeiksi ja päinvastoin. Peruslaskutoimituksiin matriiseilla pätee samat periaatteet kuin edellä vektoreihin. Summa ja erotus on siten määritelty vain kahden samankokoisen matriisin kesken. Matriisin a käänteismatriisi voidaan laskea komennolla inv(a). Tehtävä: Käytä edellä määriteltyä matriisia a. Tee myös vaakavektori b, joka sisältää luvut 1, 2 ja 3. Mitä laskutoimituksia a:n ja b:n välillä voi tehdä? Tehtävä: Matlabissa on valmiina joukko komentoja, joilla voidaan tehdä tiettyjä erikoismatriiseja. Tällaisia on esimerkiksi ones(n), zeros(n), eye(n), magic(n) jne. Mitä nämä komennot tekevät? Kirjaimen n tilalla on oltava positiivinen kokonaisluku.

7 Tehtävä: TST:ssä käytettiin tasavirtapiirien yhteydessä paljon silmukkamenetelmää, jossa tuntemattomat silmukkavirrat saatiin matriisiyhtälöstä 1 I = R ε. Ratkaise oheisen kytkennän silmukkavirrat Matlabia käyttäen: 10Ω A 20Ω 100V 10Ω 40V B

Ohjelman käynnistäminen

Ohjelman käynnistäminen >> why Because he obeyed a good and young and smart and terrified and rich and rich and not very good and good and bald and not excessively tall and good programmer. Tässä materiaali on tarkoitettu insinööriopiskelijoille

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

Matriiseista. Emmi Koljonen

Matriiseista. Emmi Koljonen Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.

Lisätiedot

BM20A0700, Matematiikka KoTiB2

BM20A0700, Matematiikka KoTiB2 BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin

Lisätiedot

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

BL40A0000 Säätötekniikan ja signaalinkäsittelyn

BL40A0000 Säätötekniikan ja signaalinkäsittelyn 1 BL40A0000 Säätötekniikan ja signaalinkäsittelyn matemaattiset ohjelmistot Luennot ja harjoitukset Katja Hynynen, h. 6431, p. 040-548 8954 Katja.Hynynen@lut.fi Opetus ja suoritusvaatimukset OPETUS: Luentoja

Lisätiedot

Matlabperusteita, osa 1. Heikki Apiola Matlab-perusteita, osa 1. Heikki Apiola. 12. maaliskuuta 2012

Matlabperusteita, osa 1. Heikki Apiola Matlab-perusteita, osa 1. Heikki Apiola. 12. maaliskuuta 2012 Matlab-perusteita, 12. maaliskuuta 2012 Matlab-perusteita, Ohjelmahahmotelma 1. viikko: Matlab 2. viikko: Maple (+ annettujen Matlab tehtävien ratkaisuja) 3. viikko: Maple ja Matlab (lopputyöt) Matlab-perusteita,

Lisätiedot

Matlab-perusteet Harjoitustehtävien ratkaisut

Matlab-perusteet Harjoitustehtävien ratkaisut Matlab-perusteet Harjoitustehtävien ratkaisut Osa 1 Tehtävä: Määrittele muuttujat a ja b, anna niille vaikkapa arvot 3 ja 2 ja kokeile peruslaskutoimituksia niillä. >>a=1;b=2; >>a+b 3 >>a-b -1 >>a*b 2

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Matemaattiset ohjelmistot A. Osa 2: MATLAB

Matemaattiset ohjelmistot A. Osa 2: MATLAB Matemaattiset ohjelmistot 802364A Osa 2: MATLAB Mikko Orispää 30. lokakuuta 2013 Sisältö 1 MATLAB 2 1.1 Peruslaskutoimitukset......................... 2 1.2 Muuttujat................................ 3

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Heikki Apiola, Juha Kuortti, Miika Oksman. 5. lokakuuta Matlabperusteita, osa 1

Heikki Apiola, Juha Kuortti, Miika Oksman. 5. lokakuuta Matlabperusteita, osa 1 Matlab-perusteita, 5. lokakuuta 2015 Matlab-perusteita, Mikä on Matlab Matriisilaboratorio [Cleve Moler, Mathworks inc.] Numeerisen laskennan työskentely-ympäristö Suuri joukko matemaattisia ja muita funktioita,

Lisätiedot

Octave-opas. Mikä on Octave ja miksi? Asennus

Octave-opas. Mikä on Octave ja miksi? Asennus Octave-opas Mikä on Octave ja miksi? Asennus Käynnistys ja käyttöliittymä Komennot tiedostojen hallintaan SciTE-editor.m-tiedostot Ohjeita muualla Mikä on Octave ja miksi? Octave on numeeriseen laskentaan

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa.

Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7 Matriisilaskenta Kurssin loppuosassa tutustutaan matriiseihin ja niiden käyttöön yhtälöryhmien ratkaisemisessa. 7.1 Lineaariset yhtälöryhmät Yhtälöryhmät liittyvät tilanteisiin, joissa on monta tuntematonta

Lisätiedot

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa.

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukot C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukon muuttujilla (muistipaikoilla) on yhteinen nimi. Jokaiseen yksittäiseen

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo

Talousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

T211003 Sovellusohjelmat Matlab osa 4: Skriptit, funktiot ja kontrollirakenteet

T211003 Sovellusohjelmat Matlab osa 4: Skriptit, funktiot ja kontrollirakenteet Ohjelmointi Matlab-komentoja voidaan koota ns. M-tiedostoon. Nimi tulee tiedoston tarkentimesta.m. Matlabilla voidaan ohjelmoida kahdella eri tavalla: Skriptit eli komentojonot eli makrot Funktiot eli

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab)

Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) Harjoitus 1: Johdatus matemaattiseen mallintamiseen (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Ensimmäinen harjoituskierros Aiheet Tutustuminen

Lisätiedot

1. Lineaarialgebraa A := Matriisin osia voidaan muutella päivittämällä riviä, saraketta tai osamatriisia (Matlabmaisesti): B :=

1. Lineaarialgebraa A := Matriisin osia voidaan muutella päivittämällä riviä, saraketta tai osamatriisia (Matlabmaisesti): B := 27. elokuuta 202 2 27. elokuuta 202 www.math.hut/~apiola/maple/la.pdf. Lineaarialgebraa Maplen matriisi- ja vektorioperaatiot ovat kirjastopakkauksissa LinearAlgebra ja linalg. Keskitymme pääasiassa edelliseen,

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Harjoitus 10: Mathematica

Harjoitus 10: Mathematica Harjoitus 10: Mathematica Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Mathematica-ohjelmistoon Mathematican

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Pythonin Kertaus. Cse-a1130. Tietotekniikka Sovelluksissa. Versio 0.01b

Pythonin Kertaus. Cse-a1130. Tietotekniikka Sovelluksissa. Versio 0.01b Pythonin Kertaus Cse-a1130 Tietotekniikka Sovelluksissa Versio 0.01b Listat 1/2 esimerkkejä listan peruskäytöstä. > lista=['kala','kukko','kissa','koira'] ['kala','kukko','kissa','koira'] >lista.append('kana')

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla

Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla Viimeksi muokattu 5. toukokuuta 2012 Maastotietokannan torrent-jakeluun sisältyy yli 5000 zip-arkistoa,

Lisätiedot

MEM-O-MATIC. 6800 järjestelmä

MEM-O-MATIC. 6800 järjestelmä MEM-O-MATIC 6800 järjestelmä Ohjeet Windows yhdysohjelmalle / 6800 yhdysohjelman käyttöohje זתתתתת Windows yhdysohjelman asennus tietokoneelle Tee uusi kansio esimerkiksi nimellä MEMO kovalevyllesi. Kopio

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla

Käänteismatriisin. Aiheet. Käänteismatriisin ominaisuuksia. Rivioperaatiot matriisitulona. Matriisin kääntäminen rivioperaatioiden avulla Käänteismatriisi, L5 1 Tässä kalvosarjassa käsittelemme neliömatriiseja. Ilman asian jatkuvaa toistamista oletamme seuraavassa, että kaikki käsittelemämme matriisit ovat neliömatriiseja. Määritelmä. Olkoon

Lisätiedot

Luento 4. Timo Savola. 21. huhtikuuta 2006

Luento 4. Timo Savola. 21. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 4 Timo Savola 21. huhtikuuta 2006 Osa I Shell Lausekkeet Komentoriville kirjotettu komento on lauseke echo "foo" echo $USER MUUTTUJA=1 ls -l Rivinvaihto

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Scilab 5.3.3 - ohjelman alkeisohjeet

Scilab 5.3.3 - ohjelman alkeisohjeet Pohdin projekti Scilab 5.3.3 - ohjelman alkeisohjeet Käytön aloittaminen Ohjelma käynnistetään kaksoisklikkaamalla työpöydällä ohjelman kuvaketta ja ohjelman käyttö lopetetaan käyttämällä komentoa exit

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti

Talousmatematiikan perusteet: Luento 10. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Talousmatematiikan perusteet: Luento 1 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Matriisitulo Determinantti Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Toinen harjoitustyö. ASCII-grafiikkaa 2017

Toinen harjoitustyö. ASCII-grafiikkaa 2017 Toinen harjoitustyö ASCII-grafiikkaa 2017 Yleistä Tehtävä: tee Javalla ASCII-merkkeinä esitettyä grafiikkaa käsittelevä ASCIIArt17-ohjelma omia operaatioita ja taulukoita käyttäen. Työ tehdään pääosin

Lisätiedot

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /

Lisätiedot

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017

Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017 Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

Python-ohjelmointi Harjoitus 2

Python-ohjelmointi Harjoitus 2 Python-ohjelmointi Harjoitus 2 TAVOITTEET Kerrataan tulostuskomento ja lukumuotoisen muuttujan muuttaminen merkkijonoksi. Opitaan jakojäännös eli modulus, vertailuoperaattorit, ehtorakenne jos, input-komento

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/4+^2 3 4+ 2 Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +^2 3 + 4 2 Kopioi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut

Differentiaali- ja integraalilaskenta 1. Tietokoneharjoitus: ratkaisut Johdanto Kokeile tavallista numeroilla laskemista: yhteen-, kerto- ja jakolaskuja sekä potenssiinkorotusta. 5 (3.1) Differentiaali- ja integraalilaskenta 1 Tietokoneharjoitus: ratkaisut Kurssin 1. alkuviikon

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

c) 22a 21b x + a 2 3a x 1 = a,

c) 22a 21b x + a 2 3a x 1 = a, Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

1 Tivax siirto uuteen koneeseen

1 Tivax siirto uuteen koneeseen Tivax siirto uuteen koneeseen 1 1 Tivax siirto uuteen koneeseen 1.1 Tivax ohjelman asentaminen Huom. Siirrossa mahdollisesti esiintyvien ongelmien ratkaisu on veloituksetonta ainoastaan asiakkaille, joilla

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Tieto- ja tallennusrakenteet

Tieto- ja tallennusrakenteet Tieto- ja tallennusrakenteet Sisältö Tyyppi, abstrakti tietotyyppi, abstraktin tietotyypin toteutus Tallennusrakenteet Taulukko Linkitetty rakenne Abstraktit tietotyypit Lista (Puu) (Viimeisellä viikolla)

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot