1 Perusteita lineaarisista differentiaaliyhtälöistä

Koko: px
Aloita esitys sivulta:

Download "1 Perusteita lineaarisista differentiaaliyhtälöistä"

Transkriptio

1 1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause 1.1. Alkuarvotehtävällä on olemassa yksikäsitteinen ratkaisu x(t) jokaisella x 0. Tod: Sivuutetaan. ẋ(t) = A(t)x(t), x(t 0 ) = x 0 (1) Lause 1.2. Olkoot vektorit e 1,...,e n kanonisia ortonormeerattuja kantavektoreita. Tehtävän ẋ i (t) = A(t)x i (t), x i (t 0 ) = e i ratkaisut x i (t) voidaan kooda ns. fundamentaalimatriisiksi ] Φ(t, t 0 ) = x 1 (t)... x n (t). Kaikilla ajan hetkillä t fundamentaalimatriisin Φ(t, t 0 ) sarakkeet ovat lineaarisesti riippumattomia. Tehtävän (1) ratkaisu voidaan kirjoittaa x(t) = Φ(t, t 0 )x 0. Tod: Olkoot τ kiinteä mutta mielivaltainen ajanhetki, ja c 1,...,c n mielivaltaisia kertoimia siten, että c 1 x 1 (τ) c n x n (τ) = 0. Asetetaan Silloin pätee y(t) = c 1 x 1 (t) c n x n (t). y(τ) = 0, ẏ(t) = A(t)y(t). Eräs ratkaisu tälle on y(t) 0. Koska ratkaisu oli yksikäsitteinen, on tämä myös ainoa ratkaisu. Silloin on oltava y(t 0 ) = c 1 e c n e n = 0, ja siten kaikki kertoimet c 1 =... = c n = 0. Näin ollen fundamentaaliratkaisut x i (t) ovat lineaarisesti riippumattomia kaikilla t. Fundamentaalimatriisille Φ(t, t 0 ) pätee (kierroksen 1 kotitehtävä) Φ(t, t 0 ) = A(t)Φ(t, t 0 ), Φ(t 0, t 0 ) = I, joten asettamalla saadaan x(t) = Φ(t, t 0 )x 0 ẋ(t) = Φ(t, t 0 )x 0 = A(t)Φ(t, t 0 )x 0 = A(t)x(t). 1

2 Huomaa, että joten x(t) = Φ(t, τ)x(τ) = Φ(t, τ)φ(τ, t 0 )x 0, t, τ, t 0, Φ(t, t 0 ) = Φ(t, τ)φ(τ, t 0 ) Φ(t, τ) = Φ(t, t 0 )Φ(τ, t 0 ) 1, koska fundamentaalimatriisi oli edellä osoitettu kääntyväksi. Todistetaan, että yleisen alkuarvotehtävän ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 ratkaisu voidaan kirjoittaa muodossa Suoraan derivoimalla saadaan x(t) = Φ(t, t 0 )x 0 + t ẋ(t) = d dt Φ(t, t 0)x 0 + Φ(t, t)b(t)u(t) + t 0 Φ(t, τ)b(τ)u(τ) ds. t t t 0 d Φ(t, τ)b(τ)u(τ) dτ dt = A(t)Φ(t, t 0 )x 0 + B(t)u(t) + A(t)Φ(t, τ)b(τ)u(τ) dτ t 0 t ] = A(t) Φ(t, t 0 )x 0 + Φ(t, τ)b(τ)u(τ) dτ + B(t)u(t) t 0 = A(t)x(t) + B(t)u(t) ja koska myös alkuehto totetuu, on väite todistettu. Esim. Ratkaistavana ẋ(t) = ax(t) + bu(t) s.e. x(0) = x 0. Nyt Φ saadaan tehtävän ẋ = ax, x(t 0 ) = 1 ratkaisuna, eli Φ(t, t 0 ) = e a(t t 0). Saadaan siis x(t) = x 0 e at + b t 0 ea(t τ) u(τ)dτ. 2

3 2 Perusteita epälineaarisesta ohjelmoinnista 2.1 Välttämättömät ehdot optimointitehtävälle Rajoittamattoman optimointitehtävän min g(x) x R n välttämätön optimaalisuusehto lokaalille optimille on g(x) = 0. Ehto on riittävä lokaalille x optimille, kun Hessen matriisi 2 g(x) on positiivisesti definiitti. Ehto on riittävä globaalille x 2 optimille silloin, kun f on konveksi funktio. Rajoitettu tehtävä: min g(x) s.e. f(x) = 0 ja h(x) 0, missä f(x) R m 1 ja h(x) R m 2. Tehtävän Lagrangen funktio on L(x, µ, λ) = g(x) + λ T f(x) + µ T h(x), missä Lagrangen kertoimet λ R m 1 ja µ R m 2. Tehtävän välttämätön optimaalisuusehto lokaalille optimille on L(x, µ, λ) x = 0 ja µ T h(x) = 0, µ 0. Lisäksi optimin on oltava käypä. Ehto on välttämätön kun rajoitteet ovat riittävän säännöllisiä. Rajoitteilta siis vaaditaan lisäominaisuuksia, kuten se, että sekä kaikkien rajoitteiden gradientit ovat optimissa lineaarisesti rippumattomia. Ehto on riittävä, kun L:n Hessen matriisi (x:n suhteen) on positiivisesti definiitti optimissa. 2.2 Diskreettiaikaisen tehtävän välttämättömät ehdot Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,...,N 1 alkuehdolla x 1 = x 0 1, ja tavoite on maksimoida kohdefunktio J(u) = g N (x N ) + N 1 k=1 g k (x k, u k ). Tehtävä voidaan ajatella epälineaarisena optimointitehtävänä, jossa optimoidaan tilamuuttujien ja ohjausmuuttujien suhteen ja tilayhtälöt ovat yhtälörajoitteita. Tehtävän Lagrangen funktio määritellään Lagrangen kertoimien λ k avulla: L(x, λ) = g N (x N ) + N 1 k=1 { gk (x k, u k ) λ k+1 xk+1 f k (x k, u k ) ]}. 3

4 Mikäli tehtävän ohjaukset u k ovat rajoittamattomia, niin välttämättömät ehdot ekstremaalille ovat L = 0, k = 2,...,N (2) L u k = 0, k = 1,...,N 1 (3) Lisäksi vaaditaan tilayhtälöiden (eli yhtälörajoitteiden) toteutuminen. Tilayhtälöt huomioiden saadaan yhteensä 3N 3 yhtälöä yhtä monelle tuntemattomalle x 2,...,x N, u 1,..., u N 1,...,λ 2,...,λ N. (4) Yhtälö (2) antaa eli Yhtälöstä (3) saadaan g k + λ k+1 f k λ k = 0 λ k = g k + λ k+1 f k, k = 2,...,N. (5) g k u k + λ k+1 f k u k = 0, k = 1,..., N 1. (6) Eliminoimalla λ k+1 yhtälöstä (5) ja sijoittamalla se yhtälöön (6) saadaan differenssiyhtälö x k :lle ja u k :lle optimissa. Tätä yhtälöä kutsutaan joskus Eulerin ehdoksi. Kyseinen välttämätön ehto vastaa jatkuvan ajan systeemien Eulerin yhtälöä, siitä nimitys. Välttämättömät ehdot voidaan kirjoittaa myös käyttäen Hamiltonin funktiota H k (x k, u k, λ k+1 ) g k (x k, u k ) + λ k+1 f k (x k, u k ), (7) jolloin välttämättömät ehdot muuttuvat muotoon x k+1 = f k (x k, u k ), k = 1,...,N 1 (8) λ k = H k(x k, u k, λ k+1 ), k = 2,..., N (9) 0 = H k(x k, u k, λ k+1 ) u k, 1 = 2,..., N 1. (10) Jos ohjaukset olisivatkin rajoitettuja, voitaisiin todistaa diskreetti versio Pontryaginin minimiperiaatteesta. Tämä korvaisi ehdon (6). Esim. diskreetin ajan tilasäätäjäongelma Tilayhtälö: x k+1 = A k x k + B k u k, k = 0,..., N 1 alkuehdolla x 0 = x 0 ja lopputila vapaa, ts. g N 0. Kohdefunktionaali on min J = 1 2 N 1 k=0 x T k+1 Q k+1 x k+1 + u T k R ku k ]. 4

5 Erityisesti on oltava Tilasäätäjäongelman Hamiltonin funktio on λ N = 1 ] x T 2 x N Q N x N = QN x N. N H k (x k, u k, λ k+1 ) = 1 2 x T k+1 Q k+1 x k+1 + u T k R k u k ] + λ T k+1 A k x k + B k u k ] = 1 ] (Ak x k + B k u k ) T Q k+1 (A k x k + B k u k ) + u T k R k u k 2 +λ T k+1 A kx k + B k u k ] Ohjaus on rajoittamaton, joten optimaalinen ohjaus saadaan ratkaistua yhtälöstä H k u k = B T k Q k+1a k x k + B T k Q k+1b k u k + R k u k + B T k λ k+1 = B T k Q k+1(a k x k + B k u k ) + R k u k + B T k λ k+1 = B T k Q k+1 x k+1 + R k u k + B T k λ k+1 = 0, eli optimiohjaus on Liittotilayhtälöstä saadaan u k = R 1 k BT k Q k+1x k+1 + λ k+1 ]. λ k = H k = A T k Q k+1a k x k + A T k Q k+1b k u k + A T k λ k+1 ] = A T k Qk+1 (A k x k + B k u k ) + λ k+1 = A T k Qk+1 x k+1 + λ k+1 ]. Tehdään oletus, jonka mukaan liittotila on muotoa jollakin matriiseilla K k. Silloin optimiohjaus on muotoa ja sijoittamalla tilayhtälöihin saadaan josta seuraa Vastaavasti liittotilayhtälöistä saadaan λ k = (K k Q k )x k, (11) u k = R 1 k BT k K k+1x k+1 (12) x k+1 = A k x k B k R 1 k BT k K k+1x k+1, (13) Λ k x k+1 I + B k R 1 k BT k K k+1] xk+1 = A k x k. (14) λ k = A T k K k+1x k+1, (15) joten (K k Q k )x k = A T k K k+1 x k+1. (16) 5

6 Jos nyt matriisi Λ k on säännöllinen niin Λ 1 k on olemassa, ja voidaan kirjoittaa: x k+1 = Λ 1 k A kx k. (17) Sijoittamalla tämä yhtälöön (16) saadaan Kk Q k ] xk = A T k K k+1λ 1 k A k] xk. (18) Koska yhtälön (18) tulee toteutua kaikilla x k, niin on oltava Lisäksi, koska λ N = Q N x N niin silloin K k = Q k + A T k K k+1λ 1 k A k. (19) K N = 2Q N. (20) Tästä rekursiosta voidaan ratkaista K k :t. Nyt ollaan saatu takaisinkytketty optimiohjaus u k = R 1 k BT k K k+1λ 1 k A kx k. (21) Tällöin jokaisella ajan hetkellä ohjauksen laskemiseksi joudutaan ratkaisemaan lineaarinen yhtälöryhmä. Lainataan seuraava matriisien inversiolemma: Lemma 2.1. Olkoot I n yksikkömatriisi kokoa n n, S ja T matriiseja kokoa n r ja r n. Silloin: (I n + ST T ) 1 = I n S(I r + T T S) 1 T T, jos käänteismatriisit ovat olemassa. Todistus. Laskemalla (I + ST T )(I S(I + T T S) 1 T T ) =... = I. Sijoittamalla lemmaan S = B k ja T T = R 1 k BT k K k+1 saadaan Λ 1 k = I B k (I r + R 1 k BT k K k+1 B k ) 1 R 1 k BT k K k+1 = I B k Rk (I r + R 1 k BT k K k+1b k )] 1 B T k K k+1 = I B k Rk + B T k K k+1b k ] 1 B T k K k+1. Nyt riittää ratkaista r r yhtälöryhmä. Jos ohjausvektorin dimensio r on pienempi kuin tilavektorin dimensio n, niin säästyy laskenta-aikaa. Merkitään ja nyt ratkaisu voidaan kirjoittaa P k R k + B T k K k+1b k ] 1 B T k (22) x k+1 u k = (I B k P k K )A k x k = R 1 k BT k K ] k+1 I Bk P k K k+1 Ak x k K k = Q k + A T k K ] k+1 I Bk P k K k+1 Ak, K N = 2Q N P k = R k + B T k K k+1b k ] 1 B T k. 6

7 3 Tilayhtälöiden numeerinen ratkaiseminen Alkuarvotehtävässä halutaan ratkaista lopputila x(t f ) siten, että tilayhtälöt ẋ = f(x,u, t) toteutuvat, kun alkutila x 0 ja ohjaus u on annettu Tilayhtälöiden numeerinen integrointi voidaan suorittaa joko yksi- tai moniaskelmenetelmillä Yksiaskelmenetelmissä tilayhtälöt integroidaan askeleen h i = t i+1 t i yli alkutilasta x i x(t i ) x i+1 = x i + ti+1 t i ẋdt = x i + ti+1 Integraalin määrittämiseksi askel h i jaetaan k:hon osaan t i f(x,u, t)dt τ j = t i + h i ρ j, 0 ρ 1... ρ k 1 Välivaiheiden jälkeen saadaan joukko yksiaskelmenetelmiä, joita kutsutaan k-vaiheisiksi Runge-Kutta menetelmiksi ja joiden globaali virhe O(h p ). Määritellään f i f(x(t i ),u(t i ), t i ) sekä u i+1 u(t i + h i /2). Eulerin menetelmä (eksplisiittinen, k = 1, p = 1) x i+1 = x i + h i f i Hermite-Simpson menetelmä (implisiittinen, k = 3, p = 4) x i+1 = 1 2 (x i + x i+1 ) + h i 8 (f i f i+1 ) ( f i+1 = f x i+1,u i+1, t i + h ) i 2 x i+1 = x i + h i 6 (f i + 4f i+1 + f i+1 ) Puolisuunnikasmenetelmä (implisiittinen, k = 2, p = 2) x i+1 = x i + h i 2 (f i + f i+1 ) Klassinen Runge-Kutta menetelmä (eksplisiittinen, k = 4, p = 4) k 1 = h i f(x i,u i, t i ) ( k 2 = h i f x i k 1,u i+1, t i + h ) i 2 ( k 3 = h i f x i k 2,u i+1, t i + h ) i 2 k 4 = h i f(x i + k 3,u i+1, t i+1 ) x i+1 = x i (k 1 + 2k 2 + 2k 3 + k 4 ) 7

8 Eksplisittisten menetelmien etu on, että x i+1 saadaan laskettua suoraan x i :n sekä ohjausten funktiona Eksplisiittiset menetelmät voivat olla toisaalta epästabiileja Differentiaaliyhtälön ẋ = 1000x Eulerin diskretointi x k+1 = x k 1000hx k x k = (1 1000h) k x 0 Jotta numeerinen ratkaisu konvergoisi tarkkaan ratkaisuun x(t) = e 1000t x 0 0, vaaditaan h < 1, eli h 1/500 Implisiittisissä menetelmissä riippuvuus x i+1 :stä on usein epälineaarinen Esimerkiksi implisiittisessä Eulerin menetelmässä vaaditaan epälineaarisen yhtälön ratkaisemista ζ i x i+1 x i + h i f(x i+1,u i+1, t i+1 ) = 0 Yhtälön ratkaisemiseksi vaadittavia iteraatioita kutsutaan korjausiteraatioiksi, kun taas alkuyrite tuotetaan ns. ennustusaskeleella Implisiittiset menetelmät ovat stabiileja Em. differentiaaliyhtälölle implisiittinen Eulerin diskretointi x k+1 = x k 1000hx k+1 x k = ( h) k x 0, joten menetelmä on stabiili (x 0 kaikilla h > 0) 1 h = 1/ Implisiittinen Euler Tarkka ratkaisu Eksplisiittinen Euler

9 Moniaskelmenetelmien yleinen muoto k 1 x i+k = α j x i+j + h j=0 k β j f i+j missä α j ja β j ovat tunnettuja vakioita. Jos β k = 0, menetelmä on eksplisiittinen, muuten implisiittinen. Adamsin menetelmissä tilayhtälöitä f(t) approksimoidaan interpolanteilla pisteissä {(x q (t i ), f q (t i )) i = l k + 1,..., l; q = 1,..., n} Lisävaatimuksia yksiaskelmenetelmiin nähden Moniaskelmenetelmä vaatii tietoa k 1 edeltävästä pisteestä, joten menetelmä täytyy alustaa esim. jollain yksiaskelmenetelmällä Moniaskelmenetelmässä oletetaan, että askelpituus h on vakio: tarkkuus? j=0 9

10 4 Johdanto kollokaatiomenetelmiin 4.1 Funktionaaliyhtälöiden ratkaiseminen Olk. y : A R n, A R m, merkitään y:n argumenttia t:llä y(t). Ratkaistavana on funktionaaliyhtälö F(y) = 0, missä y kuuluu funktioavaruuteen Y 1 ja F(y) funktioavaruuteen Y 2. Esim. 1. Kun halutaan ratkaista differentiaaliyhtälösysteemi ẋ = f(x, t) kaikilla t t 1, t 2 ], niin F(x)(t) = ẋ(t) f(x, t). Esim. 2. Ratkaistaan arvofunktiota kiinnitetyillä ohjauksilla V (x) Bellmanin yhtälössä. Tällöin F(V )(x) = V (x) g(x, u)+αv (f(x, u))]. Tämä on osaongelma Bellmanin yhtälön numeerisessa ratkaisemisessa ns. politiikkaiteraatiolla. Muodostetaan y:lle approksimaatio kantafunktioiden φ i : A R n, i = 1,..., k, avulla: ỹ(t) = c i φ i (t). Tavoitteena on löytää sellainen ỹ, joka ratkaisee yhtälön F(y) = 0 mahdollisimman tarkasti. Siis haetaan parametreja c i. Arviodaan sovituksen hyvyyttä käyttämällä kriteerinä residuaalifunktiota R(t; c) = F(ỹ)(t), missä c = (c 1,...,c k ). Kollokaatiomenetelmässä haetaan c siten että R(t; c) = 0 toteutuu mahdollisimman hyvin (ellei tarkasti) valituissa kollokaatiopisteissä t 1,...,t p. Kollokaatiomenetelmää käytettäyessä tulee 1. valita sopivat kantafunktiot, 2. kollokaatiopisteet ja 3. menetelmä c:n ratkaisemiseksi. 1. Kantafunktioiden valinta: Kantafunktioiden on oltava riittävän joustavia tehtävän tarpeisiin. Funktiomuodon oltava mieluiten sellainen, että tulokset ovat hyviä pienellä määrällä kantafunktioita. Kun approksimoitava muuttuja on yksidimensioinen, niin usein hyvä valinta on nk. Chebyshevin polynomit. 2. Kollokaatiopisteiden valinta: Yksidimensioisessa tapauksessa ns. Chebyshevin kollokaatiopisteet ovat usein hyvä valinta. 3. Menetelmä parametrien ratkaisemiseksi: Kun kollokaatiopisteitä on sama määrä kuin kantafunktioita, voidaan kertoimet c ratkaista kollokaatioehdoista syntyvästä yhtälöryhmästä. Kun kantafunktioita on vähemmän kuin kollokaatiopisteitä, voidaan c ratkaista esim. pienimmän neliösumman menetelmällä. 4.2 Tilamuuttujan approksimointi polynomeilla Approksimoidaan tilayhtälöiden ẋ = f(x, t) ratkaisua välillä t 1, t 2 ] astetta p olevalla polynomilla (kantafunktiot polynomeja) x(t) = c 0 + c 1 (t t 1 ) + c 2 (t t 1 ) c k (t t 1 ) p, missä c i R n ja n on x(t):n dimensio. Residuaalifuntio on siis R(τ; c) = d x (τ) f x(τ), τ]. dt 10

11 Vaaditaan, että R(τ j ; c) = 0 toteuttuu kollokaatiopisteissä τ j (t 1, t 2 ), j = 1,...,k (kollokaatioehdot). Lisäksi vaaditaan, että x(t i ) x i = 0. Lobatton menetelmissä välin pääte- ja sisäpisteet kollokaatiopisteitä Gaussin menetelmissä vain sisäpisteet kollokaatiopisteitä Radaun menetelmissä vain toinen päätepiste on kollokaatiopiste Runge-Kutta menetelmistä puolisuunnikasmenetelmä ja Hermite-Simpson ovat Lobatton menetelmiä Puolisuunnikas: p = 2, kollokaatio alku- ja loppupisteessä Hermite-Simpson: p = 3, kollokaatio alku-, keski- ja loppupisteessä 11

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

[xk r k ] T Q[x k r k ] + u T k Ru k. }.

[xk r k ] T Q[x k r k ] + u T k Ru k. }. Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa

Amazon.com: $130,00. Osia, jaetaan opetusmonisteissa 1 Kurssin käytännön järjestelyt Luennot (12 kpl) tiistaisin klo 9 12 luokassa Y313 Luennoitsija TkT Mitri Kitti Vastaanotto luentojen yhteydessä email: mitri.kitti@hse.fi Luentomoniste kurssin verkkosivuilla

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

k = 1,...,r. L(x 1 (t), x

k = 1,...,r. L(x 1 (t), x Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun

Lisätiedot

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = =

v AB q(t) = q(t) v AB p(t) v B V B ṗ(t) = q(t) v AB Φ(t, τ) = e A(t τ). e A = I + A + A2 2! + A3 = exp(a D (t τ)) (I + A N (t τ)), A N = = Mat-214 Dynaaminen optimointi Mitri Kitti Mallivastaukset kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...

Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),... Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

6. Differentiaaliyhtälösysteemien laadullista teoriaa.

6. Differentiaaliyhtälösysteemien laadullista teoriaa. 1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

6 Variaatiolaskennan perusteet

6 Variaatiolaskennan perusteet 6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

Konjugaattigradienttimenetelmä

Konjugaattigradienttimenetelmä Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 11

Mat Dynaaminen optimointi, mallivastaukset, kierros 11 Mat-.148 Dynaaminen optimointi, mallivastaukset, kierros 11 1. Olkoon tehtaan tuotanto x(t) ajan hetkellä t ja investoitava osuus tuotannosta u(t). Tehdasta kuvaa systeemiyhtälö ẋ(t) = u(t)x(t) x() = c

Lisätiedot

x = ( θ θ ia y = ( ) x.

x = ( θ θ ia y = ( ) x. Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan systeemianalyysin laitos Mat-2429 Systeemien Identifiointi 5 harjoituksen ratkaisut Esitetään ensin systeemi tilayhtälömuodossa Tiloiksi valitaan

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 3

Mat Dynaaminen optimointi, mallivastaukset, kierros 3 Mat-2.48 Dynaaminen optimointi, mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: Kustannusfunktio: J = 2 xt NHx

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

Mat Työ 1: Optimaalinen lento riippuliitimellä

Mat Työ 1: Optimaalinen lento riippuliitimellä Mat-2.132 Työ 1: Optimaalinen lento riippuliitimellä Miten ohjaan liidintä, jotta lentäisin mahdollisimman pitkälle?? 1 työssä Konstruoidaan riippuliitimen malli dynaamisen systeemin tilaesitys Simuloidaan

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 13: ti klo 13:00-15:30 ja to 1.4. DI matematiikan opettajaksi: Täydennyskurssi, kevät Luentorunkoa ja harjoituksia viikolle 3: ti 33 klo 3:-5:3 ja to 4 klo 9:5-: Käydään läpi differentiaaliyhtälöitä Määritelmä Olkoon A R n n (MatLab:ssa

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ

Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan

Lisätiedot

Taustatietoja ja perusteita

Taustatietoja ja perusteita Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k)

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k) ACKERMANNIN ALGORITMI Olkoon järjestelmä x(k+1) = Ax( + Bu( jossa x( = tilavektori (n x 1) u( = ohjaus (skalaari) A (n x n matriisi) B (n x 1 matriisi) Oletetaan, että ohjaus u( = Kx( on rajoittamaton.

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Vakiokertoiminen lineaarinen normaaliryhmä

Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 29 Vakiokertoiminen lineaarinen normaaliryhmä Todetaan ensin ilman todistuksia (tulos on syvällinen) ratkaisujen

Lisätiedot

Finanssimaailman ongelmien ratkaiseminen epäsileän optimoinnin keinoin. Markus Harteela Turun yliopisto

Finanssimaailman ongelmien ratkaiseminen epäsileän optimoinnin keinoin. Markus Harteela Turun yliopisto Finanssimaailman ongelmien ratkaiseminen epäsileän optimoinnin keinoin Markus Harteela Turun yliopisto huhtikuu 2016 1 Johdanto Tämä työ on kurssin Epäsileä Optimointi harjoitustyö ja se perustuu artikkeliin

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Reuna-arvotehtävien ratkaisumenetelmät

Reuna-arvotehtävien ratkaisumenetelmät Reuna-arvotehtävien ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Malliprobleema Kahden pisteen reuna-arvotehtävä u (x) = f (x) (1) u() = u(1) = Jos u C ([,1]) ratkaisu, niin missä x u(x)

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

Differentiaaliyhtälöiden numeerinen ratkaiseminen

Differentiaaliyhtälöiden numeerinen ratkaiseminen Differentiaaliyhtälöiden numeerinen ratkaiseminen Keijo Ruotsalainen Division of Mathematics Alkuarvotehtävä Tavallisen differentiaaliyhtälön alkuarvotehtävä: Määrää reaaliarvoinen funktio y C 1 (I) siten,

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Pienimmän neliösumman menetelmä

Pienimmän neliösumman menetelmä Pienimmän neliösumman menetelmä Keijo Ruotsalainen Division of Mathematics Funktion sovitus Datapisteet (x 1,...,x n ) Annettu data y i = f(x i )+η i, missä f(x) on tuntematon funktio ja η i mittaukseen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44

Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44 Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön 4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e

Lisätiedot

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). 6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja

Lisätiedot

[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät

[4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät [4A] DIFFERENTIAALIYHTÄLÖT 1. Alkuarvotehtävät Numeerisen integroinnin yhteydessä ratkoimme jo tavallisia ensimmäisen kertaluvun alkuarvotehtäviä integroimalla eli t y (t) =f(t, y(t)) y(t) =y(t a )+ f(t,

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot