A250A0050 Ekonometrian perusteet Tentti

Koko: px
Aloita esitys sivulta:

Download "A250A0050 Ekonometrian perusteet Tentti"

Transkriptio

1 A250A0050 Ekonometrian perusteet Tentti Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin yläreunaan, jos olet suorittanut harjoitustyön viime vuoden kurssin yhteydessä. Tehtävä 1 (max 12 pistettä) Vastaa seuraaviin kysymyksiin lyhyesti mutta täsmällisesti. a) Miksi ekonometriseen malliin lisätään virhetermi? (2 p.) b) Mikä on nollahypoteesi, kun testataan estimoidun kertoimen tilastollista merkitsevyyttä? (2 p.) c) Mitä tarkoitetaan mallin määrittelyvirheellä? Millaiset määrittelyvirheet ovat tavallisia? (4 p.) d) Millaisessa tilanteessa voit käyttää logit mallia? Anna esimerkki kysymyksestä, johon voit hakea vastausta logit mallin avulla. (4 p.) Tehtävä 2 (max 40 pistettä) a) Mitä tarkoitetaan multikollineaarisuudella, ja mitä seurauksia sillä on? (6 p.) b) Mitä tarkoitetaan heteroskedastisuudella ja millä keinoin se voidaan havaita? Millä tavoin heteroskedastisuus voidaan korjata ja/tai ottaa huomioon (kerro eri menetelmistä)? (10 p.) c) Mikä on autokorrelaation määritelmä ja miten se voidaan havaita ja korjata tai huomioida yhtälön estimoinnissa? (10 p.) d) Vertaile heteroskedastisuuden ja autokorrelaation seurauksia pienimmän neliösumman estimointimenetelmän käytön yhteydessä. (6 p.) e) Mitä asioita pitää huomioida, kun valitaan estimointimenetelmää paneelidatalle? Luettele kurssilla mainitut estimointimenetelmät ja pohdi lyhyesti kunkin käytön edellytyksiä ja taustaoletuksia. (8 p.) Tehtävä 3 (max 28 pistettä) Broilerintuotannon analysoimiseksi on kerätty dataa seuraavista muuttujista: ln_qprod t = broilerinlihan kokonaistuotanto vuonna t (luonnollinen logaritmi), ln_p t = broilerinlihan reaalinen hintaindeksi vuonna t (luonnollinen logaritmi), ln_pf t = broilerin rehun reaalinen hintaindeksi vuonna t (luonnollinen logaritmi), ln_y t = henkeä kohti laskettu BKT vuonna t (luonnollinen logaritmi), ln_pb t = naudanlihan reaalinen hintaindeksi vuonna t (luonnollinen logaritmi), popgro t = väestönkasvuprosentti vuosien t ja t 1 välillä ja lexpts t = broilerinlihan vienti vuonna t (luonnollinen logaritmi). Sivu 1 / 2

2 Alalla tapahtuvan teknisen kehityksen vaikutukset broilerinlihan kokonaistuotantoon huomioidaan sisällyttämällä aikamuuttuja year selittävien muuttujien joukkoon. Lisäksi broilerintuotannon arvellaan riippuvan broilerinlihan kokonaistuotannon viivästetystä arvosta lag_ln_qprod. Vastaa seuraaviin kysymyksiin liitteenä olevien SAS tulosteiden pohjalta. a) Mikä on pienimmän neliösumman menetelmällä (OLS) estimoitu yhtälö? Tarkastele yhtälön parametriestimaattien merkitsevyyttä ja pohdi, vastaavatko tulokset etumerkkien osalta odotuksiasi. Perustele. (4 p.) b) Miksi yhtälö on estimoitu OLS:n lisäksi 2 vaiheisella pienimmän neliösumman estimointimenetelmällä (2SLS)? Mihin muuttujaan ongelma todennäköisesti liittyy, miksi tällaista tilannetta kutsutaan ja mitä se tarkoittaa OLS:n käytön kannalta? (6 p.) c) Millä menetelmällä voit testata edellisen kohdan ongelman vakavuutta? Mikä testin nimi on ja miten sen voi käytännössä tehdä? Entä mikä on testin nollahypoteesi? Analysoi SAS tulosteiden avulla, onko huoli OLS:n sopimattomuudesta tehtävän tilanteessa perusteltu. Kerro täsmällisesti, mihin tulosteiden kohtiin johtopäätöksesi perustuu. (8 p.) d) Mitä ominaisuuksia hyvältä instrumenttimuuttujalta vaaditaan? (6 p.) e) Ovatko käytetyt instrumenttimuuttujat SAS tulosteiden mukaan heikkoja vai vahvoja? Miksi? Miksi tämän kysymyksen pohtiminen on tärkeää? (4 p.) Sivu 2 / 2

3 Tehtävä 3: SAS-tuloste 1 The REG Procedure Model: Linear_Regression_Model Dependent Variable: ln_qprod Log of broiler production Number of Observations Read 52 Number of Observations Used 40 Number of Observations with Missing Values 12 Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var s Variable Label Intercept Intercept ln_p ln_pf lag_ln_qprod broiler Log of broiler production, <.0001 year Year

4 Tehtävä 3: SAS-tuloste 2 The SYSLIN Procedure Two-Stage Least Squares Estimation Model Dependent Variable Label ln_qprod ln_qprod Log of broiler production Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var s Variable Variable Label Intercept Intercept ln_p broiler ln_pf lag_ln_qprod Log of broiler production, year Year

5 Tehtävä 3: SAS-tuloste 3 The REG Procedure Model: Linear_Regression_Model Dependent Variable: ln_p broiler Number of Observations Read 52 Number of Observations Used 40 Number of Observations with Missing Values 12 Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var s Variable Label Intercept Intercept ln_pf lag_ln_qprod Log of broiler production, year Year ln_y Log of real per capita income ln_pb Log of real price of beef popgro Population growth rate lag_ln_p lexpts broiler, Log of estimate of exports of boneless chicken

6 Tehtävä 3: SAS-tuloste 4 The REG Procedure Model: Linear_Regression_Model Dependent Variable: ln_qprod Log of broiler production Number of Observations Read 52 Number of Observations Used 40 Number of Observations with Missing Values 12 Source Sum of Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var s Variable Label Intercept Intercept ln_p ln_pf lag_ln_qprod broiler Log of broiler production, <.0001 year Year residual_ln_p Residual

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Frequencies. Frequency Table

Frequencies. Frequency Table GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet]

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla.

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

Harjoitukset 6 :IV-mallit (Palautus )

Harjoitukset 6 :IV-mallit (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 6 :IV-mallit (Palautus 21.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen

Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). tulee katettua (complete replicate). Havaintojen 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2

Lisätiedot

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

9.1 Hierarkiset asetelmat (Nested Designs)

9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,

Lisätiedot

Mat Tilastollisen analyysin perusteet

Mat Tilastollisen analyysin perusteet / Mat-2.21 04 Tilastollisen analyysin perusteet Tentti 24.5.2013/Virtanen Kirjoita selvasti jokaiseen koepaperiin alia mainitussa jarjestyksessa: Mat-2.2104 Tap 24.5.2013 opiskelijanumero kirjain TEKSTATEN

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

Lineaaristen mallien sovellukset -harjoitustyö

Lineaaristen mallien sovellukset -harjoitustyö Lineaaristen mallien sovellukset -harjoitustyö Juha-Pekka Perttola 8. tammikuuta 2006 Sisältö 1 Johdanto 4 1.1 Perustiedot käytetystä aineistosta................ 4 1.2 Harjoitustyön tavoite.......................

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

Load

Load Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian

Lisätiedot

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).

3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). 3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle] Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen

Lisätiedot

MS-C2{04 Tilastollisen analyysin perusteet

MS-C2{04 Tilastollisen analyysin perusteet MS-C2{04 Tilastollisen analyysin perusteet Tentti 7.4.20 4A/irtanen Kirjoita selvästi jokaiseen koepaperiin alla mainitussa järjestyksessä: OHlprrn (i) (ii) MS-C204 TAP 7.4.204 opiskelijanumero + kirjain

Lisätiedot

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs)

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

2. Tietokoneharjoitukset

2. Tietokoneharjoitukset 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla proc surveymeans data=pisa.impuoecd; where cnt='fin' or cnt='deu' or

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

A B DIFFERENCE

A B DIFFERENCE I Mat-2.21 04 Tilastollisen analyysin perusteet Tentti 10.5.2013Nirtanen Ki~oita selvasti jokaiseen koepaperiin alia mainitussa ja~estyksessa: 0HJEITA Mat-2.2104 Tap 10.5.2013 opiskelijanumero ki~ain TEKSTATEN

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Pienimmän Neliösumman menetelmä (PNS)

Pienimmän Neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS Helsinki 26..200 4 2 5 Seminaari 26..200 Mikko Hakola Laskentatoimen osaaminen Testatut tahot Selvittäjiä Yrittäjiä KLT-kirjanpitäjiä Virallisen

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille tarvittaessa.

Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille tarvittaessa. NIMI: OPPILASNUMERO: ALLEKIRJOITUS: tehtävä 1 2 3 4 yht pisteet max 25 25 25 25 100 arvosana Kaikkiin kysymyksiin vastataan kysymys paperille pyri pitämään vastaukset lyhyinä, voit jatkaa paperien kääntöpuolille

Lisätiedot

o Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti

o Ohjeet annetaan kurssin aikana. MAY1 Luvut ja lukujonot, Opintokortti MAY1 Luvut ja lukujonot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl.

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl. Health 2000/2011 Surveys Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013 Esa Virtala etunimi.sukunimi@thl.fi Terveyden ja hyvinvoinnin laitos (THL) PL 30 00271 Helsinki Puhelin:

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 210 200 190 180 170 160

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Menestyminen valintakokeissa ja todennäköisyyslaskussa

Menestyminen valintakokeissa ja todennäköisyyslaskussa 21.5.21 Menestyminen valintakokeissa ja todennäköisyyslaskussa Esa Pursiheimo 45761L 1 JOHDANTO...2 2 LÄHTÖTIEDOT JA OTOS...3 3 PÄÄSYKOETULOKSIEN YHTEISJAKAUMA...4 4 REGRESSIOANALYYSI...9 4.1 MALLI JA

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

Maanmittauslaitoksen uusi metsän arvonmääritysmenetelmä

Maanmittauslaitoksen uusi metsän arvonmääritysmenetelmä Maanmittauslaitoksen uusi metsän arvonmääritysmenetelmä TkT Markku Airaksinen Maanmittauslaitos Kehittämiskeskus METSÄPÄIVÄT 10 26.11.10 Helsinki Messukeskus Kehitysprojektin käynnistämisen syyt Edellisten

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007

19. Statistical Approaches to. Data Variations Tuomas Koivunen S ysteemianalyysin. Laboratorio. Optimointiopin seminaari - Syksy 2007 19. Statistical Approaches to Data Variations Tuomas Koivunen 24.10.2007 Contents 1. Production Function 2. Stochastic Frontier Regressions 3. Example: Study of Texas Schools 4. Example Continued: Simulation

Lisätiedot

Perhevapaiden palkkavaikutukset

Perhevapaiden palkkavaikutukset Perhevapaiden palkkavaikutukset Perhe ja ura tasa-arvon haasteena seminaari, Helsinki 20.11.2007 Jenni Kellokumpu Esityksen runko 1. Tutkimuksen tavoite 2. Teoria 3. Aineisto, tutkimusasetelma ja otos

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Harjoitukset 2 : Monimuuttujaregressio (Palautus )

Harjoitukset 2 : Monimuuttujaregressio (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 2 : Monimuuttujaregressio (Palautus 24.1.2017) Tämän harjoituskerran tarkoitus

Lisätiedot

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä:

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat Tavoite on eliminoida sen vaikutus koetuloksista. 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor):

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses

The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses Teisala Tiina, TtM, tohtorikoulutettava Jyväskylän yliopisto Terveystieteiden

Lisätiedot

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: Stata 11 THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen Stata 11:llä Perustunnusluvut Regressioanalyysit Mallivakiointi 16. 2. 2011 ATH-koulutus

Lisätiedot

Osa 15 Talouskasvu ja tuottavuus

Osa 15 Talouskasvu ja tuottavuus Osa 15 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuuden kasvutekijät Tämä on pääosin Mankiw

Lisätiedot

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP. 22.9.-11.12.2009. Luennoi: yliopisto-opettaja Pekka Pere. Aputuloksia Logaritmin muutos ja suhteellinen muutos Lähtökohta on approksimaatio log(1 + δ) δ,

Lisätiedot

Kauppatieteellinen tiedekunta AB30A8000 Kandidaatintutkielma KORKOFUTUURIEN MARKKINATEHOKKUUS. Toni Tuominen 0265174

Kauppatieteellinen tiedekunta AB30A8000 Kandidaatintutkielma KORKOFUTUURIEN MARKKINATEHOKKUUS. Toni Tuominen 0265174 Kauppatieteellinen tiedekunta AB30A8000 Kandidaatintutkielma KORKOFUTUURIEN MARKKINATEHOKKUUS Toni Tuominen 0265174 1 JOHDANTO... 2 1.1 TAVOITTEET... 2 1.2 RAJOITTEET... 3 1.3 RAKENNE... 4 2 TEORIA...

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Datan käsittely. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Datan käsittely Helsingin yliopisto, Fysiikan laitos kevät 2013 3. Datan käsittely Luennon sisältö: Havaintovirheet tähtitieteessä Korrelaatio Funktion sovitus Aikasarja-analyysi 3.1 Havaintovirheet Satunnaiset

Lisätiedot

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012

Puheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012 Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Makrotaloustiede 31C00200 Kevät 2016 Rahamäärä, hintataso ja valuuttakurssit

Makrotaloustiede 31C00200 Kevät 2016 Rahamäärä, hintataso ja valuuttakurssit Makrotaloustiede 31C00200 Kevät 2016 Rahamäärä, hintataso ja valuuttakurssit Monisteen sisältö Rahamäärän ja inflaation yhteys pitkällä aikavälillä Nimelliset ja reaaliset valuuttakurssit Ostovoimapariteetti

Lisätiedot

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

1. Tutkitaan tavallista kahden selittäjän regressiomallia

1. Tutkitaan tavallista kahden selittäjän regressiomallia TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Capacity utilization

Capacity utilization Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure

Lisätiedot

MAA8 Juuri- ja logaritmifunktiot, Opintokortti

MAA8 Juuri- ja logaritmifunktiot, Opintokortti MAA8 Juuri- ja logaritmifunktiot, Opintokortti Nimi: Minimivaatimukset kurssin suorittamiseksi: Vihkoon on laskettu laadukkaasti vähintään 50 tehtävää. Opiskelija palauttaa viimeistään kokeeseen o Opintokortin

Lisätiedot