TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015
|
|
- Johanna Heikkinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205
2 Sisällys
3 Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina.
4 Deterministinen äärellinen automaatti (DFA) Deterministisen äärellisen automaatin kuvaukseen kuuluu automaatille mahdollisesti tulevien ärsykkeiden (merkit) luettelo automaatin tilojen luettelo yhden tilan merkitseminen alkutilaksi mahdollisesti joidenkin tilojen merkitseminen hyväksyviksi (eli lopputiloiksi) siirtymien (tilasta toiseen) luettelointi siirtymään liittyy aina jokin merkki jokaisesta tilasta lähtee täsmälleen yksi siirtymä per merkki engl. deterministic finite automaton, deterministic finite-state machine
5 Äärellinen automaatti graafisesti hyväksyvä tila esitetään kaksoisviivalla ympyröitynä muut tilat esitetään yhdellä viivalla ympyöritynä alkutila merkitään piirtämällä siihen ei-mistään tuleva nuoli alkutila voi olla hyväksyvä tila! tilasiirtymä esitetään merkillä varustettuna nuolena tilasta toiseen q 0 tilasiirtymä a q q 2 alkutila muu tila hyväksyvä tila
6 Huomaa graafiesityksestä Koska jokaisesta tilasta on täsmälleen yksi siirtymä jokaiselle merkille, pitäisi periaatteessa myös jokaisesta ympyrästä olla nuoli jokaiselle merkille. Käytännössä usein jätetään osa nuolista merkitsemättä. Tulkintasääntö Jos automaatin graafiesityksessä ei ole näkyviin piirretty kaikkia tilasiirtymiä, vievät puuttuvat siirtymät ns. hylkäystilaan tila joka ei ole hyväksyvä ja josta kaikki siirtymät vievät takaisin siihen itseensä. Hylkäystilaa ei yleensä piirretä näkyviin.
7 Äärellinen automaatti siirtymätaulukkona kaksiulotteinen taulukko sarakkeilla merkit riveillä tilat alkutila merkitään nuolella lopputilat merkitään tähdellä taulukon rivillä q ja sarakkeella c on tila q tulkitaan siirtymäksi tilasta q merkillä c tilaan q Myös mahdollinen hylkäystila ja siirtymät siihen on merkittävä näkyviin.
8 Matemaattinen määritelmä Määritelmä Viisikko (Q, Σ, δ, q 0, F) on deterministinen äärellinen automaatti (DFA), jos Q on äärellinen (tilojen) joukko, Σ on äärellinen, epätyhjä joukko (merkistö), δ : Q Σ Q pätee (siirtymäfunktio), q 0 Q pätee (alkutila) ja F Q pätee (hyväksyvät tilat). Huomioita Olennaista on, että kyseessä on viisikko, jonka alkioilla on mainitut ominaisuudet. Yllä käytetyt merkinnät Q, Σ, δ, q 0 ja F ovat vakiintuneita, mutta asia ei muutu miksikään, vaikka merkinnät vaihtaisi toisiksi.
9 Äärellisen automaatin käyttäytyminen Automaatti käynnistyy alkutilassaan. Kun automaatille tulee ärsyke (syötemerkki), se siirtyy nykyisestä tilasta seuraavaan. Käytännössä automaatin siirtyminen tilaan voi herättää jonkin toiminnan (sivuvaikutus). Teoriassa sivuvaikutukset sivuutetaan. Teoriassa ja tietyissä sovelluksissa automaatin ajatellaan tarkastavan (äärellisiä) merkkijonoja. Automaatille annetaan syötteeksi merkkijono siten, että kukin merkki annetaan vuorollaan automaatille ärsykkeeksi. Kun syötejono päättyy, merkkijonon luokka määräytyy silloisen tilan mukaan. Automaatti hyväksyy merkkijonon, jos päättymishetken tila oli hyväksyvä, ja muuten hylkää sen.
10 Esimerkki taululla w = 000 v = 00 u = 000
11 Merkkijonot matemaattisesti. Äärellinen epätyhjä joukko on merkistö, ja sen alkioita kutsutaan merkeiksi. 2. Merkistön Σ merkkijono koostuu nollasta tai useammasta merkistä peräkkäin asetettuna (ilman välimerkkejä). Merkkien järjestyksellä on merkitystä. Merkin toistolla on merkitystä. Esim. kissa on merkkijono. Muodollisesti merkkijono on kuvaus {0,..., n } Σ, missä n on merkkijonon pituus. 3. Merkistön Σ niiden merkkijonojen joukkoa, joiden pituus on n, merkitään Σ n :llä. 4. Merkistön Σ kaikkien merkkijonojen joukkoa merkitään Σ :lla. Eli Σ = Σ i i=0
12 Merkkijonojen kirjoittamisesta Tyhjää merkkijonoa merkitään ε (joissakin lähteissä käytetään merkintää λ). Merkkijonon w Σ pituutta merkitään w. Yhden merkin merkkijono samastetaan kyseiseen merkkiin: jos c Σ, niin c Σ ja c =. Merkkijono, joka saadaan toistamalla sama merkki (c Σ) monta (k N) kertaa, voidaan merkitä c k. c 0 = ε c = c c k = k Usein kirjoitetaan w = c... c n, missä n = w.
13 Merkkijono-operaatioita Kaksi merkkijonoa v, w Σ voidaan yhdistää (engl. concatenate) kirjoittamalla jonot peräkkäin: vw. Merkkijono v Σ voidaan kääntää peilikuvakseen v R ; esim. (2345) R = Sovitaan, että R vaikuttaa niin pieneen osaan merkkijonoa kuin mahdollista. Sulkeet ovat tässä metamerkkejä, jotka eivät kuulu Σ:aan
14 DFA:n toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen äärellinen automaatti. Jokaiselle epätyhjälle merkkijonolle w = c 0 c n Σ \ {ε} on olemassa samanpituinen tilajono 2 q,..., q n, jolle pätee q k+ = δ(q k, c k ) kaikilla k = 0,..., n. Tämän jonon viimeinen tila q n on merkkijonon w päätöstila automaatissa M. Tyhjän merkkijonon päätöstila automaatissa M on q 0 M hyväksyy (engl. accept) merkkijonon w Σ, jos sen päätöstila M:ssä kuuluu F:ään; muuten se hylkää (engl. reject) sen. 2 Huomaa indeksoinnin ero!
15 Automaatin ymmärtäminen 3 Automaatin tilat ovat automaatin muisti: Se, että automaatti on jossakin tilassa, kertoo jotain siitä, minkälainen syötteenä oleva merkkijono on tähän asti ollut. Kannattaa aina selvittää, mitä kukin tila automaatille kertoo! Aiemmin tuntemattoman automaatin toiminnan selvittämisessä tilojen muistitehtävän selvittäminen on erittäin tärkeä! 3 Välistä luennon jälkeen poistettu kalvoja joita ei keretty käsitellä luennolla.
16 Minkälaiset merkkijonot tämä automaatti hyväksyy?
17 (merkkijonokäsittely) DFA koodataan yleensä silmukaksi, joka käy syötemerkkijonon läpi merkki kerrallaan. Tiloille annetaan numerot. Kulloinkin voimassa oleva tila tallennetaan muuttujaan. Iteraation alussa hypätään switch case-rakenteella tilamuuttujan osoittamaan tilaan. Kunkin tilan kohdalla valitaan syötemerkin perusteella, mikä tila laitetaan muuttujaan seuraavaksi. Syötteen loputtua katsotaan, ollaanko hyväksyvässä tilassa vai ei.
18 Vaihtoehtoisia ratkaisuja Switch casen sijasta voidaan käyttää taulukkoa, josta luetaan seuraavan tilan numero. Ei suoraan mahdollista tilasta riippuvan sivuvaikutuksen koodausta. Tilamuuttujan sijasta käytetään goto-lausetta tilasiirtymän toteuttamiseen. Tämä on yksi harvoista tilanteista, joissa goton käytössä on järkeä. Ei sovellu kieliin, joissa ei ole goto-lausetta... Tilamuuttujan ja silmukan sijasta koodataan kukin tila omaksi aliohjelmakseen. Tilasiirtymä toteutetaan funktiokutsulla. ÄLÄ KÄYTÄ kielissä, jotka eivät takaa ns. häntäkutsun poistoa Mm. C, C++, Java eivät sovellu. Kätevä temppu funktiokielissä (Scheme, Haskell, ML).
19 Automaatti oliona Ärsykkeenä metodikutsu. Tila tallennetaan attribuutiksi. Tilasiirtymät voidaan toteuttaa switch-case- tai taulukkoperiaatteella.
20 Esimerkkiohjelman automaatti
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016
TIEA24 Automaatit ja kieliopit, syksy 206 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 206 Sisällys Kolme laskennan mallia kuvitteellisia (abstrakteja) koneita eli automaatteja lukevat syötteen
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
DFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
Pinoautomaatit. Pois kontekstittomuudesta
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino
Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
Pinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
Automaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
Yhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja
Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters
Säännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja
sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
Kertausta 1. kurssikokeeseen
Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.
Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on
Tietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
Hahmon etsiminen syotteesta (johdatteleva esimerkki)
Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
Säännöllisten kielten sulkeumaominaisuudet
Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,
Turingin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2015 Sisällys Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
Täydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)
Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)
1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite
jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä
Turingin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
ICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 2: Äärelliset automaatit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Kertausta: kielet ja automaatit Laskennallisen ongelman ratkaisevia
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.
Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016
lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet
jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed
5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
Formalisoimme nyt edellä kuvatun laskennan.
Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q, F ) on äärellinen automaatti ja w = w... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää
Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,
Rajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
Tietotekniikan valintakoe
Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan
UML -mallinnus TILAKAAVIO
UML -mallinnus TILAKAAVIO SISÄLLYS 3. Tilakaavio 3.1 Tilakaavion alku- ja lopputilat 3.2 Tilan nimi, muuttujat ja toiminnot 3.3 Tilasiirtymä 3.4 Tilasiirtymän vai tilan toiminnot 3.5 Tilasiirtymän tapahtumat
δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.
42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen
uv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
M = (Q, Σ, Γ, δ, q 0, q acc, q rej )
6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI. 1. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on
ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI MIKKO KANGASMÄKI. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on viisikko (Q, Σ, s, δ, F ), missä Q on äärellinen joukko tiloja
9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
Esimerkki 1: Kahviautomaatti.
Esimerkki 1: Kahviautomaatti. ÄÄRELLISET AUTOAATIT JA SÄÄNNÖLLISET KIELET 2.1 Tilakaaviot ja tilataulut Tarkastellaan aluksi tietojenkäsittelyjärjestelmiä, joilla on vain äärellisen monta mahdollista tilaa.
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
Algoritmin määritelmä [Sipser luku 3.3]
Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:
Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja
582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta
Säännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
9. Matemaattisista koneista.
9. Matemaattisista koneista. Monia tietojenkäsittelytehtäviä, digitaalisia komponetteja, ohjelmia jne. voidaan mallintaa äärellistilaisella matemaattisella koneella. Matemaattinen kone on myös tietojenkäsittelijän
Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};
3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit
Äärellisten automaattien ja säännöllisten lausekkeiden minimointi
Äärellisten automaattien ja säännöllisten lausekkeiden minimointi Timi Suominen, Riia Ohtamaa ja Pessi Moilanen Helsinki..01 HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Äärellisten automaattien
8. Kieliopit ja kielet
8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015
TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free
Output. Input Automaton
16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite
Chomskyn hierarkia ja yhteysherkät kieliopit
Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien
LR-jäsennys. Antti-Juhani Kaijanaho. 3. lokakuuta 2016
LR-jäsennys Antti-Juhani Kaijanaho 3. lokakuuta 2016 Tämä lisämoniste esittelee Yaccin, CUPin ja muiden vastaavien ohjelmien käyttämän LR-jäsennysmenetelmäperheen. Se ei kuulu kurssin koealueeseen. Tehtävänä
4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee
Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista
Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys Harjoitustehtävät loppukurssilla luentojen 14 18 harjoitustehtävistä on tehtävä yksi
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. kesäkuuta 2013 Sisällys t Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen
Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016
TIEA241 Automaatit ja, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 2016 Sisällys Kontekstiton kielioppi Kontekstiton kielioppi koostuu joukosta päätemerkkejä (engl. terminal symbols),
Gaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 3. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. lokakuuta 2016 Sisällys n tunnistin Jay : An Efficient Context-Free Parsing Algorithm. Communications of the
(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi
Luovuus ja assosiationismi Kieli merkitys ja logiikka 4: Luovuus, assosiationismi Käsittelemme ensin assosiationismin kokonaan, sen jälkeen siirrymme kombinatoriseen luovuuteen ja konstituenttimalleihin
Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä
Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Antti-Juhani Kaijanaho 30. marraskuuta 2015 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset lausekkeet Tällä kurssilla on
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 30. marraskuuta 2015 Sisällys t Väitöstilaisuus 4.12.2015 kello 12 vanhassa juhlasalissa S212 saa tulla 2 demoruksia
ICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun
582206 Laskennan mallit
582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus