Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Koko: px
Aloita esitys sivulta:

Download "Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m."

Transkriptio

1 Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman arvonsa välin päätepisteessä. Siis kun m 1. T (m) max (T (i) + T (m i 1)) + bm 0 i m 1 (a + b) max 0 i m 1 (i2 + (m i 1) 2 ) + 2a + bm = (a + b)(m 1) 2 + 2a + bm = (a + b)m 2 + m(b 2(a + b)) + 3a + b (a + b)m 2 + a 220

2 3SAT-ongelman NP-täydellisyys erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta CNF-kaavasta φ tuotetaan 3-CNF-kaava ψ joka on toteutuva joss φ on Tämän muunnoksen olemassaolosta seuraa siis Lause: CSAT p m 3SAT. Koska CSAT on NP-täydellinen ja 3SAT NP, saadaan Korollaari: 3SAT on NP-täydellinen. Huom. SAT-ongelma rajoitettuna 2-CNF-kaavoihin ratkeaa polynomisessa ajassa. 221

3 Todistus sille että CSAT p m 3SAT Olkoon F (x 1,..., x n ) klausuuli (siis literaalien disjunktio). Muodostamme 3-CNF-kaavan F (x 1,..., x n, y 1,..., y m ) missä y i :t ovat uusia muuttujia ja F (v 1,..., v n ) = 1 jos ja vain jos F (v 1,..., v n, v 1,..., v m ) = 1 joillain (v 1,..., v m ) { 0, 1 }m. Tästä seuraa yleisemmin, että kun φ on CNF-kaava φ = niin voidaan muodostaa 3-CNF-kaavojen konjunktio, eli edelleen 3-CNF-kaava, k ψ = F j missä φ(v 1,..., v n ) = 1 joss ψ(v 1,..., v n, v 1,..., v l ) = 1 jollain (v 1,..., v l ) { 0, 1 }l, joten erityisesti φ on toteutuva joss ψ on toteutuva. Huom. eri kaavoihin F j lisättävien muuttujien pitää olla erillisiä. k j=1 j=1 F j 222

4 Olkoon F klausuuli. Neljä tapausta sen mukaan, kuinka monta literaalia z i klausuuli F sisältää: 1. F = z 1 missä z 1 = x i tai z 1 = x i jollain i. Uudet muuttujat u ja v; F = (z u v) (z u v) (z u v) (z u v). Koska uudet muuttujat u ja v on otettu kaikilla merkkikombinaatioilla, ainoa tapa saada F = 1 on valita z 1 = 1 jolloin F = F = z 1 z 2. Uusi muuttuja w; F = (z 1 z 2 w) (z 1 z 2 w). Kuten edellisessä kohdassa F voidaan toteuttaa vain tekemällä F todeksi. 3. F = z 1 z 2 z 3 : valmiiksi 3-CNF; F = F. 223

5 4. F = z 1 z 2... z m missä m 4. Uudet muuttujat y 1,..., y m 3 ; F = (z 1 z 2 y 1 ) (z 3 y 1 y 2 ) (z 4 y 2 y 3 )... (z m 2 y m 4 y m 3 ) (z m 1 z m y m 3 ). Jos F = 1, niin z i = 1 jollain 1, joten F = 1 kun valitaan y j = 1 kun j < i 1 ja y j = 1 muuten. Jos F = 0 ja siis z i = 0 kaikilla i, niin F = 0 miten tahansa y j :t valitaankin. Jos nimittäin yritetään saada F = 1, pitää 1. klausuulin ja ehdon z 1 = z 2 = 0 takia valita y 1 = 1. Kun y 1 = 1 ja z 3 = 0, toisen klausuulin takia pitää ottaa y 2 = 1. Näin päädytään lopulta valitsemaan y m 3 = 1, mutta tällöin viimeinen klausuuli jää toteutumatta. Siis φ CSAT jos ja vain jos ψ 3SAT. Selvästi muunnos φ ψ voidaan laskea polynomisessa ajassa. 224

6 NP-täydellisyys tähän mennessä: jos jollakin NP-täydellisellä ongelmalla on polynominen ratkaisualgoritmi, niin P = NP tätä ei pidetä luultavana, koska se tarkoittaisi että eksponentiaalisen suuria hakuavaruuksia voitaisiin etsiä polynomisessa ajassa suoraan määritelmästä todistettiin, että SAT on NP-täydellinen suoraviivaisilla palautuksilla osoitettiin, että jo SAT-ongelman rajoitetut erikoistapaukset CSAT ja 3SAT ovat NP-täydellisiä Jatko: osoitetaan 3SAT p m IS ja 3SAT p m HC siis IS ja HC NP-täydellisiä aiemmin osoitettu IS p m VC ja HC p m TSP joten myös VC ja TSP NP-täydellisiä 225

7 Lause: Riippumaton joukko -ongelma on NP-täydellinen Todistus: Tarkastellaan siis joukkoa IS = { G, k G sisältää k-solmuisen riippumattoman joukon }. Selvästi IS NP. Muodostetaan palautus f: 3SAT p m IS. Koska 3SAT on NP-täydellinen, väite seuraa. Siis f(x) = G, k missä G, k IS jos ja vain jos x on toteutuva 3-CNF-kaava. Erityisesti jos x ylipäänsä ei ole 3-CNF-kaava, pitää olla f(x) IS. Tällaisissa tapauksissa valitaan esim. f(x) = (V, E), n + 1 missä V = n. Keskitytään jatkossa tapaukseen jossa x todella on 3-CNF-kaava. 226

8 Olkoon siis φ 3-CNF-kaava, jossa m klausuulia: φ = m i=1 (z i,1 z i,2 z i,3 ) missä kukin z i,r on muotoa x j tai x j. Nyt f(φ) = (V, E), k missä k = m V = 3m ja V = { v i,r i { 1,..., m }, r { 1, 2, 3 } } (v i,r, v i,s ) E kaikilla i { 1,..., m }, r, s { 1, 2, 3 }, r s kun i j, niin (v i,r, v j,s ) E jos z i,r = z j,s tai z i,r = z j,s Selvästi f laskettavissa polynomisessa ajassa. 227

9 Esimerkki: Muodostetaan G = f(φ) kun φ = (x 1 x 3 x 4 ) ( x 2 x 4 x 5 ) ( x 1 x 5 x 6 ) (x 1 x 6 x 5 ). Rengastetuista solmuista muodostuu kokoa 4 oleva solmupeite; vastaa kaavan toteuttavia arvoja x 1 = 1, x 5 = 0, x 6 = 0, muut muuttujat mielivaltaisia x 1 x 2 x 1 x 1 x 3 x 4 x 5 x 6 x 4 x 5 x 6 x 5 228

10 Nähdään että φ toteutuva verkossa G on m solmun riippumaton joukko U: : Ol. φ toteutuva. Valitaan muuttujien x i arvot siten, että jokaisessa kaavan φ klausuulissa i ainakin yksi literaali z i,r saa arvon 1. Valitaan joukkoon U vastaavat v i,r. Nyt U sisältää tasan yhden solmun jokaisesta kolmiosta. Lisäksi valitut solmut vastaavat tosia literaaleja, joten minkään kahden eri kolmiosta valitun solmun välillä ei ole kaarta. Siis U on riippumaton ja U = m. : Ol. m solmun joukko U riippumaton. Nyt U sisältää tasan yhden solmun joka kolmiosta. Koska minkään eri kolmioista valittujen solmujen välillä ei ole kaarta, voidaan ilman ristiriitaa asettaa todeksi valittuja solmuja vastaavat literaalit. Jokaiseen klausuuliin tulee ainakin yksi tosi literaali; φ toteutuva. 229

11 Tarkastellaan seuraavaksi suunnattu Hamiltonin kehä -ongelmaa (Directed Hamiltonian Circuit, DHC): Annettu: suunnattu verkko G Kysymys: onko verkossa G suunnattu polku joka käy jokaisessa solmussa tasan kerran ja palaa lähtösolmuunsa Siis eroksi alkuperäiseen Hamiltonin kehä -ongelmaan (HC) verkon kaarilla on suunta, ja kehän pitää näitä suuntia noudattaa. Lause: DHC on NP-täydellinen. Koska HC NP ja harjoitustehtävänä osoitetaan DHC p m HC, saadaan Korollaari: HC on NP-täydellinen. 230

12 Todistus: Kuten suuntaamattomassa tapauksessa nähdään helposti että DHC NP. Muodostetaan palautus f: 3SAT p m DHC mistä väite nyt seuraa. Olkoon annettu n-muutujainen 3-CNF-kaava φ jossa m klausuulia φ = m j=1 (z j,1 z j,2 z j,3 ). Suunnattu verkko f(φ) = G = (V, E) muodostuu kahdenlaisista osaverkoista eli laitteista (gadget): jokaista muuttujaa x i kohti laite A i, i = 1,..., n laite A i voidaan käydä läpi kahdella eri tavalla jotka koodaavat valintaa x i = 0 tai x i = 1 jokaista klausuulia β j = z j,1 z j,2 z j,3 kohti laite B j, j = 1,..., m laitteen B j läpikäynti voidaan lomittaa laitteen A i läpikäyntiin joss muuttuja x i tekee todeksi klausuulin β j 231

13 Laite A i : laitteessa on 2m + 4 solmua a i, d i sekä b i,j ja c i,j, j = 0,..., m. Laitteen sisäiset kaaret: solmusta a i kaari solmuihin b i,0 ja c i,0 solmuista b i,m ja c i,m kaari solmuun d i solmusta b i,j kaari solmuun c i,j ja solmusta c i,j kaari solmuun b i,j, j = 0,..., m solmusta b i,j 1 kaari solmuun c i,j ja solmusta c i,j 1 kaari solmuun b i,j, j = 1,..., m Havaitaan että laitteen A i solmut voidaan käydä läpi kahdessa järjestyksessä: järjestys a i c i,0 b i,0 c i,1 b i,1... c i,m b i,m d i vastaa valintaa x i = 0 järjestys a i b i,0 c i,0 b i,1 c i,1... b i,m c i,m d i vastaa valintaa x i = 1 Eri laitteita yhdistävät kaaret esitellään pian. 232

14 b i,0... b i,1 b i,2 b i,m A i 1 a i d i A i+1 c i,0 c i,1 c i,2... c i,m A i Laite A i. Kuvasta puuttuu kaaret laitteisiin B j. 233

15 Laite B j : laitteessa 6 solmua r j,1, r j,2, r j,3, s j,1, s j,2, s j,3. Laitteen sisäiset kaaret: solmut r j,k sisältävä sykli: kaaret (r j,1, r j,2 ), (r j,2, r j,3 ) ja (r j,3, r j,1 ) solmut s j,k sisältävä sykli: kaaret (s j,1, s j,3 ), (s j,3, s j,2 ) ja (s j,2, s j,1 ) (huom. suunta) syklejä kytkevät kaaret (r j,1, s j,1 ), (r j,2, s j,2 ) ja (r j,3, s j,3 ) Havaitaan että jos Hamiltonin kehä tulee laitteeseen B j solmun r j,k kautta niin sen pitää vastaavasti poistua solmun s j,k kautta. (Kehä voi vierailla laitteessa B j useita kertoja, mutta jokaisen vierailun on noudatettava tätä sääntöä.) Muuten osa solmuista jäisi eristyksiin eikä enää pääsisi mukaan kehään. 234

16 A i r j,3 s j,3 A i r j,2 s j,2 A i r j,1 s j,1 Laite B j. Tässä literaalin β j muuttujat ovat x i, x i ja x i. 235

17 Laitteet A i yhdistetään yhdeksi isoksi sykliksi: solmusta d i kaari solmuun a i+1, i = 1,..., n 1 solmusta d n kaari solmuun a 1 Laite A i yhdistetään niihin laitteisiin B j joilla klausuuli β j sisältää literaalin x i tai x i : jos z j,k = x i niin lisätään kaaret (c i,j 1, r j,k ) ja (s j,k, b i,j ) jos z j,k = x i niin lisätään kaaret (b i,j 1, r j,k ) ja (s j,k, c i,j ) Havainto: Jos klausuuli β j sisältää literaalin x i (vast. x i ) ja laitteen A i läpikäyntijärjestys vastaa valintaa x i = 1 (vast. x i = 0) niin laitteen B j läpikäynti voidaan sijoittaa laitteen A i läpikäynnin lomaan. 236

18 Verkkoon G = f(φ) ei tule muita kaaria kuin edellä luetellut. Selvästi f voidaan laskea polynomisessa ajassa. Seuraavasta väitteestä seuraa että f: 3SAT p m DHC. Väite: φ on toteutuva verkossa G on Hamiltonin kehä : Olkoon φ = 1 kun (x 1,..., x n ) = (v i,..., v n ) { 0, 1 } n. Siis jokaisella klausuulilla β j = z j,1 z j,2 z j,3 ainakin yksi literaali z j,k on tosi kun (x 1,..., x n ) = (v i,..., v n ). Valitaan jokin indeksi k(j) { 1, 2, 3 } s.e. jollain i joko z j,k(j) = x i ja v i = 1, tai z j,k(j) = x i ja v i = 0, Siis klausuulin numero j toteutuminen on siinä olevan literaalin numero k(j) vastuulla. 237

19 Verkkoon G voidaan muodostaa Hamiltonin kehä seuraavasti: 1. käy laite A i läpi järjestyksessä a i c i,0 b i,0... c i,m b i,m d i jos v i = 0 a i b i,0 c i,0... b i,m c i,m d i jos v i = 1 2. yhdistä laitteiden A i läpikäynnit järjestyksessä A 1 A 2... A n A 1 3. kaikilla j = 1,..., m: jos z j,k(j) = x i (jolloin v i = 0), korvaa laitteen A i läpikäynnin kaari (b i,j 1, c i,j ) polulla (b i,j 1, r j,k(j),..., s j,k(j), c i,j ) missä r j,k(j),..., s j,k(j) on laitteen B j läpikäynti jos z j,k(j) = x i (jolloin v i = 1), korvaa laitteen A i läpikäynnin kaari (c i,j 1, b i,j ) polulla (c i,j 1, r j,k(j),..., s j,k(j), b i,j ) missä r j,k(j),..., s j,k(j) on laitteen B j läpikäynti 238

20 : Olkoon verkossa G Hamiltonin kehä. Jos kehä sisältää kaaren (a i, b i,0 ) valitaan v i = 1. Jos kehä sisältää kaaren (a i, c i,0 ) valitaan v i = 0. Selvästi tasan yksi näistä pätee. Väitetään että φ = 1 jos x i = v i kaikilla i. Jos kehä tulee laitteeseen B j solmun r j,k kautta, se poistuu solmun s j,k kautta; muuten osa laitteen solmuista leikkautuisi pois kehältä. Siis laitteen B j kautta voidaan siirtyä solmusta c i,j 1 solmuun b i,j jos β j sisältää literaalin x i ja solmusta b i,j 1 solmuun c i,j jos β j sisältää literaalin x i. 239

21 Siis jos v i = 1, laite A i käydään läpi järjestyksessä a i b i,0 c i,0 b i,1 c i,1... b i,m c i,m d i missä c i,j 1 b i,j tarkoittaa siirtymistä solmusta c i,j 1 solmuun b i,j joko suoraan tai laitteen B j kautta. Jos v i = 0, saadaan vastaavasti a i c i,0 b i,0 c i,1 b i,1... c i,m b i,m d i. Jos laitteessa B j käydään laitteen A i läpikäynnin välissä ja v i = 1, niin laitteeseen B j mennään kaarta (c i,j 1, r j,k ) jolloin z j,k = x i. Vastaavasti jos v i = 0 niin z j,k = x i. Siis z j,k = 1 kun valitaan x i = v i. Jokaisessa laitteessa B j käydään ainakin kerran, joten jokaisessa klausuulissa β j on ainakin yksi literaali z j,k joka saa arvon 1 kun x i = v i kaikilla i. 240

22 HC DHC 3SAT CSAT SAT VC IS NP-täyd. Yhteenveto todistetuista polynomisista palautuksista Nuoli A B tarkoittaa A p m B. Huom. kaikki NP-ongelmat on palautettu SATongelmaan. NP 241

3SAT-ongelman NP-täydellisyys [HMU ]

3SAT-ongelman NP-täydellisyys [HMU ] 3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta

Lisätiedot

SAT-ongelman rajoitetut muodot

SAT-ongelman rajoitetut muodot SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä

Lisätiedot

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko

= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko 238 7.2 Luokka NP Luokka NP on: NP = { NTIME(t) t on polynomi } = k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko P NP Luokan NP ongelmista

Lisätiedot

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva: Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia

Lisätiedot

Polynomiset palautukset ja NP-täydellisyys

Polynomiset palautukset ja NP-täydellisyys Polynomiset palautukset ja NP-täydellisyys [HMU 10.1.5, 10.1.6] Polynomisen palautuksen idea on sama kuin rekursiivisen palautuksen, paitsi että liikutaan polynomisen aikavaativuuden maailmassa. Funktio

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

6. Approksimointialgoritmit

6. Approksimointialgoritmit 6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen.

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. 261 Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. Pitää osoittaa siis, että A mp SAT mielivaltaisella A NP Ainoa, mitä A:sta tiedetään on, että sillä on polynomisessa

Lisätiedot

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä. Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Tehtävä 8 : 1. Tehtävä 8 : 2

Tehtävä 8 : 1. Tehtävä 8 : 2 Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1 Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 11 Ratkaisut 1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen kahta yhdistämissääntöä. Perusfunktioita

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos... 2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Loogiset konnektiivit

Loogiset konnektiivit Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.

T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C. T-79.3001 Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka 6.1 7.2) 27. 29.2.2008 Ratkaisuja demotehtäviin Tehtävä 6.1 a) A (B C) Poistetaan lauseesta ensin implikaatiot.

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM Kurssi tähän asti: säännölliset yhteydettömät ratkeavat { a n } { a n b n } { a n b n c n } tunnistettavat A TM HALT TM kaikki kielet A TM HALT TM TOTAL TM TOTAL TM EQ TM EQ TM 277 5. Laskennan vaativuus

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Taulun avoimista haaroista saadaan kelvolliset lausejoukot

Taulun avoimista haaroista saadaan kelvolliset lausejoukot T-79.5101 kevät 2006 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M : a, Q b c d Lauseen X( UQ) sulkeuma: CL ( X( UQ) ) = { X( UQ), X( UQ), UQ, X ( UQ), ( UQ),, Q, X ( UQ),, } Muodostetaan

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

1 Tensoriavaruuksista..

1 Tensoriavaruuksista.. 1 Tensoriavaruuksista.. Käydään läpi kirjan (1) sivut 126-133. 19.02.2007 Palautetaaieleen viime kerran tärkeä määritelmä: (kirja, Määr. 5.12). Määritelmä 1.1 Olkoon T vektoriavaruus ja Φ : V 1 V 2 V m

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2 LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja

Lisätiedot

NP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

NP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos NP-täydellisyys Joonas Järvenpää ja Topi Talvitie Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 Sisältö 1 Johdanto 1 2 Ongelman määrittely

Lisätiedot

Funktion suurin ja pienin arvo DERIVAATTA,

Funktion suurin ja pienin arvo DERIVAATTA, Funktion suurin ja pienin arvo DERIVAATTA, MAA6 1. Suurin ja pienin arvo suljetulla välillä Lause, jatkuvan funktion ääriarvolause: Suljetulla välillä a, b jatkuva funktio f saa aina pienimmän ja suurimman

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka ) T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka 2.1 3.4) 5.2. 9.2. 2009 Ratkaisuja demotehtäviin Tehtävä 2.1 Merkitään lausetta φ:llä, ja valitaan atomilauseiden

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi: 1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005

Graafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Rakenteellinen tasapaino ja transitiivisyys

Rakenteellinen tasapaino ja transitiivisyys 1 Hypermedian jatko-opintoseminaari 2008-2009 Rakenteellinen tasapaino ja transitiivisyys 20.2.2009 Seppo Pohjolainen 2 Rakenteellinen tasapaino Käsitteitä: Arvotettu graafi (signed graph) (+ tai - ) Suuntaamaton

Lisätiedot

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg.

Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Logiikka I 7. harjoituskerran malliratkaisut 19. - 23.3.07 Ratkaisut laati Miikka Silfverberg. Olkoon L = {Lontoo, P ariisi, P raha, Rooma, Y hteys(x, y)}. Kuvan 3.1. kaupunkiverkko vastaa seuraavaa L-mallia

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Approbatur 3, demo 5, ratkaisut

Approbatur 3, demo 5, ratkaisut Approbatur 3, demo 5, ratkaisut 51 Tehtävänä on luetella kaikki joukon S 4 alkiot eli neljän alkion permutaatiot Tämä tarkoittaa kaikkia eri tapoja kuvata joukko {1, 2, 3, 4} bijektiivisesti itselleen

Lisätiedot