A TIETORAKENTEET JA ALGORITMIT

Koko: px
Aloita esitys sivulta:

Download "A274101 TIETORAKENTEET JA ALGORITMIT"

Transkriptio

1 A TIETORAKENTEET JA ALGORITMIT VERKOT ELI GRAAFIT Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) HISTORIAA Verkko- eli graafiteorian historia on saanut alkunsa Eulerin työstä v.176 Königsbergin (nyk. Kaliningrad) sillat: Kaupungin läpi virtaa joki, jossa on kaksi saarta Saaret on yhdistetty rantoihin 7 sillalla Voiko rannalta lähteä tietystä pisteestä, kulkea täsmälleen kerran jokaisen sillan yli ja palata lähtöpaikkaansa? Euler ratkaisi ongelman 176 ja kehitti samalla perustan verkkojen eli graafien teorialle KyAMK - TiRak, syksy HISTORIAA KÖNIGSBERGIN SILLAT - RATKAISU Yksinkertaistetaan kuvaa hieman N N K O K O S S KyAMK - TiRak, syksy KyAMK - TiRak, syksy

2 KÖNIGSBERGIN SILLAT - RATKAISU Kaikista neljästä solmusta lähtee pariton määrä kaaria Oletetaan, että seurataan viivoja nostamatta kynää Valitaan yksi solmu tarkasteltavaksi otetaan joku, josta lähte kaarta Kun 1. kerran saavut tähän solmuun, voit lähteä toista kaarta pitkin pois Tämän jälkeen solmuun voi vain saapua kerran Piirtäminen pitää päättää tähän solmuun Toinen vaihtoehto on aloittaa tästä solmusta, jolloin siinä voi vielä kerran käydä Solmu, josta lähtee pariton määrä kaaria voi ainoastaan aloittaa tai päättää reitin K N S O Graafi koostuu pisteistä eli solmuista (vertex) ja niitä yhdistävistä kaarista eli viivoista (edge) Formaalisti: Graafi (graph) on pari (V,E), missä V on pisteiden joukko ja E on pisteparien muodostama viivojen joukko KyAMK - TiRak, syksy KyAMK - TiRak, syksy Viivat ovat pistepareja (u, v) = (v, u) Pisteet u ja v ovat viivan (u, v) päätepisteet Suunnatuilla graafeilla (u, v) (v, u) eli pisteparien järjestyksellä on merkitystä Solmujen lukumäärää merkitään V :llä ja viivojen määrää E :llä Viivoja voidaan merkitä myös E = {,,, e n } Viivat voivat olla myös painotettuja: (u, v, c), missä c on paino Viivat, joilla on samat päätepisteet, ovat rinnakkaiset Viiva (v, v) on ns. silmukka Pisteet u ja v, joita yhdistää viiva ovat rinnakkaiset Pisteen v aste, merkitään d(v), on niiden viivojen lukumäärä, joiden päätepiste v on Piste, jonka aste on 1 on ns. loppupiste KyAMK - TiRak, syksy KyAMK - TiRak, syksy

3 Graafi, jossa ei ole lainkaan viivoja on tyhjä Graafi, jossa ei ole lainkaan pisteitä, on ns. nollagraafi Graafi, jossa on vain yksi piste, on triviaali Graafi on yksinkertainen, jos siinä ei ole rinnakkaisia viivoja, eikä silmukoita Graafi on yhtenäinen, jos sen jokaisesta pisteestä voidaan kulkea jokaiseen toiseen pisteeseen Graafissa G = (V, E) oleva pisteiden ja viivojen jono (v i0,e j0,v i1,e j1,v i2,,e jk,v ik ) on kulku, jos viivat (v i1,v i2 ), (v i2,v i ),,(v i(k- 1),v ik ) E Kulun pituus on k, v i0 on kulun alkupiste ja v ik kulun loppupiste Kulussa saavat samat pisteet ja viivat esiintyä useitakin kertoja Kulku on reitti, jos mikään viiva ei esiinny useita kertoja Reitti on polku, jos mikään piste ei esiinny kahta kertaa, päätepisteitä lukuun ottamatta KyAMK - TiRak, syksy KyAMK - TiRak, syksy EULERIN POLKU JA HAMILTONIN PIIRI Polku, jonka alku- ja päätepiste ovat samat, on piiri Huom. myös polku (v, v) on piiri, jonka pituus on 1 ja sitä sanotaan silmukaksi Graafin pisteet u ja v ovat yhdistetyt, jos on olemassa u-vkulku Jos pisteet u ja v ovat yhdistetyt sekä pisteet v ja w ovat yhdistetyt, niin myös u ja w ovat yhdistetyt Toisin sanoen jos graafissa on u-vkulku sekä v-w-kulku, niin siinä on myös u-w-kulku Eulerin polku (Euler path) kulkee jokaisen viivan kautta täsmälleen kerran Graafissa, jossa on Eulerin polku voi olla korkeintaan kaksi pistettä, joista lähtee pariton määrä viivoja Lisäksi tällaisessa graafissa on aina vähintään yksi Eulerin polku Hamiltonin piiri kulkee jokaisen pisteen kautta ainoastaan kerran ja sen alku- ja loppupisteet ovat samat KyAMK - TiRak, syksy KyAMK - TiRak, syksy

4 SUUNNATUT GRAAFIT KÄYTÄNNÖN SOVELLUKSIA Suunnattu graafi on vahvasti yhtenäinen (strongly connected), jos sen jokaisesta pisteestä on polku kaikkiin muihin pisteisiin Suunnattu graafi on heikosti yhtenäinen (weakly connected), jos se ei ole vahvasti yhtenäinen mutta olisi suuntaamattomana yhtenäinen Suunnatun graafin pisteen v tuloaste (in-degree) on v:hen päättyvien viivojen (u, v) lukumäärä Solmun v lähtöaste (out-degree) on puolestaan v:stä lähtevien viivojen (v, w) lukumäärä Suunnatun graafin suunnattua piiriä sanotaan sykliksi (cycle) Suunnattu graafi on syklitön (acyclic), jos siinä ei ole yhtään sykliä, muutoin syklinen (cyclic) Useimmat käytännön ongelmia mallintavat graafit ovat painotettuja. Useimmiten ne lisäksi ovat suunnattuja, mutta eivät aina. Lentokenttäverkko Solmu (u, v, c): u on lähtökenttä, v on tulokenttä ja c voi olla välimatka, lentoaika tms. Liikennevirta Solmu (u, v, c): u on mistä, v on minne ja c voi olla tien pituus, kapasiteetti, suurin sallittu nopeus tms KyAMK - TiRak, syksy KyAMK - TiRak, syksy GRAAFIN ESITTÄMISTAPOJA Miten graafia ei kannata esittää? Graafi tulisi esittää niin, että sitä voidaan käsitellä ohjelmallisesti Ei välttämättä ole helppoa ja itsestään selvää Seuraavassa käsitellään paria tuttua tietorakennetta Ovatko ne käyttökelpoisia graafin esittämiseen? GRAAFIN ESITTÄMISTAPOJA 1. Voitaisiin ajatella, että graafi olisi kätevä esittää binääripuun tapaan: linkitetty rakenne jokainen piste sisältää kentät kaikille mahdollisille viivoille Kritiikkiä: Pisteisiin liittyvien viivojen määrä voi vaihdella Jokaisessa pisteessä tulee varata tilaa viivoille pahimman tapauksen mukaisesti Toinen ongelma on solmujen tavoittaminen: Mistä ja miten etenemällä jokin tietty solmu löytyy? KyAMK - TiRak, syksy KyAMK - TiRak, syksy

5 GRAAFIN ESITTÄMISTAPOJA 2. Pisteestä lähtevien viivojen määrää ei haluta rajoittaa Viivat voitaisiin esittää myös linkitettyinä listoina Kritiikkiä: Rakenne on varsin raskastekoinen Solmujen tavoittaminen ei ole yhtään helpompaa kuin edellisessä menetelmässä GRAAFIN SIVULUETTELO Sivuluettelossa nimen mukaisesti luetellaan verkon sivut eli viivat Luettelon alkiot ovat joko pareja (painottamaton) tai kolmikoita (painotettu) Suuntaamattomassa graafissa jokainen sivu esiintyy kahteen kertaan Toisaalta, jos tiedetään, että graafi on suuntaamaton, ja sivu (u, v) sisältyy graafiin, sivua (v, u) ei tarvitse ilmoittaa, koska sen tiedetään automaattisesti olevan mukana KyAMK - TiRak, syksy KyAMK - TiRak, syksy GRAAFIN SIVULUETTELO NAAPURUUSMATRIISI 1 5 Ohessa on eräs graafi sekä suuntaamattomana että suunnattuna ja molemmissa tapauksissa sivuluettelo Suunnattuun graafiin on lisäksi liitetty painot Samaa graafia käytetään esimerkkinä myös jatkossa Sivuluettelo 1, 2, 1 1,, 2 1, 4 4, 1 2, 1 4, 5 2, 5, Painottamaton Painotettu 1, 2 1, 2, 1, 1,, 7 1, 4 1, 4, 5 2, 2,, 4 4, 5 4, 5, KyAMK - TiRak, syksy Naapuruusmatriisi eli vierusmatriisi on V x V - neliömatriisi: Matriisissa on graafin pisteiden määrän verran sekä sarakkeita että rivejä. Painottamattomalla graafilla rivin u sarakkeen v alkio on 1, jos viiva (u, v) sisältyy graafiin, ja 0 muulloin Painotetulla graafilla viivaa (u, v, c) vastaava matriisin alkion arvo on viivan paino c Puuttuvia viivoja vastaavat matriisin alkiot tulee olla sellaisia, että niitä ei voi sekoittaa viivojen painoihin (esim. -1, -99, tms.) Suuntaamatonta graafia vastaava matriisi on symmetrinen (eli A T = A): Jos viiva (u, v) sisältyy graafiin, niin myös viiva (v, u) sisältyy ko. graafiin KyAMK - TiRak, syksy

6 NAAPURUUSMATRIISI Esimerkki Suuntaamaton verkko Suunnattu verkko Naapuruusmatriisin tilavaatimus on O( V 2 ) käyttökelpoinen esitysmuoto tiheillä (dense) graafeilla, joissa on paljon viivoja Harvojen (sparse) graafien esittämiseen soveltuu paremmin seuraavassa esitettävä naapuruuslista NAAPURUUSLISTA Naapuruuslistassa kutakin pistettä vastaa listan tunnussolu Kyseisestä pisteestä lähtevät viivat tallennetaan tunnussolusta lähtevään linkitettyyn listaan Suuntaamattomille graafeille jokainen listasolu esiintyy kahdessa eri listassa Painottaman graafin listasolu sisältää verkon pisteen numeron sekä linkin seuraavaan soluun Painotetun graafin listasolu sisältää lisäkentän, johon talletetaan viivan paino KyAMK - TiRak, syksy KyAMK - TiRak, syksy NAAPURUUSLISTA Esimerkki Suunnatun graafin naapuruuslista: Tämän esitystavan tilavaatimus on O( V + E ). GRAAFIN PISTEEN TIEDOT KÄYTÄNNÖSSÄ Graafin pisteiden nimet ovat harvoin numeroita Yleensä pisteet sisältävät merkkijonoja, esim. kaupunkien nimiä Numerointi on kuitenkin varsin oleellinen sekä naapuruusmatriisi- että naapuruuslistaesityksessä Tällöin voidaan menetellä seuraavasti: Kun graafia luettaessa vastaan tulee aiemmin esiintymätön piste, annetaan sille seuraava järjestysnumero Pisteen nimi talletetaan sopivaan hakurakenteeseen (esim. binääripuu, hajautustaulu) Kun nimeä tarvitaan, haku on nopeaa (esim. tietyn pisteen esiintyminen, tulostukset, ) KyAMK - TiRak, syksy KyAMK - TiRak, syksy

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

Graafin virittävä puu 1 / 20

Graafin virittävä puu 1 / 20 Graafin virittävä puu 1 / 20 Graafin virittävä puu PuuT on graafingvirittävä puu (spanning tree), jos se sisältää kaikkig:n pisteet. Virittäviä puita: 2 / 20 Yhdistämisongelma Yhdistämisongelma:(Connector

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

8.5. Järjestyssuhteet 1 / 19

8.5. Järjestyssuhteet 1 / 19 8.5. Järjestyssuhteet 1 / 19 Määritelmä Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä).

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

7.4. Eulerin graafit 1 / 22

7.4. Eulerin graafit 1 / 22 7.4. Eulerin graafit 1 / 22 Viivojen läpikäynti Graafin pisteiden/viivojen läpikäyminen esiintyy usein sovelluksissa: Etsintäalgoritmit, reititykset Läpikäyminen tehdään nopeimmin, kun yhtäkään viivaa/pistettä

Lisätiedot

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä.

Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä. POHDIN projekti TIEVERKKO Tieverkon etäisyyksien minimointi ja esimerkiksi maakaapeleiden kokonaismäärän minimointi sekä ylipäätään äärellisen pistejoukon yhdistäminen reitityksillä toisiinsa niin, että

Lisätiedot

GRAAFITEORIA. Keijo Ruohonen

GRAAFITEORIA. Keijo Ruohonen GRAAFITEORIA Keijo Ruohonen 2013 Sisältö 1 I MÄÄRITELMIÄ JA PERUSTULOKSIA 1 1.1 Määritelmiä 5 1.2 Kulku. Reitti. Polku. Piiri. Yhtenäisyys. Komponentti 10 1.3 Graafien operaatioita 14 1.4 Irrotus 17 1.5

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta

Liite 2: Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Verkot TKK (c) Ilkka Mellin (2007) 1 Verkko eli graafi: Määritelmä 1/2 Verkko eli graafi muodostuu pisteiden joukosta V, särmien

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013

VERKKOTEORIAN ALKEITA. Martti E. Pesonen 28.2.2013 VERKKOTEORIAN ALKEITA Martti E. Pesonen 28.2.2013 1 Sisältö 1 VERKOISTA 1 1.1 Mitä matemaattiset verkot ovat?................ 1 1.1.1 Verkkoteorian synty.................... 1 1.2 Suuntaamaton verkko.......................

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Todistus (2.2) Todistus (2.2) jatkoa. (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio.

Todistus (2.2) Todistus (2.2) jatkoa. (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio. Todistus (2.2) (2.2): Oletetaan, että0 n 1,1 n 1 / P i (F) aina kuni = 1,2,...,n. Olkoonf F painoltaan pienin joukonf alkio. Selvästi bittijono f sisältää ainakin yhden1:sen. Voidaan olettaa, että f 1

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

9. Graafit. 9.1. Graafin abstrakti tietotyyppi

9. Graafit. 9.1. Graafin abstrakti tietotyyppi 9. Graafit Graafeilla eli verkoilla esitetään yhteystietoja. Esimerkkejä niistä ovat kaupunkikartan kadut ja tietoverkon tietokoneet. Tämä luku tarkastelee verkkojen perusasioita. 9.1. Graafin abstrakti

Lisätiedot

Kytkentäkentät, luento 2 - Kolmiportaiset kentät

Kytkentäkentät, luento 2 - Kolmiportaiset kentät Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull

Lisätiedot

VERKOT. SUHTEIKOT JA VERKOT 1. Johdanto... 1 2. Pisteiden asteet...7 3. Yhtenäisyys... 11 4. Kulku suhteikossa... 18 5. Hamiltonin kulut...

VERKOT. SUHTEIKOT JA VERKOT 1. Johdanto... 1 2. Pisteiden asteet...7 3. Yhtenäisyys... 11 4. Kulku suhteikossa... 18 5. Hamiltonin kulut... Heikki Junnila VERKOT. LUKU I SUHTEIKOT JA VERKOT 1. Johdanto..... 1 2. Pisteiden asteet...7 3. Yhtenäisyys.... 11 4. Kulku suhteikossa.... 18 5. Hamiltonin kulut....... 26 Harjoitustehtäviä......35 LUKU

Lisätiedot

Tietorakenteet ja algoritmit. Verkot. Ari Korhonen

Tietorakenteet ja algoritmit. Verkot. Ari Korhonen Tietorakenteet ja algoritmit Verkot Ari Korhonen 1 10. VERKOT ( graphs ) 10.1 Yleistä 10.2 Terminologiaa 10.3 Verkon esittäminen 10.4 Verkon läpikäyntialgoritmit (graph traversal) 10.5 Painotetut verkot

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Verkkojen värittäminen

Verkkojen värittäminen Verkkojen värittäminen Pro gradu -tutkielma Tiina Aaltonen 165231 Itä-Suomen yliopisto Fysiikan ja matematiikan laitos 10. tammikuuta 2012 Sisältö 1 Johdanto 1 2 Verkkojen peruskäsitteitä 4 2.1 Solmu,

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella DISKREETTI MATEMATIIKKA, harjoitustehtävät Tehtäviä tulee todennäköisesti lisää. Uudet tehtävät tulevat aikanaan ladattavaksi samalle sivulle, josta tämäkin moniste löytyi. Ilmoitustaululta on nähtävissä

Lisätiedot

Harjoitus 1 (17.3.2015)

Harjoitus 1 (17.3.2015) Harjoitus 1 (17.3.2015) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Helsinki 4 = Kuopio 5 = Joensuu. a) Tehtävänä on ratkaista Bellman

Lisätiedot

Syötteen ainoalla rivillä on yksi positiivinen kokonaisluku, joka on alle 1000000000000 = 10 12. Luvussa ei esiinny missään kohtaa numeroa 0.

Syötteen ainoalla rivillä on yksi positiivinen kokonaisluku, joka on alle 1000000000000 = 10 12. Luvussa ei esiinny missään kohtaa numeroa 0. A Alkulukuosat Tehtävänä on laskea annetusta kokonaisluvusta niiden osajonojen määrä, joita vastaavat luvut ovat alkulukuja. Esimerkiksi luvun 123 kaikki osajonot ovat 1, 2, 3, 12, 23 ja 123. Näistä alkulukuja

Lisätiedot

Tiraka, yhteenveto tenttiinlukua varten

Tiraka, yhteenveto tenttiinlukua varten Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,

Lisätiedot

A* Reitinhaku Aloittelijoille

A* Reitinhaku Aloittelijoille A* Reitinhaku Aloittelijoille Alkuperäisen artikkelin kirjoittanut Patrick Lester, suomentanut Antti Veräjänkorva. Suom. huom. Tätä kääntäessäni olen pyrkinyt pitämään saman alkuperäisen tyylin ja kerronnan.

Lisätiedot

SUDOKU - ratkaisuohjeet. Jarno Tuimala 18.9.2005

SUDOKU - ratkaisuohjeet. Jarno Tuimala 18.9.2005 SUDOKU - ratkaisuohjeet Jarno Tuimala 18.9.2005 Japanilainen sudoku Seuraavassa on esitetty ohjeet japanilaistyyppisten sudoku-ristikoiden ratkontaan. Japanilaisia ristikoita luonnehtivat seuraavat piirteet:

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Pienin virittävä puu (minimum spanning tree)

Pienin virittävä puu (minimum spanning tree) Pienin virittävä puu (minimum spanning tree) Jatkossa puu tarkoittaa vapaata puuta (ks. s. 11) eli suuntaamatonta verkkoa, joka on yhtenäinen: minkä tahansa kahden solmun välillä on polku syklitön: minkä

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

TIEREKISTERIN INTRANET-KATSELUOHJELMAN KÄYTTÖOHJE (19.2.2004)

TIEREKISTERIN INTRANET-KATSELUOHJELMAN KÄYTTÖOHJE (19.2.2004) 1 (7) TIEREKISTERIN INTRANET-KATSELUOHJELMAN KÄYTTÖOHJE (19.2.2004) Huom! Tätä ohjetta ei ole täysin päivitetty vastamaan uutta ulkoasua, koska vielä uudempi extranet-versio on tulossa. Perusperiaatteet

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

2016/07/05 08:58 1/12 Shortcut Menut

2016/07/05 08:58 1/12 Shortcut Menut 2016/07/05 08:58 1/12 Shortcut Menut Shortcut Menut Shortcut menut voidaan aktivoida seuraavista paikoista. Shortcut menun sisältö riippuu siitä, mistä se aktivoidaan. 1. Shortcut menu suunnitellusta linjasta

Lisätiedot

Tasograafit ja väritykset

Tasograafit ja väritykset Solmu /06 Tasograafit ja väritykset Esa V. Vesalainen Matematiikan ja systeemianalyysin laitos, Aalto-yliopisto Graafi on matemaattinen olio, joka koostuu kahdesta eri asiasta: ) äärellisestä joukosta

Lisätiedot

FROM-lausekkeessa voidaan määritellä useampi kuin yksi taulu, josta tietoja haetaan: Tuloksena on taululistassa lueteltujen taulujen rivien

FROM-lausekkeessa voidaan määritellä useampi kuin yksi taulu, josta tietoja haetaan: Tuloksena on taululistassa lueteltujen taulujen rivien Monen taulun kyselyt FROM-lausekkeessa voidaan määritellä useampi kuin yksi taulu, josta tietoja haetaan: SELECT FROM Tuloksena on taululistassa lueteltujen taulujen rivien karteesinen

Lisätiedot

Yhdistäminen. Tietolähteen luominen. Word-taulukko. Joukkokirje, osoitetarrat Työvälineohjelmistot 1(5)

Yhdistäminen. Tietolähteen luominen. Word-taulukko. Joukkokirje, osoitetarrat Työvälineohjelmistot 1(5) Työvälineohjelmistot 1(5) Yhdistäminen Yhdistämistoiminnolla voidaan tehdä esimerkiksi joukkokirjeitä, osoitetarroja, kirjekuoria, jne. Siinä yhdistetään kaksi tiedostoa: Pääasiakirja Tietolähde Pääasiakirjassa

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Tasograafit ja väritykset

Tasograafit ja väritykset Tasograafit ja väritykset Esa V. Vesalainen Matematiikan ja systeemianalyysin laitos, Aalto-Yliopisto Graafi on matemaattinen olio, joka koostuu kahdesta eri asiasta: ) äärellisestä joukosta kärkiä; sekä

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka kevät Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu Taulukot Taulukon määrittely ja käyttö Taulukko metodin parametrina Taulukon sisällön kopiointi toiseen taulukkoon Taulukon lajittelu esimerkki 2-ulottoisesta taulukosta 1 Mikä on taulukko? Taulukko on

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Voidaanko verkkoteoriaa opettaa lukiolaisille?

Voidaanko verkkoteoriaa opettaa lukiolaisille? Voidaanko verkkoteoriaa opettaa lukiolaisille? Tuotetun oppimateriaalin analysointia aiheesta painotetut verkot Pro gradu -tutkielma Mika Koponen Itä-Suomen yliopisto Fysiikan ja matematiikan laitos 1.

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Muita linkattuja rakenteita

Muita linkattuja rakenteita 1 Muita linkattuja rakenteita Johdanto Aikaisemmin on käsitelty listan, jonon ja pinon toteutus dynaamisesti linkattuna rakenteena. Dynaamisella linkkauksella voidaan toteuttaa mitä moninaisimpia rakenteita.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA Heikki Junnila VERKOT LUKU I JOUKOISTA JA RELAATIOISTA 1. Joukkojen symmetrinen erotus.....................................1 2. Relaation sisältämät kuvaukset.................................... 7 Harjoitustehtäviä................................................

Lisätiedot

Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1

Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1 Lean toimintamallia tukevan Excelin pikakäyttöopas versio 1.1 versio 1.0 Varhac Oy Jussi Luukkonen 01.10.2013 versio 1.1. HSY Lotta Toivonen 25.10.2013 Sisällys 1 Sovelluksen asennus... 3 2 Sovelluksen

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla

Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla Maastotietokannan torrent-jakelun shapefile-tiedostojen purkaminen zip-arkistoista Windows-komentojonoilla Viimeksi muokattu 5. toukokuuta 2012 Maastotietokannan torrent-jakeluun sisältyy yli 5000 zip-arkistoa,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2011 1 / 39 Kertausta: tiedoston avaaminen Kun ohjelma haluaa lukea tai kirjoittaa tekstitiedostoon, on ohjelmalle

Lisätiedot

Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes)

Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes) Kääreluokat (oppikirjan luku 9.4) (Wrapper-classes) Kääreluokista Javan alkeistietotyypit ja vastaavat kääreluokat Autoboxing Integer-luokka Double-luokka Kääreluokista Alkeistietotyyppiset muuttujat (esimerkiksi

Lisätiedot

Palmikkoryhmät kryptografiassa

Palmikkoryhmät kryptografiassa Palmikkoryhmät kryptografiassa Jarkko Peltomäki 27. marraskuuta 2010 Palmikkoryhmät ovat epäkommutatiivisia äärettömiä ryhmiä. Niillä on monimutkainen rakenne, mutta toisaalta niillä on geometrinen tulkinta

Lisätiedot

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys 10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi toinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

http://www.nelostuote.fi/suomi/rummikubsaan.html

http://www.nelostuote.fi/suomi/rummikubsaan.html Sivu 1/5 Pelin sisältö 104 numeroitua laattaa (numeroitu 1-13) 2 laattaa kutakin neljää väriä (musta, oranssi, sininen ja punainen) 2 jokerilaattaa, 4 laattatelinettä, pelisäännöt Pelin tavoite Tavoitteena

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Algoritmit C++ Kauko Kolehmainen

Algoritmit C++ Kauko Kolehmainen Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Scifest-loppuraportti Jani Hovi 234270 4.5.2014. 21 kortin temppu

Scifest-loppuraportti Jani Hovi 234270 4.5.2014. 21 kortin temppu Scifest-loppuraportti Jani Hovi 234270 4.5.2014 Toteutus 21 kortin temppu Temppuun tarvitaan nimensä mukaisesti 21 korttia. Kortit jaetaan kuvapuoli näkyvillä kolmeen pinoon, ensiksi kolme korttia rinnan

Lisätiedot

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.

Lisätiedot

Harjoitus 4 (7.4.2014)

Harjoitus 4 (7.4.2014) Harjoitus 4 (7.4.2014) Tehtävä 1 Tarkastellaan Harjoituksen 1 nopeimman reitin ongelmaa ja etsitään sille lyhin virittävä puu käyttämällä kahta eri algoritmia. a) (Primin algoritmi) Lähtemällä solmusta

Lisätiedot

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi

Littlen tulos. Littlen lause sanoo. N = λ T. Lause on hyvin käyttökelpoinen yleisyytensä vuoksi J. Virtamo 38.3143 Jonoteoria / Littlen tulos 1 Littlen tulos Littlen lause Littlen tuloksena tai Littlen lauseena tunnettu tulos on hyvin yksinkertainen relaatio järjestelmään tulevan asiakasvirran, keskimäärin

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Webforum. Version 15.3 uudet ominaisuudet. Päivitetty: 2015-09-21

Webforum. Version 15.3 uudet ominaisuudet. Päivitetty: 2015-09-21 Webforum Version 15.3 uudet ominaisuudet Päivitetty: 2015-09-21 Sisältö Tietoja tästä dokumentista... 3 Yleistä... 4 Alustan otsikointi... 5 Alustan otsikoinnin uusi ryhmittely käyttäjän kuvalla... 5 Aloita

Lisätiedot

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma:

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma: Kerta 2 Kerta 3 Kerta 4 Kerta 5 Kerta 2 1. Toteuta Pythonilla seuraava ohjelma: 2. Tulosta Pythonilla seuraavat luvut allekkain a. 0 10 (eli, näyttää tältä: 0 1 2 3 4 5 6 7 8 9 10 b. 0 100 c. 50 100 3.

Lisätiedot

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet A271117, Tietokannat Teemu Saarelainen teemu.saarelainen@kyamk.fi Lähteet: Leon Atkinson: core MySQL Ari Hovi: SQL-opas TTY:n tietokantojen perusteet-kurssin

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Internet ja muut informaatioverkostot

Internet ja muut informaatioverkostot Internet ja muut informaatioverkostot Pekka Orponen Teknillinen korkeakoulu Tietojenkäsittelyteorian laboratorio Tieteen päivät 2005 1 Tieteen päivät 2005 Pekka Orponen 2 Sisällys Verkostoja Verkostomalleja

Lisätiedot

ARVI-järjestelmän ohje arvioinnin syöttäjälle 13.4. 2015

ARVI-järjestelmän ohje arvioinnin syöttäjälle 13.4. 2015 ARVI-järjestelmän ohje arvioinnin syöttäjälle 13.4. 2015 Sisältö ARVI-menettelyn perusteet... 1 Arvioinnin syöttäminen... 2 Arvion lähettäminen TE-toimistoon... 5 Sovelluksen sulkeminen... 6 Virhetilanteiden

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT HAJAUTUS, JÄRJESTÄMISESTÄ HAJAUTTAMISEN IDEA Jos avaimet (tai data) ovat kokonaislukuja välillä 1 N, voidaan niitä käyttää suoraan indeksointiin Järkevä rakenne on

Lisätiedot

Palomuurit. Palomuuri. Teoriaa. Pakettitason palomuuri. Sovellustason palomuuri

Palomuurit. Palomuuri. Teoriaa. Pakettitason palomuuri. Sovellustason palomuuri Palomuuri Teoriaa Palomuurin tehtävä on estää ei-toivottua liikennettä paikalliseen verkkoon tai verkosta. Yleensä tämä tarkoittaa, että estetään liikennettä Internetistä paikallisverkkoon tai kotikoneelle.

Lisätiedot

Taulukot. Jukka Harju, Jukka Juslin 2006 1

Taulukot. Jukka Harju, Jukka Juslin 2006 1 Taulukot Jukka Harju, Jukka Juslin 2006 1 Taulukot Taulukot ovat olioita, jotka auttavat organisoimaan suuria määriä tietoa. Käsittelylistalla on: Taulukon tekeminen ja käyttö Rajojen tarkastus ja kapasiteetti

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Luento 5. Timo Savola. 28. huhtikuuta 2006

Luento 5. Timo Savola. 28. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 5 Timo Savola 28. huhtikuuta 2006 Osa I Shell-ohjelmointi Ehtolause Lausekkeet suoritetaan jos ehtolausekkeen paluuarvo on 0 if ehtolauseke then lauseke

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja

811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja 811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A

Lisätiedot