F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.

Koko: px
Aloita esitys sivulta:

Download "F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R."

Transkriptio

1 Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja annetulla välillä. Esimerkiksi henkilön ikä on jatkuva satunnaismuuttuja, joka voi saada positiivisia reaalilukuarvoja. Diskreetin satunnaismuuttujan arvoavaruus on äärellinen tai numeroituva, mutta jatkuvan satunnaismuuttujan arvoavaruus on ylinumeroituva. 5. Jatkuvat satunnaismuuttujat Jokaiseen satunnaismuuttujaan liittyy kertymäfunktio. Satunnaismuuttujan X kertymäfunktio määriteltiin alaluvussa.5. (Määritelmä.4) funktiona F(x) = P(X x), x R. Diskreetin satunnaismuuttujan kertymäfunktio on porrasfunktio, joka voidaan lausua hyppyfunktioiden summana (4..) [ks. alaluku 4.]. Lauseen. mukaan funktio F(x) on kertymäfunktio jos ja vain jos seuraavat kolme ehtoa toteutuvat:. lim F(x) = ja lim x F(x) =. x. F(x) on kasvava (ei-vähenevä) funktio. 3. F(x) on oikealta jatkuva eli lim x x + F(x) = F(x ) kaikilla x R. Jos meillä on jokin satunnaismuuttuja X, niin ominaisuudet. 3. voidaan todeta todennäköisyysfunktion P(X x) ominaisuuksien avulla. Jos jokin funktio F(x) toteuttaa ehdot. 3., ei ole aivan helppoa todistaa, että F(x) on todella jonkin satunnaismuuttujan kertymäfunktio. Todistus löytyy vaativista todennäköisyyslaskennan oppikirjoista. Esimerkki 5. Funktio (5..) F(x) = + e x 5

2 5 Luku 5. Jatkuvat jakaumat on esimerkki jatkuvasta kertymäfunktiosta, joka siis toteuttaa Lauseen. ehdot. 3. Koska ja lim x e x =, niin lim F(x) = x lim F(x) =, koska lim x x e x =. Funktio F(x) on kasvava, koska sen. derivaatta F (x) = e x ( + e x ) >. On myös helppo todeta, että F(x) ei ole ainoastaan oikealta jatkuva vaan jatkuva. Satunnaismuuttujan jatkuvuus voidaankin määritellä siihen liittyvän kertymäfunktion jatkuvuuden avulla. Määritelmä 5. Satunnaismuuttuja X on jatkuva, jos sen kertymäfunktio F X (x) on x:n jatkuva funktio. Satunnaismuuttuja X on diskreetti, jos sen kertymäfunktio on x:n porrasfunktio. Vastaavalla tavalla kuin diskreetin satunnaismuuttujan kertymäfunktio voidaan lausua summana, voidaan jatkuvan satunnaismuuttujan kertymäfunktio lausua integraalina: (5..) P(X x) = F X (x) = x f X (t) dt. Jos f X (t) on jatkuva, niin integraalilaskennan peruslauseen mukaan (5..3) F X (x) = f X(x), missä F X (x) on kertymäfunktion F X(x) derivaatta. Määritelmä 5. Jatkuvan satunnaismuuttujan X tiheysfunktio f X (x) on funktio, joka toteuttaa yhtälön (5..4) F X (x) = x f X (t) dt kaikilla x R. Esimerkki 5. Olkoon X tiettyyn palvelunumeroon tulevien puheluiden pituus. Oletetaan, että X:n tiheysfunktio on f(x) = e x/, x <.

3 5.. Jatkuvat satunnaismuuttujat 53 Silloin X noudattaa ns. eksponenttijakaumaa keskiarvolla. Nyt Kertymäfunktio on S = { x x < } ja f(x) > kun x S. F(x) = = x / x x e t/ dx = e t/ = e x/. e t/ dx Silloin F (x) = d ( ) e x/ = dx e x/ = f(x), x ja f(x) =, kun x <. Huomaa, että yksittäisen pisteen a R todennäköisyys P(X = a) on aina nolla, jos X on jatkuva satunnaismuuttuja. Silloin erityisesti kaikilla reaaliluvuilla b > a F(b) F(a) = P(a X b) = P(a < X b) = P(a X < b) = P(a < X < b). Esimerkki 5.3 Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f(x) = x, kun < x <. Silloin X:n kertymäfunktio on, x < ; F(x) = x, x < ;, x. Huomaa, että F(x) = x t dt = x, kun x <. Jos kertymäfunktio on annettu, niin tiheysfunktio saadaan derivoimalla kertymäfunktio: F (x) = d dx x = x, x <. Kertymäfunktion avulla voidaan laskea todennäköisyyksiä. Esimerkiksi todennäköisyys ( P < X 3 ) ( ) ( ) ( ) ( ) 3 3 = F F = =

4 54 Luku 5. Jatkuvat jakaumat f(x) F(x) x F ( 3 ) 4 F ( ) x Kuvio 5.. Jatkuvan satunnaismuuttujan X tiheysfunktio f(x) = x ja kertymäfunktio F(x) = x. ja ( 3 P 4 < X 3 ) = F ( ) 3 F ( ) 3 = 4 ( ) 3 = Toisaalta tietysti P ( X 3 4) voidaan laskea suoran y = x ja x-akselin väliin jäävänä pinta-alana: ( P X 3 ) = 4 3/4 / x dx = 5 5, joka tietysti voidaan esittää kertymäfunktion avulla. Jatkuvan satunnaismuuttujan momentit määritellään vastaavasti kuin diskreetin satunnaismuuttujan tapauksessa, mutta määritelmässä summa korvataan integraalilla. Jatkuvan satunnaismuuttujan r. momentti on α r = E(X r ) = x r f(x) dx, missä f(x) on X:n tiheysfunktio. Satunnaismuuttujan X r. keskusmomentti on µ r = E[(X µ) r ], missä µ = E(X) = α on X:n odotusarvo. Satunnaismuuttujan X odotusarvo on siis integraali µ = E(X) = xf(x) dx

5 5.. Jatkuvat satunnaismuuttujat 55 ja X:n varianssi σ on. keskusmomentti σ = µ = E[(X µ) ] = (x µ) f(x) dx. Merkitsemme myös E [ (X µ) ] = Var(X), jolloin X:n hajonta on σ = Var(X). Momenttifunktio on (5..5) M(t) = E(e tx ) = e tx f(x) dx, jos integraali 5..5 on olemassa jollakin avoimella välillä ( a, a), missä a >. Tietysti esimerkiksi tulokset σ = E(X ) µ, µ = M (), α = E(X ) = M () pitävät edelleen paikkansa samalla tavalla kuin diskreettien satunnaismuuttujien tapauksessa. Esimerkki 5.4 Lasketaan nyt Esimerkissä 5.3 määritellyn satunnaismuuttujan X odotusarvo ja varianssi: ja µ = E(X) = σ = E(X ) µ = Kolmas momentti on x (x) dx α 3 = E(X 3 ) = x(x) dx = 3 ( ) = 3 / / x 3 (x) dx = 5 x 3 = 3 x = 8. / x 5 = 5

6 56 Luku 5. Jatkuvat jakaumat ja 3. keskusmomentti on µ 3 = E [ (X µ) 3] = = = (x µ) 3 (x) dx (x 3 3µx + 3µ x µ 3 )(x) dx x 3 (x) dx 3µ x (x) dx + 3µ x(x) dx µ 3 x dx = α 3 3µα + 3µ 3 µ 3 = α 3 3µα + µ 3 = ( ) 3 + = = 5. Myös prosenttipisteet ovat tärkeitä jakauman tunnuslukuja. Jakauman p-prosenttipiste π p määritellään seuraavasti: p = π p f(x) dx = F(π p ), p. Prosenttipistettä π.5 kutsutaan mediaaniksi ja pistettä π.5 ja π.75 alakvartiiliksi ja yläkvartiiliksi. Esimerkissä 5.3 käsitellyn jakauman 36 %:n piste on.6, koska F(π.36 ) = π.36 =.6 =.36. Esimerkki 5.5 Olkoon satunnaismuuttujan X kertymäfunktio määritelty seuraavasti, x < ; x F(x) =, x ; ( x), x < ;, x. Tarkistamme ensin, että F on todella kertymäfunktio. Toteamme helposti, että ) lim F(x) = ja lim x F(x) =, x ) F(x) on x:n kasvava (ei-vähenevä) funktio ja 3) F(x) on oikealta jatkuva, koska se on jatkuva.

7 5.. Jatkuvat satunnaismuuttujat 57 Tiheysfunktio saadaan derivoimalla F(x). Nyt siis F (x) = x välillä < x ja F (x) = x välillä x. Näin siis tiheysfunktio on x, < x ; f(x) = x, x ; muualla. Tiheysfunktio voidaan kirjoittaa lyhyesti muodossa f(x) = x, x. Koska X:n tiheysfunktion kuvaaja on kolmion muotoinen, X:n jakaumaa kutsutaan kolmiojakaumaksi. f(x) F(x) F(.55) = x Kuvio 5.. Kolmiojakauman tiheysfunktion ja kertymäfunktion kuvaajat. x Kolmiojakauman odotusarvo on µ = xf(x) dx = x x dx + x( x) dx = / =. x / (x x3 3 ) = 3 ( ) ( ) 3 3 Koska jakauma on symmetrinen odotusarvon suhteen, on myös jakauman mediaani π.5. Se voidaan todeta helposti myös määritelmän perusteella, sillä F() = =.5. Jakauman 9 %:n piste π.9 saadaan ratkaisemalla yhtälö ( π.9) Ratkaisu on π.9 =. =.55. =.9. Itse asiassa relaatio (5..4) ei välttämättä ole voimassa kaikilla x:n arvoilla, sillä F(x) voi olla jatkuva, mutta ei derivoituva. Jos f(x) on jatkuva,

8 58 Luku 5. Jatkuvat jakaumat niin silloin tietysti yhtälö (5..4) pitää paikkansa. Huomattakoon, että jatkuvan satunnaismuuttujan tiheysfunktio ei välttämättä ole jatkuva, mutta kertymäfunktio on. Esimerkki 5.6 Tarkastellaan nyt satunnaismuuttujaa X, jonka tiheysfunktio on { f(x) =, x < ; 3, x. Vastaavasti X:n kertymäfunktio on, x < ; F(x) = x, x < ; 4 + ( ) 3 x, x ;, x. Havaitsemme nyt, että X:n tiheysfunktio ei ole jatkuva. Nyt myöskään F ei 3 f(x) F(x) x 4 x Kuvio 5.3. Satunnaismuuttujan X tiheysfunktion ja kertymäfunktion kuvaajat. ole derivoituva pisteessä. Pisteessä x = ei ole voimassa, että F (x) = f(x). Tässä on esimerkki jatkuvasta satunnaismuuttujasta, jonka tiheysfunktio ei ole jatkuva ja jonka kertymäfunktio ei ole koko määrittelyalueella S derivoituva. Jatkuvan satunnaismuuttujan tiheysfunktiolla voi olla äärellinen määrä epäjatkuvuuspisteitä, mutta kertymäfunktio on jatkuva. Esimerkin 5.6 satunnaismuuttujan tiheysfunktiolla on määrittelyalueellaan yksi epäjatkuvuuspiste ja kertymäfunktio on jatkuva. Relaatio (5..3) pitää paikkansa vain tiheysfunktion jatkuvuuspisteissä, mutta ei epäjatkuvuuspisteissä.

9 5.. Jatkuvat satunnaismuuttujat 59 Esimerkki 5.7 Määritellään satunnaismuuttuja X siten, että sen kertymäfunktio on, x < ; (5..6) F(x) =, x = ; + x, < x < ;, x. F(x) f(x) x x Kuvio 5.4. Satunnaismuuttujan X kertymäfunktion ja tiheysfunktion kuvaajat. Kertymäfunktio ei ole nyt jatkuva, koska funktio hyppää pisteessä x =. Kertymäfunktio ei ole myöskään porrasfunktio. Nyt myös yksittäisellä pisteellä X = on positiivinen todennäköisyys P(X = ) =, joten f(x) ei ole tiheysfunktio. Itse asiassa kertymäfunktio (5..6) voidaan kirjoittaa porrasfunktion (kertymäfunktio) ja jatkuvan kertymäfunktion summana. Alaluvussa 4. määriteltiin hyppyfunktio ε(x) siten, että ε(x) = epänegatiivisilla x:n arvoilla ja ε(x) =, kun x <. Funktio ε(x) on porrasfunktio ja siis diskreetin satunnaismuuttujan kertymäfunktio. Puoliavoimella välillä (, ] tasajakaumaa noudattavan satunnaismuuttujan kertymäfunktio on, x ; F c (x) = x, < x < ;, x. Nyt kertymäfunktio (5..6) voidaan kirjoittaa muodossa F(x) = ε(x) + F c(x). Esimerkiksi todennäköisyys ( P X ) = ( ) ε + ( ) F c = + = 3 4. Satunnaismuuttuja X ei ole diskreetti eikä jatkuva.

10 6 Luku 5. Jatkuvat jakaumat Yleisesti jatkuva satunnaismuuttuja voidaan määritellä identiteetin (5..4) avulla olettamatta tiheysfunktion f(x) jatkuvuutta. Jos on olemassa sellainen epänegatiivinen funktio f(x) [ts. f(x) kaikilla x R], että (5..4) pitää paikkansa kaikilla x R, niin kertymäfunktion F(x) sanotaan olevan absoluuttisesti jatkuva. Absoluuttisesti jatkuva funktio on jatkuva. Kaikkien tässä luvussa käsiteltäviät jatkuvien satunnaismuuttujien kertymäfunktiot ovat absoluuttisesti jatkuvia. 5. Tasajakauma ja eksponenttijakauma 5.. Tasajakauma Jatkuva satunnaismuuttuja X noudattaa tasajakaumaa välillä [, ], jos sen tiheysfunktio on tällä välillä ja muualla: {, kun x [, ], (5..) f(x) = muualla. Silloin merkitään X Tas(, ). On helppo todeta, että f(x) on tiheysfunktio, koska f(x) ja f(x) dx = dx =. f(x) F(x) x x Kuvio 5.5. Tasajakauman Tas(,) tiheysfunktio ja kertymäfunktio. Tasajakauman keskiarvo ja varianssi ovat: E(X) = x dx = ja Var(X) = E(X ) [E(X)] = x dx 4 =.

11 5.. Tasajakauma ja eksponenttijakauma 6 Satunnaismuuttujan X momenttifunktio on M X (t) = e tx dx = / t etx = et. t Huomaa, että M X () =. Olkoon [a, b] annettu suljettu väli, a < b. Silloin satunnaismuuttuja U = (b a)x + a noudattaa tasajakaumaa välillä [a, b]. Silloin merkitään U Tas(a, b). Koska E(U) = (b a) E(X) + a ja Var(U) = (b a) Var(X), niin E(U) = a + b Satunnaismuuttujan U tiheysfunktio on ja Var(U) = (b a). (5..) f(u) = {, kun u [a, b]; b a muualla ja U:n momenttifunktio on e tb e ab M U (t) = t(b a), t ;, t =. 5.. Eksponenttijakauma Poissonin prosessissa tarkastellaan, montako tapahtumaa (lisäystä) sattuu jollain aikavälillä. Merkitään w:n pituisella välillä sattuvien tapahtumien lukumäärää satunnaismuuttujalla X w. Jos Poissonin prosessin intensiteetti on λ, niin Määritelmän 4.3 mukaan todennäköisyys, että w:n pituisella välillä sattuu x tapahtumaa, on λw (λw)x (5..3) P(X w = x) = e. x! Poissonin prosessilla voidaan mallintaa esimerkiksi asiakkaiden saapumista palvelupisteeseen, puheluiden tuloa vaihteeseen, onnettomuuksien sattumista tarkasteltavalla tieosuudella tai autojen kulkua liikenteen tarkkailupisteen ohi. Tällöin ajatellaan, että yksittäiset tapahtumat sattuvat toisistaan riippumatta täysin satunnaisesti. Tarkkaillaan nyt Poissonin prosessia, jonka intensiteetti on λ. Olkoon W odotusaika siihen hetkeen, kunnes seuraava tapahtuma sattuu. Odotusaika on jatkuva satunnaismuuttuja. Jos tarkkailemme prosessia hetkestä t hetkeen t+w eli w:n pituisen aikavälin [t, t+w], niin tapahtuma { W > w } sattuu jos ja vain jos Poissonin prosessissa ei satu yhtään tapahtumaa välillä [t, t + w]. Siksi identiteetin (5..3) mukaan P(W > w) = P(X w = ) = e λw.

12 6 Luku 5. Jatkuvat jakaumat } {{ } W =.5 X w Poi(λw) X w = 3 w=.5 { }} { 3 4 } {{ } W 4 =.88 t t + w Aika Kuvio 5.6. Kaaviokuva esittää Poissonin saapumisprosessia, esimerkiksi autojen kulkemista liikenteen tarkkailupisteen ohi. Esimerkiksi W on. auton odotusaika ja W 4 on 3. ja 4. auton välinen aika. Kiinnitetyllä w:n pituisella välillä on kulkenut ohi X w = 3 autoa. Peräkkäiset odotusajat W, W, W 3,... ovat toisistaan riippumattomat ja noudattavat samaa jakaumaa. Odotusajan W kertymäfunktio on siis F(w) = P(W w) = P(W > w) = P(X w = ) = e λw. Koska odotusaika W on epänegatiivinen, niin F(w) =, kun w <. Odotusajan W tiheysfunktio on F (w) = f(w) = λe λw derivointisäännön (5..3) nojalla. Usein merkitään λ =, missä θ >. Sanomme, että W noudattaa eksponenttijakaumaa parametrilla θ ja merkitsem- θ me W Exp(θ). Parametri θ on jakauman keskiarvo. Eksponenttijakauman tiheysfunktio on silloin muotoa (5..4) f(w) = θ e w/θ. Eksponenttijakauman Exp(θ) momenttifunktio on M(t) = e tw θ e w/θ dw = / e ( θt)w/θ θt = θt, t < θ. Eksponenttijakaumalla on vastaava unohtamisominaisuus kuin geometrisella jakaumalla. Jos T Exp(θ), niin (5..5) P(T > a + b T > a) = P(T > b) kaikilla epänegatiivisilla a ja b. Tulos voidaan todistaa laskemalla ehdollinen todennäköisyys P(T > a + b T > a) = P(T > a, T > a + b) P(T > a) = e (a+b)/θ e a/θ = = e b/θ = P(T > b). P(T > a + b) P(T > a)

13 5.. Tasajakauma ja eksponenttijakauma 63 Huomattakoon, että edellä on käytetty tulosta P(T > t) = P(T t) = F(t) = e t/θ, t. Esimerkki 5.8 Oletetaan, että asiakkaiden saapuminen liikkeeseen noudattaa Poissonin prosessia intensiteetillä asiakasta tunnissa. Mikä on todennäköisyys, että myyjä joutuu odottamaan seuraavaa asiakasta yli 5 minuuttia? Olkoon X odotusaika, kunnes seuraava asiakas saapuu. Silloin prosessissa (5..3) λ = /3 asiakasta minuutissa ja X Exp(3), koska eksponenttijakauman keskiarvo θ = /λ. Jakauman Exp(3) tiheysfunktio on f(x) = 3 e x/3, x < ja P(X > 5) = 5 3 e x/3 dx = 5 / e x/3 = e 5/ Jatkuvan jakauman mediaani m on sellainen piste, että F(m) = /. Nyt jakauman Exp(3) mediaanin m tulee toteuttaa ehto F(m) = e m/3 =, joten m = 3 log() Elinaikajakauma Ominaisuuden (5..5) perusteella eksponenttijakauma on sopiva elinajan jakauma silloin, kun jäljellä oleva elinaika ei riipu tämänhetkisestä iästä. Olkoon T esimerkiksi jonkin elektronisen komponentin ikä tunteina. Silloin P(T > b) on todennäköisyys, että uusi komponentti kestää ainakin b tuntia, kun taas P(T > a + b T > a) on todennäköisyys, että a tuntia käytössä ollut komponentti kestää vielä b tuntia. Jos elinaika noudattaa eksponenttijakaumaa, niin ominaisuuden (5..5) nojalla todennäköisyydet P(T > b) ja P(T > a + b T > a) ovat samat kaikilla a ja b. Todennäköisyys, että komponentti rikkoontuu b:n seuraavan tunnin aikana, ei riipu lainkaan siitä, kuinka kauan komponentti on jo ollut käytössä. Funktiota G(t) = P(T > t) kutsutaan eloonjäämisfunktioksi. Eksponenttijakauma määrittelee eloonjäämisfunktion G(t) = e t/θ, jolla on unohtamisominaisuus (5..6) G(t + s) = G(t)G(s), t >, s >. Määritelmänsä nojalla G() = ja G(t), kun t kasvaa. Onko eksponenttifunktion lisäksi muita eloonjäämisfunktioita, joilla on unohtamisominaisuus (5..6)? Voidaan osoittaa, että ehdon (5..6) toteuttavat eloonjäämisfunktiot ovat aina muotoa e λt, λ >.

14 64 Luku 5. Jatkuvat jakaumat Jos elinaika T noudattaa eksponenttijakaumaa Exp(θ), niin vakio λ = θ on hetkellinen kuolleisuusaste tai vaaran aste. Parametri λ säätelee todennäköisyyttä kuolla hetken T = t jälkeisellä yksikön pituisella aikavälillä. Olkoon tarkasteltavan aikavälin pituus. Määritelläään todennäköisyys P(T t + T > t) = P(T > t + T > t) = P(T > ) = e λ, missä viimeistä edellinen yhtäsuuruus saadaan unohtamisominaisuuden (5..6) nojalla. Kun funktiota e λ arvioidaan Taylorin polynomin avulla, saadaan e λ = ( λ + λ ) = λ λ + λ, kun on pieni. Arviointivirhe pienenee merkityksettömäksi verrattuna :aan, kun. Silloin siis P(T t + t > t) λ. G(t) f(t) 4 6 t Kuvio 5.7. Eksponenttijakauman Exp() tiheysfunktio f(t) = e t/ ja vastaava eloonjäämisfunktio G(t) = e t/. Nyt nähdään, että P(T t + T > t) lim on riippumaton ajasta t. Eksponentiaalisesti jakautuneen elinajan tapauksessa kuolleisuusaste λ on iästä riippumaton vakio. Yleisesti kuolleisuusaste λ(t) on tietysti iän funktio. = λ 5.3 Gammajakauma ja χ -jakauma Gammajakaumajakauma on välillä [, ) määritelty jakauma tai jakaumaperhe, koska parametrien vaihdellessa saadaan hyvinkin erinäköisiä jakaumia,

15 5.3. Gammajakauma ja χ -jakauma 65 vaikka ne ovat matemaattisesti samaa muotoa. Gammafunktio (5.3.) Γ(α) = x α e x dx määriteltiin jo Pykälässä.4.7. Jos α >, niin Γ(α) on äärellinen. Jos α on positiivinen kokonaisluku, niin Γ(α) voidaan lausua suljetussa muodossa, muutoin ei. Gammafunktio toteuttaa rekursiivisen relaation Γ(α + ) = αγ(α), joka voidaan osoittaa osittaisintegroinnilla. Jos α = n on positiivinen kokonaisluku, niin Γ(n + ) = nγ(n) = n(n ) Γ() = n!γ(). Koska Γ() =, niin Γ(n + ) = n! kaikilla positiivisilla kokonaisluvuilla. Myös Γ( ) = π on tärkeä erikoistapaus. Funktio (5.3.) f(t) = tα e t Γ(α), < t < määrittelee tiheysfunktion, sillä gammafunktiossa integroitava on positiivinen välillä (, ). Sanokaamme, että (5.3.) on satunnaismuuttujan T tiheysfunktio. Kaikkien gammajakaumien perhe saadaan määrittelemällä satunnaismuuttuja X = βt, missä β on positiivinen vakio. X:n tiheysfunktio voidaan johtaa soveltamalla Lauseen 5.5 muunnostekniikkaa. Merkitsemme X Gamma(α, β) ja sanomme, että X noudattaa gammajakaumaa parametrein α ja β. Jakauman Gamma(α, β) tiheysfunktioksi saadaan (5.3.3) f(x) = Γ(α)β αxα e x/β, < x <, α >, β >. Esitämme nyt gammajakauman perusominaisuudet seuraavassa lauseessa. Lause 5. Oletetaan, että X Gamma(α, β).. Funktio (5.3.3) määrittelee tiheysfunktion kaikilla α >, β >.. E(X) = αβ, Var(X) = αβ ja M(t) = E(e tx ) = ( ) α, t < βt β.

16 66 Luku 5. Jatkuvat jakaumat 3. kaikilla c > α. E(X c ) = Γ(α + c)βc Γ(α) 4. Olkoon U = bx, b >. Silloin U Gamma(α, bβ). Eksponettijakauma on gammajakauman erikoistapaus. Kun sijoitetaan tiheysfunktioon (5.3.3) α =, saadaan f(x; β) = β e x/β, x >. Havaitaan siis, että Gamma(, β) = Exp(β). χ -jakauma Toinen tärkeä gammajakauman erikoistapaus on χ -jakauma. Jos valitaan α = r, missä r on positiivinen kokonaisluku, ja β =, tulee tiheysfunktio (5.3.3) muotoon (5.3.4) f(x) = Γ ( ) r r/ x(r/) e x/, < x <, mikä on χ -jakauman tiheysfunktio vapausastein r. Jos X noudattaa χ - jakaumaa vapausastein r, merkitään X Khi(r). χ -jakauman keskiarvo, varianssi ja momenttifunktio saadaan nyt suoraan gammajakauman avulla. Jos X Khi(r), niin E(X) = r, Var(X) = r ja M(t) = ( t) r/, t <. Odotusaika Poissonin prosessissa Seuraavan tapahtuman odotusaika Poissonin prosessissa noudattaa eksponettijakaumaa. Olkoon W nyt odotusaika, kunnes sattuu α tapahtumaa, missä α on siis positiivinen kokonaisluku. Jos Poissonin prosessin intensiteetti on λ, niin todennäköisyys, että w:n pituisella aikavälillä sattuu x tapahtumaa, saadaan kaavalla (5..3): λw (λw)x P(X w = x) = e. x!

17 5.4. Normaalijakauma 67 Odotusajan W kertymäfunktio, kun W, on F(w) = P(W w) = P(W > w) = P(vähemmän kuin α tapahtumaa välillä [t, t + w]) α λw (λw)x = e, x! x= koska tapahtumien lukumäärä aikavälillä [t, t + w] noudattaa Poissonin jakaumaa keskiarvolla λw [ks. (5..3)]. Laskemalla derivaatta F (w) = f(w) saadaan tiheysfunktio f(w) = λ(λw)α (α )! e λw. Jos w <, niin F(w) = ja f(w) =. Nyt huomaamme, että 5.4 Normaalijakauma ( W Gamma α, ). λ 5.4. Standardimuotoinen normaalijakauma Tarkastelemme nyt todennäköisyysteorian ja tilastotieteen tärkeintä jakaumaa, normaalijakaumaa. Olkoon Z jatkuva satunnaismuuttuja, jonka tiheysfunktio on (5.4.) f(z) = π e z / < z <. Silloin Z noudattaa standardimuotoista normaalijakaumaa. Käytetään myös sanontaa Z noudattaa standardoitua normaalijakaumaa. Tarkistamme nyt, että (5.4.) on todellakin tiheysfunktio. Koska f(z) >, pitää vain osoittaa, että Osoitamme siis, että π e z / dz =. (5.4.) e z / dz = π. Emme pysty suoraan integroimaan funktiota e z /, koska sen integraalifunktio ei ole lausuttavissa suljetussa muodossa. Osoittautuu kuitenkin, että integraalin (5.4.) neliö on helppo laskea.

18 68 Luku 5. Jatkuvat jakaumat Integraalin arvo ei muutu, jos integrointimuuttuja nimetään uudelleen, joten I = e z / dz = e x / dx = Riittää osoittaa, että I = π. Nyt ( )( ) I = e x / dx e y / dy e y / dy. = e (x +y )/ dx dy = ( re r / dr )( π dθ ) = π e u du = π. Näin siis tulos (5.4.) pitää paikkansa. Edellä kolmas yhtäsuuruus saadaan siirtymällä napakoordinaatteihin: x = r cosθ ja y = r sin θ. Silloin x + y = r, dx dy = r dθ dr ja integrointirajat ovat < r <, < θ < π. Integraalilla (5.4.) on myös läheinen yhteys gammafunktioon. Koska integraalissa (5.4.) integroitava on symmetrinen nollan suhteen, niin integraalit yli välien (, ) ja (, ) ovat yhtä suuret. Siksi (5.4.3) e z / dz = π. Tekemällä sijoitus x = z integraaliin (5.4.3) saadaan integraali, joka on Γ ( ). Silloin ( ) (5.4.4) Γ = x / e x dx = π. Lause 5. Oletetaan, että Z noudattaa standardoitua normaalijakaumaa. Silloin. Z:n momenttifunktio on. E(Z) = ja Var(Z) =. M(t) = e t /, < t <.

19 5.4. Normaalijakauma 69 Todistus.. Määritelmän mukaan M(t) = e tz π e z / dz. Tehdään sijoitus x = z t. Silloin dz = dx ja e tz e z / = e (t x )/, joten M(t) = e (t x )/ dx = e t / π π e x / dx = e t /. Viimeinen yhtäsuuruus seuraa siitä, että integraali yli normaalijakauman tiheysfunktion π e x / on.. Koska M(t) = e t /, niin M (t) = te t / ja M (t) = e t / +t e t /. Silloin M () =, M () = ja Var(Z) = M () [M ()] =. Merkitään Z N(, ), missä siis E(Z) = ja Var(Z) =. Seuraavassa pykälässä määritellään normaalijakauma, jonka keskiarvo on µ ja varianssi σ Yleinen normaalijakauma Satunnaismuuttuja X noudattaa normaalijakaumaa keskiarvolla µ ja varianssilla σ >, jos se voidaan esittää muodossa X = µ + σz, missä Z N(, ). Silloin merkitään X N(µ, σ ). Jos X N(µ, σ ), niin vastaavasti Z = X µ N(, ). σ Seuraavassa lauseessa esitetään jakaumaa koskevat perustulokset. Lause 5.3 Jos X N(µ, σ ), niin. E(X) = µ, Var(X) = σ ja. M X (t) = E ( e tx) = e µt+σ t /, < t <. 3. X:n tiheysfunktio on f(x) = πσ e (x µ) /σ, < x <.

20 7 Luku 5. Jatkuvat jakaumat Todistus.. Koska X N(µ, σ ), niin X = µ + σz, missä Z N(, ). Silloin E(X) = E(µ + σz) = µ + σ E(Z) = µ ja Var(X) = Var(µ + σz) = σ Var(Z) = σ.. Määritelmän mukaan (ks. myös Lause 3.4) M X (t) = E ( e tx) = E [ e t(µ+σz)] = e tµ E ( e tσz) = e tµ M Z (tσ) = e tµ e t σ / = e tµ+t σ /. 3. Tehdään muunnos x = h(z) = µ + σz. Silloin h:lla on käänteisfunktio g ja z = g(x) = x µ sekä g (x) =. Alaluvussa 5.5 esitettävän muunnostekniikan avulla saadaan X:n σ σ tiheysfunktioksi (5.4.5) ( ) x µ f X (x) = f Z σ σ = e (x µ) /σ. π σ Tavallisesti tiheysfunktio kirjoitetaan muodossa f X (x) = πσ e (x µ) /σ, missä σ = + Var(X) = + σ on X:n hajonta. Todistuksessa ei oletettu, että σ >. Esimerkki 5.9 Jos X:n tiheysfunktio on f(x) = 3π e (x+7) /3, < x <, niin X N( 7, 6) ja M X (t) = e 7t+8t. Esimerkki 5. Jos X:n momenttifunktio on M X (t) = e 5t+t, niin X N(5, 4) ja X:n tiheysfunktio on f(x) = 48π e (x 5) /48, < x <.

21 5.4. Normaalijakauma 7 Jos X N(µ, σ ), niin X:n tiheysfunktio saavuttaa maksimin pisteessä x = µ ja käänteispisteet ovat x = µ ±σ. Todennäköisyysmassa on jakautunut siten, että missä Z N(, ). Esimerkiksi P( X µ σ) = P( Z ) =.686, P( X µ σ) = P( Z ) =.9544, P( X µ 3σ) = P( Z 3) =.9974, P( X µ σ) = P( Z ) = P( Z ) missä = Φ() Φ( ) = = , Φ(z) = z π e v / dv on standardimuotoisen normaalijakauman kertymäfunktio. Sen arvot on taulukoitu ja se saadaan laskettua useilla ohjelmistoilla. Edellä esitettyjen todennäköisyyksien kahden numeron likiarvoina käytetään tavallisesti lukuja.68,.95 ja.99, jotka eivät ole pyöristettyjä vaan katkaistuja arvoja. Myös yllä esitetyt neljän numeron likiarvot ovat katkaistuja arvoja. Lause 5.4. Olkoon X N(µ, σ ) ja U = ax + b, missä a ja b ovat annettuja vakioita. Silloin U N(aµ + b, a σ ).. Olkoot X, X,..., X n riippumattomat, X i N(µ i, σi ), i =,,..., n ja a, a,..., a n, b ovat annetut vakiot, joista ainakin yksi a i poikkeaa nollasta. Silloin Y = n i= a ix i + b noudattaa normaalijakaumaa ( n n ) Y N a i µ i + b,. i= i= a i σ i Esimerkki 5. Riippumattomat satunnaismuuttujat X, X, X 3 noudattavat normaalijakaumaa siten, että X i N( i, i i ), i =,, 3. Silloin Y = X + X + X 3 N(4, 3), sillä E(Y ) = = 4 ja Var(Y ) = = 3 ja Lauseen 5.4 mukaan Y noudattaa normaalijakaumaa. Satunnaismuuttuja Y = X + X + 3X 3 N(34, 6), koska ja E(Y ) = = 34 Var(Y ) = = 6.

22 7 Luku 5. Jatkuvat jakaumat 5.5 Muuttujien vaihto Oletetaan, että X on jatkuva satunnaismuuttuja, jonka kertymäfunktio on F(x). Lukuisissa sovelluksissa tarvitaan satunnaismuuttujan X jonkin funktion Y = h(x) jakaumaa, kun X:n jakauma tunnetaan. Tehtävänämme on nyt siis määrittää satunnaismuuttujan Y = h(x) jakauma, missä h(x) on x:n reaaliarvoinen funktio Muunnos kertymäfunktio avulla Voimme pyrkiä johtamaan Y :n kertymäfunktion G(y) = P(Y y) suoraan X:n kertymäfunktion F(x) avulla. Y :n tiheysfunktio g(y) voidaan määrittää sitten identiteetin (5..3) avulla, kun G(y) on derivoituva. Esimerkki 5. Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f(x) = 3x, x. Tarkastellaan satunnaismuuttujan Y = X jakaumaa. Silloin Y :n arvoavaruus on S Y = [, ] ja Y :n kertymäfunktio on G(y) = P(Y y) = P(X y) = P( y X y) = y y 3x dx = y / y Derivoimalla saadaan Y :n tiheysfunktioksi x 3 = y3/, y. g(y) = G (y) = 3y/, y. Esimerkki 5.3 Olkoon X jatkuva satunnaismuuttuja, jonka kertymäfunktio on F(x) = ( + x)e x, x >. Johdetaan satunnaismuuttujan Y = e X jakauma. Merkitään Y :n kertymäfunktiota G:llä. Silloin G(y) = P(Y y) = P ( e X y ) = P[ X log(y)] = P[X log(y)] = P[X < log(y)] = F[ log(y)],

23 5.5. Muuttujien vaihto 73 missä F(x) on X:n kertymäfunktio. Sijoittamalla x = log(y) X:n kertymäfunktioon saadaan G(y) = [ log(y)]e log(y) = [ log(y)]y. Koska S X = (, ), niin S Y = (, ). Y on jatkuva satunnaismuuttuja, koska G(y) on jatkuva ja sillä on jatkuva derivaatta muualla paitsi pisteessä y =. Y :n tiheysfunktio on { g(y) = G log(y), kun < y < ; (y) = muualla. Huomaa, että log(y) >, kun < y <. Nyt siis g(y) kaikilla y S Y = (, ) Muunnos tiheysfunktion avulla Seuraavaksi esitetään yleinen menetelmä, jonka avulla voidaan johtaa satunnaismuuttujan X funktion Y = h(x) tiheysfunktio suoraan X:n tiheysfunktion f X (x) avulla. Menetelmän edellyttää kuitenkin, että funktiolla h(x) on tarkasteltavalla välillä käänteisfunktio. Esimerkiksi funktion y = e x käänteisfunktio on x = log(y). Myös funktio y = x on kääntyvä, kun x >, sillä silloin x = y. Funktio y = x ei ole kääntyvä koko reaaliakselilla, koska silloin x = ± y, joka ei ole funktio. Huomattakoon, että jatkuva funktio h(x) on kääntyvä, jos ja vain jos se on joko aidosti kasvava tai aidosti vähenevä. Lineaarinen munnos Tarkastellaan ensin yksinkertaista lineaarista muunnosta Y = ax + b, missä a ja b ovat annettuja vakioita. Nyt siis h(x) = ax + b. Funktion y = h(x) derivaatta on dy dx = h (x) = a. Funktiolla h(x) on käänteisfunktio ja g(y) = y b a, a dy dx = g (y) = a. Esimerkki 5.4 Oletetaan, että X Tas(.5,.5) ja Y = X. Mitä jakaumaa Y noudattaa? Kuviossa 5.8 on alueen A pinta-ala P[X (x, x + x)] = f X (x) x = x

24 74 Luku 5. Jatkuvat jakaumat 3 y = x y + y y f Y (y) { }} { B x } A } {{ } f X (x).5 x x + x.5 x Kuvio 5.8. Tasajakaumaa Tas(.5,.5) noudattavan satunnaismuuttujan X lineaarinen muunnos. ja alueen B pinta-ala P[Y (y, y + y)] = f Y (y) y. Tapahtumat X (x, x + x) ja Y (y, y + y) sattuvat täsmälleen samanaikaisesti, joten (5.5.) P[X (x, x + x)] = P[Y (y, y + y)]. Koska y = x ja y + y = (x+ x), niin y = x ja identiteetistä (5.5.) seuraa, että f Y (y) =. Koska.5 < x <.5, niin < y < 3. Näin siis Y Tas(, 3): { f Y (y) =, < y < 3;, muualla. Olkoon X satunnaismuuttuja, jonka arvoavaruus on S X. Silloin satunnaismuuttujan Y = h(x) arvoavaruus S Y määräytyy siten, että X S X Y S Y. Seuraavassa lauseessa esitettävässä menetelmässä oletetaan, että funktio y = h(x) on tarkasteltavalla arvoalueella kääntyvä. Silloin on olemassa sellainen funktio x = g(y), että y = h(x) x = g(y).

25 5.5. Muuttujien vaihto 75 Lause 5.5 Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X (x) ja arvoavaruus S X. Olkoon Y = h(x) sellainen funktio, että sillä on käänteisfunktio x = g(y) ja käänteisfunktion derivaatta g (y) on olemassa kaikilla y S Y, missä S Y on Y :n arvoavaruus. Silloin Y :n tiheysfunktio on f Y (y) = f X ( g(y) ) g (y), y S Y. Todistus. Oletuksen mukaan g(y) on derivoituva, joten se on jatkuva. Koska h ja g ovat kääntyviä, niin h ja g ovat molemmat joko kasvavia tai väheneviä. Oletetaan h ja g ovat väheneviä. Silloin F Y (y) = P(Y y) = P(h(X) y) = P(X g(y)) = F X ( g(y) ). Derivoidaan F X [g(y)] ketjusäännön avulla, jolloin saadaan f Y (y) = F Y (y) = F X( g(y) ) g (y) = f X ( g(y) ) g (y) = f X ( g(y) ) g (y). Viimeinen yhtäsuuruus seuraa siitä, että g (y) on negatiivinen, koska g on vähevä. Jos h ja g ovat kasvavia, niin todistus on melkein samanlainen ja se jätetään harjoitustehtäväksi. Esimerkki 5.5 Olkoon X jatkuva satunnaismuuttuja, jonka tiheysfunktio on f X (x) = e x ja S X = { x x > }. Olkoon Y = X /, joten X = Y = g(y ) ja S Y = S X. Koska g (y) = y, niin f Y (y) = f X (y ) y = ye y, y >. Tarkastellaan vielä satunnaismuuttujaa V = e X. Silloin X = log(v ). Merkitään nyt log(v ) = g(v ). Silloin S V = [, ] ja g (v) = /v. Siksi f V (v) = f X [ log(v)] v = v v =, joten V noudattaa tasajakaumaa välillä [, ]. Mikäli muunnosfunktiolla h ei ole käänteisfunktiota X:n arvoavaruudessa S X, niin Lauseen 5.5 muunnosmenetelmää ei voi suoraan soveltaa. Jos kuitenkin on olemassa sellainen S X :n ositus yhteispisteettömiin osaväleihin A, A,..., A m, että (5.5.) S X = A A A m ja h on kääntyvä jokaisella osavälillä, voidaan muunnos tehdä jokaisella osavälillä erikseen. Sitä varten määritellään funktiot { h i (x), kun x A i ; h(x) = muualla.

26 76 Luku 5. Jatkuvat jakaumat Silloin h(x) voidaan kirjoittaa muodossa h(x) = m i= h i(x), missä jokainen h i (x) on kääntyvä välillä A i. Olkoot funktioiden h i käänteisfunktiot vastaavasti g i, i =,,..., m. Satunnaismuuttujan Y = h(x) tiheysfunktio voidaan nyt esittää Lauseen 5.5 avulla muodossa (5.5.3) f Y (y) = m ( f X gi (y) ) g i (y). y S Y. i= Huomattakoon, että joskus tarvitaan äärellisen osituksen (5.5.) sijasta ositus, jossa jakovälejä A, A,... on ääretön määrä (m = ) Normaalimuuttujan muunnokset Jos X N(, ), niin X:n tiheysfunktio on f(x) = π e x /, < x <, joka on standardimuotoisen normaalijakauman tiheysfunktio. Johdetaan nyt satunnaismuuttujan U = X jakauma. Muunnosfunktio u = h(x) = x ei ole kääntyvä, koska x = ± u ei ole funktio. Siksi esitämme arvoavaruuden S X = { < x < } ositettuna muodossa S X = (, ] (, ). Silloin funktiolla h(x) on välillä (, ] käänteisfunktio g (u) = u ja välillä (, ) käänteisfunktio g (u) = u. Nyt siis kaavan (5.5.3) mukaan U:n tiheysfunktio on (5.5.4) f U (u) = f X ( u) u + f X( u) u = e u/, πu kun u (, ). U noudattaa χ -jakaumaa vapausastein. Käsittelemme tilastotieteessä tärkeää χ -jakaumaa vielä jatkossa tarkemmin. Lause 5.6 Jos X N(µ, σ ), σ >, niin silloin (X µ) σ Khi(). Todistus. Koska X N(µ, σ ), niin määritelmän mukaan X µ = Z σ N(, ). Edellä näytettiin, että Z Khi(). Näin on lause todistettu. Lause 5.7 Jos Z i :t ovat riippumattomat ja Z i N(, ), i =,,..., n, niin Z + Z + Z n Khi(n).

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Raija Leppälä 17. lokakuuta 2011 Sisältö 1 Johdanto 3 2 Todennäköisyyslaskentaa 5 2.1 Satunnaisilmiö ja tapahtuma 5 2.2 Klassinen

Lisätiedot

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen MAT-20500 Todennäköisyyslaskenta Laskuharjoituksia / Periodi 2 / 2009-2010 1.1 Peruskäsitteitä 1. Totea Venn-diagrammien avulla oikeaksi demorganin lait A B = A B, A B = A B Jos otosavaruus on ihmiset

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Karvanen, Juha; Luoto, Antti Title: Odottelua pysäkillä

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot