MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi"

Transkriptio

1 MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 20, periodi I

2 Sisältö Diskreetit satunnaismuuttujat Jatkuvat jakaumat Jatkuvat satunnaisvektorit Sekoitetut jakaumat Ehdolliset jakaumat

3 Satunnaismuuttuja Satunnaismuuttuja on suure, jonka arvo määräytyy satunnaisilmiön realisaatiosta: Sattuma määrää satunnaisilmiön realisaation s S Realisaatio s määrää satunnaismuuttujan arvon X (s) Tapahtuma {X = a} := {s S : X (s) = a} Esim (Kaksi noppaa) Perusjoukon S = {(s, s 2 ) : s, s 2 =,..., } satunnaismuuttujia: Nopan silmäluku X (s) = s Nopan 2 silmäluku X 2 (s) = s 2 Silmälukujen maksimi M(s) = max{s, s 2 }

4 Satunnaismuuttuja: Tulkinta Satunnaismuuttuja X on suure, jonka arvo X (s) määräytyy satunnaisilmiön realisaatiosta s S: Yhteen satunnaisilmiöön liittyy useita satunnaismuuttujia. Realisaatio s S määrää niiden kaikkien arvot. Todennäköisyysteoriassa tutkitaan satunnaismuuttujien arvojen todennäköisyyksiä, kun satunnaisilmiötä kuvaava perusjoukon S todennäköisyysjakauma P tunnetaan. Tilastotieteessä pyritään havaittujen satunnaismuuttujien arvojen perusteella tekemään johtopäätöksiä perusjoukon S tuntemattomasta todennäköisyysjakaumasta P. Matemaattisesti (MS-E00 Probability theory): Satunnaismuuttuja on mitallinen kuvaus X : S S Tapahtuman {X B} todennäköisyys on luku P(A), missä A = X (B) on joukon B alkukuva

5 Eri tyyppisiä satunnaismuuttujia Satunnaismuuttujasta X : S S saatetaan käyttää nimitystä satunnaisluku, kun S R satunnaisvektori, kun S R n satunnaismatriisi, kun S R m n satunnaisverkko, kun S {n:n solmun verkot} stokastinen prosessi, kun S { ajan t funktiot t f (t)} Tällä kurssilla käsitellään lähes yksinomaan satunnaislukuja (eli reaaliarvoisia satunnaismuuttujia) ja R 2 :n satunnaisvektoreita. Satunnaismuuttuja on diskreetti, jos sen mahdolliset arvot voidaan listata äärelliseen tai äärettömään jonoon (x, x 2,... ).

6 Satunnaismuuttujan jakauma Satunnaismuuttujan X jakauma on taulukko tai funktio, josta voidaan määrittää X :n mahdolliset arvot ja niiden todennäköisyydet. Esim (Kaksi noppaa) Nopan silmäluvun X jakauma on k P(X = k) eli lukujoukon {,..., } tasajakauma. Nopan 2 silmäluvulla X 2 on sama jakauma. = Satunnaismuuttujat X ja X 2 ovat samoin jakautuneita.

7 Esimerkki: Kahden nopan maksimin jakauma M = max(x, X 2 ), missä X ja X 2 ovat kahden nopan tulokset. P(M = k) = P(M k) P(M k ) = P(X k, X 2 k) P(X k, X 2 k ) = P(X k) P(X 2 k) P(X k ) P(X 2 k ) ( ) k 2 ( ) k 2 = = 2k Satunnaismuuttujan M jakauma: k P(M = k) 5 7 9

8 Pistetodennäköisyysfunktio Kun satunnaismuuttujan arvojoukko on pieni, kannattaa jakauma esittää taulukkona. Esim (Kruunien lukumäärä 5:llä kolikonheitolla) k P(X = k) Suuren arvojoukon tapauksessa jakauma kannattaa esittää pistetodennäköisyysfunktion f X (k) := P(X = k) avulla. Esim (Kruunien lukumäärä n = :lla kolikonheitolla) f X (k) = ( n k ) ( 2 ) k ( 2) n k, k = 0,,..., n. Tämä on binomijakauma parametreina n = ja p = 2.

9 Satunnaismuuttujien yhteisjakauma Samaan satunnaisilmiöön liittyvien satunnaismuuttujien X ja Y yhteisjakauma on taulukko tai funktio, josta voidaan määrittää parin (X, Y ) mahdolliset arvot ja niiden todennäköisyydet. Esim (Kaksi noppaa) Noppien silmälukujen X ja X 2 yhteisjakauma on X 2 X eli tulojoukon {,..., } {,..., } tasajakauma.

10 Ensimmäisen nopan ja noppien maksimin yhteisjakauma k < i = P(X = i, M = k) = 0 k = i = P(X = i, M = k) = P(X = i, X 2 i) = k k > i = P(X = i, M = k) = P(X = i, X 2 = k) = Satunnaismuuttujien X ja M yhteisjakauma: M X

11 Yhteisjakauman rivi- ja sarakesummat Rivi- ja sarakesummia kutsutaan yhteisjakauman reunajakaumiksi. M X Yht Yht 5 Rivisummista saadaan X :n jakauma Sarakesummista saadaan M:n jakauma 7 9

12 Silmälukujen yhteisjakauman reunajakaumat X 2 X Yht Yht Rivisummista saadaan X :n jakauma Sarakesummista saadaan X 2 :n jakauma

13 Satunnaismuuttujien riippuvuus ja riippumattomuus Satunnaismuuttujat X ja Y ovat stokastisesti riippumattomat, jos kaikilla A, B pätee P(X A, Y B) = P(X A) P(Y B). Esim (Kaksi noppaa) Noppien silmäluvut X ja X 2 ovat riippumattomat X ja M = max{x, X 2 } ovat riippuvat Huom X ja Y ovat riippumattomat täsmälleen silloin, kun P(Y B X A) = P(Y B) kaikilla A, B s.e. P(X A) > 0.

14 Yhteisjakauman pistetodennäköisyysfunktio Satunnaismuuttujien X ja Y yhteisjakauman pistetodennäköisyysfunktio on f X,Y (i, j) = P(X = i, Y = j). Fakta Jos X ja Y ovat riippumattomat, niin f X,Y (i, j) = f X (i)f Y (j). Esim (Kaksi noppaa) Noppien silmäluvut X ja X 2 ovat riippumattomat, ja molempien pistetodennäköisyysfunktio on f (i) =, i =,...,. = f X,X 2 (i, j) = f (i)f (j) =, i, j =,...,.

15 Esim. Satunnaisotanta Kuinka moni opiskelijoista katsoi viime to Salatut elämät? S = Kaikki opiskelijat, #S = A = Salkkarit katsoneet opiskelijat, #A =. (#A olisi käytännön tilanteessa tuntematon) Haastatellaan satunnaiset n = 2 opiskelijaa ja merkitään {, jos. haastateltu opiskelija A θ = 0, muuten θ 2 = {, jos 2. haastateltu opiskelija A 0, muuten Mikä on θ :n ja θ 2 :n yhteisjakauma? P(θ =, θ 2 = ) =?

16 Satunnaisotanta palauttaen ja ilman palautusta Palauttaen Ilman palautusta θ 2 θ 0 Yht 0 Yht θ 2 θ 0 Yht Yht Molemmissa tapauksissa saadaan samat reunajakaumat. Yhteisjakaumaan vaikuttaa, miten otanta suoritetaan.

17 Satunnaisotanta palauttaen ja ilman palautusta Palauttaen Ilman palautusta θ 2 θ 0 Yht 0 Yht f θ,θ 2 (i, j) = f θ (i)f θ2 (j) θ 2 θ 0 Yht Yht f θ,θ 2 (i, j) f θ (i)f θ2 (j) Molemmissa tapauksissa saadaan samat reunajakaumat. Satunnaisotannassa palauttaen ovat θ ja θ 2 riippumattomat. Satunnaisotannassa ilman palautusta θ ja θ 2 ovat riippuvat.

18 Ääretön arvojoukko Satunnaismuuttujan mahdollisten arvojen joukko voi olla ääretön. Esim (Kimblen alkuvaihe) N = nopanheittojen lukumäärä, kunnes saadaan kuutonen. P(N = k) = P(X,..., X k, X k = ) = P(X ) P(X k ) P(X k = ) ( = ) k ( ) Satunnaismuuttuja N noudattaa äärettömän arvojoukon {, 2,... } geometrista jakaumaa onnistumistodennäköisyytenä p =. Pistetodennäköisyysfunktio f N (k) = ( p) k p, k =, 2,...

19 Diskreetti satunnaismuuttuja Satunnaismuuttuja on diskreetti, jos sen arvojoukko voidaan numeroida äärellisenä tai äärettömänä listana (x, x 2,... ). Diskreetin satunnaismuuttujan X jakauma määräytyy pistetodennäköisyysfunktiosta kaavalla P(X B) = i B f X (i) ja diskreettien satunnaismuuttujien X ja Y yhteisjakauma kaavalla P((X, Y ) B) = f X,Y (i, j) (i,j) B

20 Sisältö Diskreetit satunnaismuuttujat Jatkuvat jakaumat Jatkuvat satunnaisvektorit Sekoitetut jakaumat Ehdolliset jakaumat

21 Kaikki tähän asti käsitellyt satunnaismuuttujat ovat olleet diskreettejä. Tuleeko mieleen muunlaisia satunnaismuuttujia?

22 Esimerkki: Metron odotusaika X = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein. Mikä on satunnaismuuttujan X jakauma? P(2 X ) = 0 = 0. P(2.9 X ) = 0. 0 = 0.0 P( X ) = = P(X = ) = 0 Vastaavasti päätelleen havaitaan, että satunnaismuuttujan X pistetodennäköisyysfunktio on P(X = t) = 0 kaikilla t. Menikö yo. päättelyssä jotain väärin? Ei mennyt. Koska X :n arvojoukko on jatkuva väli [0, 5], tarkoittaa {X = } tapahtumaa, että X :n arvo on äärettömän monen desimaalin tarkkuudella. Tällaisen tapahtuman todennäköisyys on nolla.

23 Esimerkki: Metron odotusaika X = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein. Mikä on satunnaismuuttujan X jakauma? Koska P(X =t) = 0 kaikilla t, ei X :n jakaumaa voi määrittää pistetodennäköisyysfunktion avulla. Tarvitaan muita keinoja. missä P(a X b) = P(a < X b) F X (t) = = P(X b) P(X a) = F X (b) F X (a), 0, t 0, t 0, 0 < t < 0,, t 0. on odotusajan jakauman kertymäfunktio.

24 Kertymäfunktio Satunnaisluvun (eli reaaliarvoisen satunnaismuuttujan) jakauman kertymäfunktio on funktio F X (t) = P(X t). Fakta Kertymäfunktio määrää jakauman: funktion F X (t) avulla voidaan laskea kaikkien tapahtumien {X B} todennäköisyydet. Esim (Metron odotusaika) Millä todennäköisyydellä odotusaika osuu välille (, 2) tai (, 4)? P(X (, 2) tai X (, 4)) = P(X (, 2)) + P(X (, 4)) = (F X (2) F X ()) + (F X (4) F X ()) ( 2 = 0 ) ( ) 0 = 0.2.

25 Jatkuva satunnaisluku Satunnaisluku X on jatkuva, jos sen jakauma voidaan esittää tiheysfunktion f (x) 0 avulla muodossa P(X A) = f (x) dx, A R. A Paradoksi? Jatkuvan satunnaisluvun tarkat arvot Tapahtuman {X = a} todennäköisyys on P(X = a) = P(a X a) = a a f (x) dx = 0. {X = a} on tapahtuma, että X :n arvo on reaaliluku a äärettömän monen desimaalin tarkkuudella. Jos f (a) > 0 ja f on jatkuva pisteessä a, niin P(X (a δ, a + δ)) = a+δ a δ f (x) dx 2δf (a) > 0 mielivaltaisen pienellä δ > 0. f(x) A x

26 Jatkuva tasajakauma f(x) Jatkuvan välin (a, b) tasajakauman tiheysfunktio on f (x) = { b a, jos x (a, b), 0, muuten. b - a a b x Esim Merkitään luvulla θ sitä kulmaa, johon rulettipyörä yhden pelikierroksen jälkeen asettuu suhteessa edelliseen tilaansa. Tällöin θ noudattaa välin (0, 2π) tasajakaumaa ja todennäköisyys, että θ (0, π) on P(θ (0, π)) = π 0 f (x) dx = π 0 2π dx = π 2π = 2.

27 Kertymäfunktio ja tiheysfunktio Jatkuvan satunnaisluvun kertymäfunktio on tiheysfunktion integraali F (x) = P(X x) = x tiheysfunktio on kertymäfunktion derivaatta f (x) = F (x) f (t) dt

28 Jatkuva tasajakauma Jatkuvan välin (a, b) tasajakauman tiheysfunktio on f(x) f (x) = { b a, x (a, b), 0, muuten. b - a a b x Integroimalla tiheysfunktiota = kertymäfunktio on 0, x a, F (x) = x a b a, a < x < b,, x b. a b F(x) x

29 Eksponenttijakauma Eksponenttijakauman parametrina λ > 0 tiheysfunktio on { λe λx, x > 0 f (x) = 0, x 0. Integroimalla tiheysfunktiota = kertymäfunktio on { 0, x 0, F (x) = e λx, x > 0. λ f(x) F(x) x x

30 Eksponenttijakauman muistittomuus F (t) = e λt, t 0 P ( X > s + t X > s ) = = P(X > s + t ja X > s) P(X > s) P(X > s + t) F (s + t) = P(X > s) F (s) = e λ(t+s) e λs = e λt = P(X > t) Siis P(X > s + t X > s) = P(X > t) kaikilla s, t 0. Tulkinta Huolimatta siitä, kuinka kauan bussia on jo odotettu, on tn että pitää odottaa vielä t min lisää sama kuin tn, että juuri pysäkille saapunut henkilö odottaa yli t min.

31 Satunnaisluvut yhteenveto Diskreetti satunnaisluku Esim. joukon {,..., } tasajakauma, binomijakauma Pistetodennäköisyysfunktio f (i) määrää jakauman Tiheysfunktiota ei ole olemassa P(X A) = i A f (i) Jatkuva satunnaisluku Esim. välin [0, 0] tasajakauma, eksp. jakauma Pistetodennäköisyysfunktio on identtisesti nolla Tiheysfunktio f (x) määrää jakauman P(X A) = f (x) dx A

32 Sisältö Diskreetit satunnaismuuttujat Jatkuvat jakaumat Jatkuvat satunnaisvektorit Sekoitetut jakaumat Ehdolliset jakaumat

33 Jatkuva satunnaisvektori Satunnaisvektori (X,..., X n ) on järjestetty lista samalla perusjoukolla määriteltyjä satunnaismuuttujia. Satunnaisvektori (X, X 2 ) R 2 on jatkuva, jos sen jakauma eli X :n ja X 2 :n yhteisjakauma voidaan esittää tiheysfunktion avulla muodossa P((X, X 2 ) B) = f X,X 2 (x, x 2 ) dx dx 2, B R 2. Esim (Pörssi) B Helsingin pörssin tilaa seuraavana pankkipäivänä voidaan mallintaa -ulotteisella satunnaisvektorilla (X,..., X ), missä X i on osakkeen i avauskurssi. Esim (Sää) Huomisaamun tuulen nopeuksia Ilmatieteen laitoksen havaintoasemilla voidaan mallintaa satunnaisvektorilla (X,..., X 20 ), missä X i on tuulen nopeus havaintoasemalla i.

34 Reunatiheysfunktiot Fakta Jatkuvan satunnaisvektorin (X, X 2 ) komponentit ovat jatkuvia satunnaislukuja, joiden tiheysfunktiot saadaan yhteisjakauman tiheysfunktiosta kaavoilla f X (x ) = f X2 (x 2 ) = f (x, x 2 ) dx 2, f (x, x 2 ) dx. Huom f X (x ) vastaa rivisummaa rivillä x f X2 (x 2 ) vastaa sarakesummaa sarakkeella x 2 Näitä kutsutaan yhteisjakauman reunatiheysfunktioiksi

35 Esim. Yksikköneliön tasajakauma Yksikköneliön (0, ) 2 tasajakaumaa noudattavan satunnaisvektorin (U, U 2 ) tiheysfunktio on {, kun x (0, ) ja x 2 (0, ), f U,U 2 (x, x 2 ) = 0, muuten. Yhteisjakauman reunatiheysfunktiot ovat {, kun x (0, ), f U (x ) = f U,U 2 (x, x 2 ) dx 2 = 0, muuten. f U2 (x 2 ) = f U,U 2 (x, x 2 ) dx = {, kun x 2 (0, ), 0, muuten. U ja U 2 noudattavat siis välin (0, ) tasajakaumaa.

36 Stokastinen riippuvuus ja riippumattomuus Palautetaan mieleen: X, Y ovat riippumattomat, jos kaikilla A, B pätee P(X A, Y B) = P(X A) P(Y B). Fakta Jatkuvan satunnaisvektorin (X, Y ) komponentit X ja Y ovat riippumattomat jos ja vain jos niillä on yhteistiheysfunktio, joka voidaan kirjoittaa muodossa f X,Y (x, y) = f X (x)f Y (y) kaikilla x, y.

37 Esim. Yksikköneliön tasajakauma Yksikköneliön (0, ) 2 tasajakaumaa noudattavan satunnaisvektorin (U, U 2 ) tiheysfunktio on {, kun x (0, ) ja x 2 (0, ), f U,U 2 (x, x 2 ) = 0, muuten, ja reunatiheysfunktiot ovat Koska f U (u) = f U2 (u) = ovat U ja U 2 riippumattomat. {, kun u (0, ), 0, muuten. f U,U 2 (x, x 2 ) = f U (x )f U2 (x 2 ),

38 Sisältö Diskreetit satunnaismuuttujat Jatkuvat jakaumat Jatkuvat satunnaisvektorit Sekoitetut jakaumat Ehdolliset jakaumat

39 Esimerkki: Metron odotusaika Y = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein, ja jossa metrot pysähtyvät min ajan. Y :n jakauma =? X = aika (min) edellisen metron saapumisesta noudattaa välin [0, 0] tasajakaumaa. Kun t [0, 9], P(Y t) = P(Y = 0) + P(0 < Y t) = F Y (t) = = P(X ) + P(0 < 0 X < t). Onko Y :n jakauma diskreetti vai jatkuva? 0, t < 0, 0 + t 0, 0 t 9,, t > 9. Y saa arvoja jatkuvalla välillä [0, 9] = ei diskreetti P(Y = 0) > 0 = ei jatkuva

40 Esimerkki: Metron odotusaika Y = odotusaika (min) asemalla, jonne metroja saapuu 0 min välein, ja jossa metrot pysähtyvät min ajan. Kertymäfunktio voidaan kirjoittaa muodossa F Y (t) = 0 F Y 0 (t) F Y (t), missä F Y0 (t) = { 0, t < 0,, t 0, F Y (t) = 0, t < 0, t 9, 0 t < 9,, t 9, Y :n jakauma on diskreetin ja jatkuvan jakauman sekoitus: Y 0 on diskreetti sm, joka varmuudella saa arvon 0 (Y :n jakauma ehdolla, että metro on odottamassa asemalla) Y on jatkuva sm, joka noudattaa välin [0, 9] tasajakaumaa (Y :n jakauma ehdolla, että metroa joudutaan odottamaan)

41 Sisältö Diskreetit satunnaismuuttujat Jatkuvat jakaumat Jatkuvat satunnaisvektorit Sekoitetut jakaumat Ehdolliset jakaumat

42 Diskreettien satunnaismuuttujien ehdolliset jakaumat Jos diskreettien satunnaismuuttujien yhteisjakaumalla on pistetodennäköisyysfunktio f X,Y (x, y), niin P(Y = y X = x) = P(X = x, Y = y) P(X = x) = f X,Y (x, y). f X (x) Satunnaismuuttujan Y ehdollinen jakauma tapahtuman {X = x} sattuessa määräytyy siis pistetodennäköisyysfunktiosta y f Y X (y x) = f X,Y (x, y). f X (x)

43 Esim. Satunnaisotanta palauttaen Mikä on satunnaismuuttujan θ 2 ehdollinen jakauma tapahtuman {θ = 0} sattuessa? θ 2 θ 0 Yht 0 Yht f θ2 θ (0 0) = f θ2 θ ( 0) = =. =. Tässä tapauksessa θ 2 :n ehdollinen jakauma tapahtuman {θ = 0} sattuessa on sama kuin θ 2 :n ehdoton jakauma.

44 Esim. Satunnaisotanta ilman palautusta Mikä on satunnaismuuttujan θ 2 ehdollinen jakauma tapahtuman {θ = 0} sattuessa? θ 2 θ 0 Yht Yht f θ2 θ (0 0) = f θ2 θ ( 0) = = = 79. Tässä tapauksessa θ 2 :n ehdollinen jakauma tapahtuman {θ = 0} sattuessa on eri kuin θ 2 :n ehdoton jakauma.

45 Jatkuvan satunnaisvektorin ehdolliset jakaumat Jos jatkuvalla satunnaisvektorilla (X, Y ) on tiheysfunktio f X,Y, niin Y :n ehdollinen tiheysfunktio ehtomuuttujan X suhteen on f Y X (y x) = f X,Y (x, y). f X (x) Tulkinta: Valitaan pienenpieni ɛ > 0 ja merkitään {X x} = {x ɛ < X < x + ɛ}. Kun f X (x) > 0 ja f Y X on sopivassa mielessä jatkuva, niin x+ɛ x ɛ B P(Y B X x) = f X,Y (u, v) dv du x+ɛ x ɛ f X (u) du ( x+ɛ x ɛ B f Y X (v u) dv) f X (u) du = x+ɛ x ɛ f X (u) du f Y X (v x) dv. B

46 Seuraavalla kerralla puhutaan satunnaismuuttujien odotusarvoista...

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Satunnaismuuttujien summa ja keskiarvo

Satunnaismuuttujien summa ja keskiarvo Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,

Lisätiedot

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat 1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat 1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Stokastiikka ja tilastollinen ajattelu

Stokastiikka ja tilastollinen ajattelu Stokastiikka ja tilastollinen ajattelu Versio 0.9 Lasse Leskelä Aalto-yliopisto 3. tammikuuta 208 Sisältö Todennäköisyyden käsite ja laskusäännöt 5. Todennäköisyyden käsite...................... 5.2 Satunnaisilmiön

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Keskihajonta ja korrelaatio

Keskihajonta ja korrelaatio Luku 4 Keskihajonta ja korrelaatio Lasse Leskelä Aalto-yliopisto 19. syyskuuta 2017 4.1 Jakauman varianssi ja keskihajonta Edellisessä luvussa opittiin, että satunnaismuuttujan odotusarvo on X:n jakauman

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä

Lisätiedot

3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma

3.1 Kaksiulotteinen satunnaisvektori ja sen jakauma 3 Yhteisjakauma Kappaleessa 2 tarkastelimme aina yhtä satunnaismuuttujaa kerrallaan. Tässä kappaleessa näemme, miten aikaisemmat käsitteet yleistyvät siihen tilanteeseen, jossa samalla perusjoukolla on

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

8.1 Ehdolliset jakaumat

8.1 Ehdolliset jakaumat 8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos

Lisätiedot

D ( ) E( ) E( ) 2.917

D ( ) E( ) E( ) 2.917 Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3

Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3 Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Bayesläiset tilastolliset mallit

Bayesläiset tilastolliset mallit Luku 9 Bayesläiset tilastolliset mallit Lasse Leskelä Aalto-yliopisto 8. lokakuuta 07 9. Priorijakauma ja posteriorijakauma Bayesläisen tilastollisen päättelyn lähtökohtana on päivittää satunnaisilmiöön

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat .9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 7

031021P Tilastomatematiikka (5 op) viikko 7 0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Generointi yksinkertaisista diskreeteistä jakaumista

Generointi yksinkertaisista diskreeteistä jakaumista S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita

Lisätiedot

11 Raja-arvolauseita ja approksimaatioita

11 Raja-arvolauseita ja approksimaatioita 11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden

Lisätiedot